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  15 

Abstract 16 

Microbial source tracking quantifies the potential origin of microbial communities, facilitates 17 

better understanding of how the taxonomic structure and community functions were formed 18 

and maintained. However, previous methods involve a tradeoff between speed and accuracy, 19 

and have encountered difficulty in source tracking under many context-dependent settings. 20 

Here, we present EXPERT for context-aware microbial source tracking, in which we adopted 21 

a Transfer Learning approach to profoundly elevate and expand the applicability of source 22 

tracking, enabling biologically informed novel microbial knowledge discovery. We 23 

demonstrate that EXPERT can predict microbial sources with performance superior to other 24 

methods in efficiency and accuracy. More importantly, we demonstrate EXPERT’s context-25 
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aware ability on several applications, including tracking the progression of infant gut 26 

microbiome development and monitoring the changes of gut microbiome for colorectal 27 

cancer patients. Broadly, transfer learning enables accurate and context-aware microbial 28 

source tracking and has the potential for novel microbial knowledge discovery. 29 

   30 

Introduction 31 

Millions of microbial communities have been accumulated from hundreds of environments 32 

(also known as “biomes”) worldwide1–3, which continuously complete the grand picture of 33 

the microbiome world, revolutionizing our understanding of the roles microbes play in 34 

human health and disease4, biogeochemical cycling5 and other processes. The relationships 35 

between microbial community samples and their biomes, on the other hand, are extremely 36 

complicated, owing to the highly dynamic nature of microbial communities and our limited 37 

understanding of how they function. Microbial source tracking (MST) quantifies the potential 38 

origin of microbial communities, thereby could help us to understand how the taxonomic 39 

structure and community functions were formed and maintained6. In previous studies, MST 40 

has been widely used to quantify the contamination present in (1) environment7 and (2) host 41 

driven by the contact of host and environment8 (e.g., human skin and exposed environments). 42 

MST has the potential to go beyond the scope of microbial contamination in a variety of 43 

contexts, including estimating microbial restoration of cesarean-born infants9, quantifying the 44 

microbial community differences across diseases, as well as characterizing the gut microbial 45 

communities of patients during cancer progression. In these contexts, MST could reveal 46 

dynamic patterns of microbial communities, and provide insights into the effect of microbial 47 

communities on health care for newborns, chronic diseases, and cancer. 48 

Current methods for source tracking, though having made substantial contributions, have 49 

limitations in accuracy and scope of application. SourceTracker10 and FEAST9 model the 50 

query (sink) community as a mixture of sources, and estimate source contribution through 51 

Markov Chain Monte Carlo (MCMC) and Expectation-Maximization (EM), which, however, 52 

leads to a tradeoff between running time and accuracy, and source tracking among thousands 53 
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of sources take hours9,10. Also, these two methods are heavily dependent on reference 54 

samples, leading to the needs of manually selecting possible source samples, rendering source 55 

tracking incomplete and error-prone. On the other hand, Random Forest11 and ONN4MST10 56 

utilize supervised learning models for  source contribution estimation6 but are constrained by 57 

adaptivity: Models cannot be directly applied to other MST tasks once they've been built for 58 

specific context. 59 

To address these limitations, we developed EXPERT, a method based on an adaptive Neural 60 

Network (NN) framework and Transfer Learning, for solving the MST problem. Previous 61 

studies have shown that Transfer Learning can significantly expand the applicability of 62 

supervised learning models12. Here Transfer Learning is used to introduce existing 63 

knowledge learnt from other microbial samples to diverse contexts and to facilitate source 64 

tracking in a context-aware manner. Systematic assessments have shown EXPERT’s 65 

capability of quantifying the potential contribution of sources in a fast and accurate manner, 66 

and adapting source tracking in different context-dependent settings. More importantly, we 67 

demonstrate the utility of EXPERT in several representative contexts, including tracking the 68 

development of the infant gut microbiome, as well as tracking the progression of gut 69 

microbiome changes in patients with colorectal cancer (CRC). Transfer Learning-enabled 70 

EXPERT, we reasoned, could make it easier to discover novel microbial knowledge across a 71 

wide range of applications in these contexts. 72 

  73 
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Results 74 

Rationale, adaptive modeling, and multi-faceted applications of EXPERT 75 

EXPERT is a context-aware method for MST that employs both the adaptive NN and 76 

Transfer Learning12 frameworks, enabling knowledge transfer of MST models. The adaptive 77 

NN framework constructs MST models according to a given MST task (Methods, 78 

Supplementary Fig. S1). Together with Transfer Learning, EXPERT can automatically 79 

construct MST models and utilize the knowledge of fundamental models (i.e., existing MST 80 

models) to aid in the learning of the newly constructed models. In our study, three 81 

fundamental models were introduced for knowledge transfer (Supplementary Table S1-S5): 82 

the general model (GM, trained and validated on 118,592 communities from 131 83 

representative biomes), the human model (HM, trained and validated on 52,537 communities 84 

from 27 human-associated biomes), and the disease model (DM, trained and validated on 85 

13,642 fecal communities from patients of 19 diseases and healthy controls). Additionally, 86 

EXPERT utilizes Multi-task Learning13, which enables hierarchical MST (Methods, 87 

Supplementary Fig. S1-S2).  88 

The knowledge transfer process of EXPERT is illustrated in Fig. 1a. EXPERT adopted the 89 

rationale of Transfer Learning12, allowing context-aware MST through three steps, namely 90 

transfer, adaptation, and fine-tuning: In the transfer step, EXPERT adapts the fundamental 91 

model to an MST context; in the adaptation and fine-tuning steps, EXPERT optimizes the 92 

parameters (Methods, Supplementary Note 1). The contextualized model can serve a broad-93 

spectrum of source tracking applications (Fig. 1b) 94 

 95 

Efficiency, accuracy, and adaptivity of EXPERT 96 

Benchmark tests have demonstrated EXPERT’s superior efficiency, accuracy, and adaptivity 97 

for MST (Fig. 2). Specifically, it outperforms Sourcetracker6 and FEAST9 in terms of 98 

efficiency, while outperforming the NN approach10 in terms of accuracy and adaptability. In 99 

this part, we assessed these capabilities using 52,537 communities from 27 human-associated 100 

biomes (Supplementary Table S1, S3, Fig. S3). 101 
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We have compared the performance of EXPERT with FEAST, as SourceTracker was 102 

similarly accurate but slower than FEAST9. To compare EXPERT’s accuracy and efficiency 103 

with FEAST, we considered community samples from seven biomes (Supplementary Fig. 104 

S3) as sources, and randomly selected small sets of community samples out of these for 105 

comparison as well (Fig. 2a, Methods). As a result, EXPERT could simultaneously reach 106 

high accuracy and efficiency (Maximal F1-measure F-max = 0.923, over 200 queries/second, 107 

Fig. 2a). While FEAST faces a severe tradeoff between accuracy and efficiency: FEAST’s 108 

accuracy improves as it uses more samples for each biome (F-max = 0.847, 0.884, and 0.911) 109 

while efficiency declines nearly exponentially (0.06, 0.02 and 0.005 queries/second, Fig. 2a, 110 

Supplementary Table S6). 111 

We also compared EXPERT’s accuracy with the NN approach, by using different proportions 112 

of source samples (Fig, 2b). As the NN approach cannot be directly applied in this context 113 

(i.e., NN has no adaptivity), we have manually implemented a model for the comparison. The 114 

result showed that the EXPERT model outperforms the NN approach on accuracy: while the 115 

MST accuracy steadily increased with the increasing proportion of source samples used, the 116 

EXPERT model only required 10% of source samples to achieve a validation F-max of 0.814, 117 

while the NN approach required three times as many samples to reach a similar validation F-118 

max of 0.813 (Supplementary Table S7). This demonstrated that EXPERT models were 119 

able to “understand” the contextualized microbial community profiles based on only a small 120 

fraction of samples. Notably, as the fine-tuning optimization clearly improved the accuracy 121 

(Fig. 2b), the knowledge transfer with fine-tuning was considered the default setting in the 122 

following sections. 123 

 124 

Adaptation to newly introduced microbiome data 125 

In this context, we aim to validate EXPERT’s utility in adapting to newly introduced 126 

microbial community samples. Such data could be obtained through new sequencing and 127 

analytical technologies or originate from rarely studied environments. To test EXPERT’s 128 

capability in such context, in addition to the 118,592 communities accessed as of Jan. 2020 129 

from MGnify (referred to as “baseline data”, Supplementary Table S1, S2, Fig. 3a), we 130 
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selected 34,209 communities from MGnify between Jan. 2020 and Oct. 2020 (referred to as 131 

“newly introduced data”, Fig. 3a, Supplementary Table S1, S8, Fig. S4). Among the newly 132 

introduced data, there are 30,788 communities that originated from biomes included in the 133 

baseline data as well, and 3,421 communities that originated from newly introduced biomes 134 

(Supplementary Fig. S4). 135 

We first tested the applicability of the general model and EXPERT framework on the newly 136 

introduced data. In this context we only considered the 30,788 communities. We directly 137 

applied the general model (built based on the baseline data, AUROC = 0.982 by cross-138 

validation) on the data, and obtained a much lower accuracy (AUROC = 0.884, 139 

Supplementary Note 2). The reason behind this might be the data heterogeneity and batch 140 

effect between the two datasets (Supplementary Fig. S5). However, by using EXPERT, we 141 

could adapt the general model to the newly introduced data, reduce the influence of batch 142 

effect on source tracking analysis, and maintain or even further improve the accuracy 143 

(AUROC = 0.993, Fig. 3b).  144 

We also tested the applicability of EXPERT on the newly introduced biomes, the results have 145 

shown that based on the EXPERT framework, the general model could also adapt to the 146 

newly introduced biomes (AUROC = 0.988), though the newly introduced biomes were not 147 

included in the baseline data. As demonstrated by these results, EXPERT has the potential for 148 

extending fundamental models into previously unexplored contexts. 149 

 150 

Context-aware microbial source tracking applications 151 

We then demonstrate EXPERT’s utility in context-aware MST, by focusing on patterns of the 152 

human gut microbiome in different contexts: (1) early development of gut microbial 153 

communities for infants, (2) association of gut microbial communities with different types of 154 

diseases, and (3) association of gut microbial communities with the progression of colorectal 155 

cancer. In these contexts, we consider the quantified source contribution generated from 156 

EXPERT as a measure to determine the host status. 157 

  158 
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The succession of infant gut microbial communities 159 

We next used EXPERT to characterize small compositional changes among infant gut 160 

microbial communities during the first year of life. Under this circumstance, we could 161 

investigate the dynamic patterns of gut microbial communities from a specific period of life. 162 

For instance, if infant samples from multiple time points and sources are present, EXPERT 163 

can estimate how much of microbial community in the infant’s gut originated from birth and 164 

subsequent time points. To confirm this capability, we used longitudinal data from Backhed 165 

et al.14, including fecal samples from 98 infants and their mothers, delivered by vaginal 166 

delivery or cesarean section (Fig. 4a, Supplementary Table S1 and S9). In this part of the 167 

study, we considered samples from infants at 12 months of age as queries, and samples from 168 

earlier time points or mothers as sources. 169 

Based on the hierarchy that divided samples by sampling time first followed by delivery 170 

mode (Fig. 4a), we noticed that for infant gut microbial communities at 12 months of age, the 171 

maternal contribution is dominant (Fig. 4b). Moreover, there is no significant difference in 172 

the maternal contribution between cesarean-born and vaginal-born infants (Wilcoxon test, p = 173 

0.929, Fig. 4b), consistent with Principal Coordinate Analysis (PCoA) using distance metric 174 

either in weighted-UniFrac15 or Jensen Shannon divergence16 (Fig. 4c and Supplementary 175 

Fig. S6). We concluded that the infant gut at 12 months is largely adapted to exposed 176 

environments, resulting in an insignificant difference between samples collected from hosts 177 

of different delivery modes, consistent with previous studies17,18. 178 

We then assessed the utility of different fundamental models in this context by also 179 

introducing the general model and changing the source biome hierarchy (Supplementary Fig. 180 

S7, S8). We found that the human model can facilitate MST in this context with significantly 181 

better performance compared with the general model (Transfer (HM) AUROC = 0.773, 182 

Transfer (GM): AUROC = 0.720, Wilcoxon test, p = 0.072), suggesting the use of the human 183 

model in this application. Therefore, we suggest that when using EXPERT, it is necessary to 184 

choose a proper fundamental model according to the specific context (Fig. 4d). 185 

 186 

EXPERT reveals disease-specific patterns within gut microbial communities 187 
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The pattern of gut microbial communities could be disease-specific19, reflecting the distinct 188 

inflammation patterns across diseases. In this context, we aimed to demonstrate EXPERT’s 189 

utility in characterizing human gut microbial communities associated with different types of 190 

diseases. Using EXPERT, we can measure patterns across multiple diseases. Specifically, we 191 

assembled a large gut microbial community dataset, including 13,462 communities 192 

representing 19 diseases (Fig. 5b) and healthy controls, collected from 101 studies and 27 193 

countries (Fig. 5a, Supplementary Table S1, and S4). We also introduced the human model 194 

to characterize these diseases. By randomly selecting 10% samples of the dataset as queries, 195 

and considering the remaining samples as microbial sources, we aim to characterize the 196 

pattern across (1) different patients of the same disease, and (2) patients with different 197 

diseases. The results revealed that, except for Crohn’s disease, the pattern is shared across 198 

patients with the same disease, but not shared across patients with different diseases (Fig. 5c). 199 

This is consistent with a previous study19, which found disease-specific patterns within the 200 

human gut microbial communities. Among these diseases examined in this study, we 201 

discovered the disease-specific pattern to Liver Cirrhosis and Irritable Bowel Syndrome, 202 

which had not been reported in a previous cross-disease study19. 203 

We further validated the disease-specific patterns by utilizing the Independent model, which 204 

was constructed entirely from the same samples. We found that both Independent model and 205 

Transfer (HM) model could distinguish diseases with high AUROC, and confirmed that the 206 

gut microbial communities may be used to discriminate between these diseases (AUROC 207 

over 0.800 for most phenotypes, Fig. 5d,e). This demonstrated the utility of EXPERT in 208 

large-scale MST analysis, particularly when comparing a wide variety of microbial 209 

communities from multiple environments.  210 

 211 

EXPERT characterizes gut microbial communities during cancer progression 212 

Gut microbial communities undergo compositional changes as cancer progresses, and this can 213 

be observed in the human gut microbiota, which has been shown to influence the progression 214 

of colorectal cancer (CRC)20. In this context, we demonstrate EXPERT’s utility in 215 

characterizing the progression of CRC using human gut microbiota. We assessed the 216 
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applicability of EXPERT by leveraging the disease model with Transfer Learning (Fig. 6a). 217 

We considered 635 samples from five stages in the progression of CRC: 0 (Healthy control) I, 218 

II, III, and IV according to the study of Zeller G. et al.21 (Fig. 6b, Supplementary Table S1, 219 

and S10). Preliminary analysis using traditional methods15,16 could not show the 220 

compositional shifts of the human gut within such progression (Fig. 6c, Supplementary Fig. 221 

S9). However, by randomly selecting 10% of the dataset as queries, and estimating their 222 

resemblant signatures from the remaining samples using the Transfer (DM) model, we found 223 

that for gut microbial communities at each CRC stage, a large proportion of microbes could 224 

also be found in the communities at the same stage: 0.24, 0.49, 0.56, 0.37 and 0.51 for stage 0 225 

to IV (Fig. 6d). These results indicated the association between gut microbiota and CRC 226 

progression and suggested the potential of gut microbiota for tracking the progression of 227 

CRC21,22. 228 

We also assessed the EXPERT’s capability in monitoring the progression of CRC, by 229 

comparing the performance of different models: For comparison, we generated a Transfer 230 

(HM) and an Independent model (solely based on the CRC samples) in addition to the 231 

Transfer (DM) model. Results have shown that Transfer (DM) achieved a better performance 232 

(AUROC = 0.977, Fig. 6e, i) among these three models, highlighting the EXPERT’s utility 233 

on tracking the different stages of CRC progression using gut microbial communities. 234 

 235 

Discussion  236 

Broadly, EXPERT adopted a Transfer Learning approach to profoundly elevate and expand 237 

the applicability of source tracking, enabling biologically informed novel microbial 238 

knowledge discovery. Based on the NN approach and Transfer Learning technique, it could 239 

quickly adapt the supervised model for source tracking tasks in different contexts, thus 240 

providing a fast, accurate, and context-aware computational approach that enables MST 241 

analyses in diverse contexts, for in-depth knowledge discovery. 242 

Our analytical results have confirmed that EXPERT has enabled MST with high speed and 243 

fidelity, without the need for pre-defined source samples. Additionally, EXPERT could adapt 244 
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the fundamental models to newly introduced data, and help reduce the influence of data 245 

heterogeneity and batch effects. More importantly, we have shown that MST solely based on 246 

the fundamental models may be biased by batch effects, whereas EXPERT can significantly 247 

mitigate this influence. 248 

We have demonstrated EXPERT’s utility in context-aware MST in several applications. First, 249 

EXPERT can characterize the tiny compositional difference associated with environmental 250 

changes. By adapting the human model to microbial communities of infant gut across 251 

delivery modes, we found that due to environmental exposure, cesarean-born infants have a 252 

largely restored gut microbial community compared with infants born vaginally, consistent 253 

with the results of other published analyses17,18. Secondly, we demonstrated the utility of 254 

EXPERT beyond traditional MST methods by incorporating a dataset of multi-disease gut 255 

microbial communities. By using EXPERT on the dataset, we discovered that the human gut 256 

microbial community exhibits disease-specific patterns, which is consistent with previous 257 

cross-disease research19. Thirdly, we showed EXPERT’s utility in characterizing the gut 258 

microbiota for patients at various stages of CRC. By using communities from five stages of 259 

CRC progression, we found hosts sampled at the same stage shared similar gut microbial 260 

communities, enlightening us to realize that the compositional changes within gut microbial 261 

communities could reflect the progression of CRC, supported by Shaoming Z et al.22.  262 

Several issues need to be looked into further in the future: We noted that in certain contexts 263 

(e.g., characterizing gut microbial communities during cancer progression), the accuracy 264 

could be improved if the fundamental model was properly selected by referring to the 265 

standard ontology23,24. EXPERT should provide a collection of fundamental models to enable 266 

effective adaptation in diverse MST contexts (e.g., environmental source tracking28), and 267 

provide an approach for intelligently selecting appropriate fundamental models for a given 268 

context. Additionally, the application of EXPERT on the newly introduced data has indicated 269 

its robustness against the batch effect, while the extent to which Transfer Learning could 270 

overcome the batch effect in microbiome context requires further assessment. 271 

In conclusion, EXPERT enabled accurate and rapid source tracking, as well as biologically 272 

informed novel microbial knowledge discovery, by utilizing a Transfer Learning approach. 273 

We have demonstrated the applicability of Transfer Learning in the discovery of microbiome 274 
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knowledge using this method, particularly when dealing with newly introduced data or 275 

context-dependent settings. We believed that EXPERT could facilitate high-fidelity source 276 

tracking in a broad range of applications. 277 

  278 

  279 
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Methods 360 

Datasets 361 

We used six datasets to assess the utility of EXPERT (Supplementary Table S1). The 362 

hierarchy is essentially a refined subset of an ontology (e.g., Environmental Ontology23 or the 363 

Human Disease Ontology24) or self-defined according to the context of MST. Refer to 364 

Supplementary Note 3,4 and Supplementary Table S11 for the unified data processing 365 

pipeline used in the study.  366 

For systematic assessment of our general model, the dataset was obtained from MGnify, 367 

which consists of 118,592 communities collected from 131 biomes. Among them, 52,537 368 

samples originated from human biomes, 14,045 samples originated from mammal biomes, 369 

7,189 samples originated from terrestrial biomes, 27,667 samples originated from aquatic 370 

biomes. These samples were analyzed by MGnify25 before January 2020 (Supplementary 371 

Table S2). The source environment hierarchy is constructed by referring to the hierarchical 372 

biome classification from MGnify database25 and the ecosystem classification paths from 373 

GOLD database26 (Supplementary Table S12). 374 

For systematic assessment of our human model, the dataset was a part of the first dataset, in 375 

which 52,537 communities from 27 human biomes were selected (Supplementary Table S3). 376 

The source environment hierarchy is constructed by referring to the hierarchical biome 377 

classification from MGnify database25 and the ecosystem classification paths from GOLD 378 

database26. 379 

We also used the newly introduced data in 2020 from MGnify25. Which consists of 34,209 380 

communities collected from 35 biomes. Throughout the dataset, 3,421 samples belonging to 8 381 

biomes were newly added by MGnify25 after January 2020 (Supplementary Table S8). The 382 

source environment hierarchy is constructed by referring to the hierarchical biome 383 

classification from MGnify database25 and the ecosystem classification paths from GOLD 384 

database26. 385 

For source tracking the succession of infant gut microbiome, the dataset was obtained from 386 

MGnify25 which consists of 392 fecal samples collected from 98 infants and their biological 387 

mothers. Among them, 85 infants were born by vaginal delivery and 13 infants were born by 388 
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cesarean section. The infant samples were collected at three time points including birth, 4 389 

months, and 12 months. The maternal samples were collected during the first week after 390 

delivery (Supplementary Table S9). 391 

For disease modeling, the dataset was obtained from GMrepo27, including 13,642 392 

communities collected from feces of hosts diagnosed with 19 diseases as well as healthy 393 

controls, Supplementary Table S4). The source environment hierarchy is constructed by 394 

referring to NCBI MeSH28 and Human Disease Ontology24. 395 

For cancer monitoring, the dataset was obtained from GMrepo27, which consists of 16, 93, 396 

126, 196, and 204 communities respectively collected at CRC stage 0, I, II, III, and IV, 635 in 397 

total (Supplementary Table S10). The source environment hierarchy is constructed by 398 

referring to the five stages of CRC. 399 

  400 

The EXPERT framework 401 

The EXPERT model 402 

Considering a query sample  represented by its community structure, as well as its potential 403 

sources represented by a hierarchy , to quantify contributions  from the sources to , we 404 

employed an adaptive and Multi-task NN to learn a mapping  from a series of source 405 

samples  to their biome sources,  (where  is biome source for source 406 

sample  in the second layer of the biome hierarchy), and then apply  on  to determine the 407 

contributions for the query community.  408 

  409 

Fast inference via forward propagation 410 

We adopt the rationale of Multi-task Learning13. EXPERT integrates the representation of 411 

each lower layer (which is calculated by its “inter” modules ) into its higher layer, by 412 

employing several “integ” modules . Therefore, together with “output” module , 413 

the representation of the contributions is given by 414 
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  415 

Where  416 

 417 

The NN structures of these modules are described in the subsection Adaptive Neural Network. 418 

 419 

Robust optimization via backward propagation and Transfer Learning 420 

We adopt the rationale of Transfer Learning12. Considering  of a fundamental model as 421 

a static mapping, the parameters of the rest modules  could be solved using gradient descent 422 

as well as backpropagation algorithm29–31: 423 

 424 

Where 425 

 426 

  427 

 stand for the assigned loss weight for -th layer (i.e., -th task in the 428 

multiple task).  stand for the sample weight assigned for a sample  on -th task during 429 

learning, enabling the learning from partially labeled data.  stand for the number of biomes 430 

contained in the -th layer of the biome hierarchy .  stand for the -th layer of the biome 431 

hierarchy .  is a biome in the biome hierarchy -th layer of the biome hierarchy .  432 

Then, optimizing the parameters of the entire model (including ), the parameters of the 433 

entire model  can be solved by using gradient descent as well as backpropagation 434 

algorithm29–31. 435 
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 436 

For independent optimization (optimization based on completely random initialization), 437 

EXPERT directly optimizes the entire model. See Supplementary Note 1 for a detailed 438 

description for optimization. 439 

 440 

Adaptive Neural Network 441 

NN approach has limited capability when there is a series of newly introduced source 442 

environments, as researchers need to modify the NN model at the code level and re-tune its 443 

hyper-parameters. We developed EXPERT’s NN model that changes internal NN structure 444 

according to source environments in different contexts, namely the adaptive NN model 445 

(Supplementary Fig. S1). The EXPERT framework initializes the model according to the 446 

hierarchy representing source environments. In the model, there are four conceptual modules. 447 

To extract low-level representations for input data, the model employs the “base” module 448 

with two Dense NN layers. The NN layers have fixed structures of 1,024 and 512 neurons, 449 

and use ReLU activation32 and He initializer with Uniform distribution33.  450 

To extract representations that are specific to different hierarchy layers, the model employs 451 

the “inter” module with three adaptive Dense NN layers. Denoting  as the number of source 452 

environments in each hierarchy layer, the three NN layers have adaptive structures of , 453 

, and  neurons, respectively. The three NN layers use ReLU activation32 and He 454 

initializer with Uniform distribution33. 455 

To integrate representation of different hierarchy layers, the model employs the “integ” 456 

module with a Concatenation NN layer and an adaptive Dense NN layer. Denoting the 457 

number of source environments in each hierarchy layer as , the NN layer has adaptive 458 

structures of  neurons, and uses Tanh activation and Xavier initializer with Uniform 459 

distribution34. 460 
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To estimate according to the integrated representations of different hierarchy layers, the 461 

model employs the “output” module with an adaptive Dense NN layer. Denoting the number 462 

of source environments in each hierarchy layer as , the NN layer has adaptive structures of  463 

neurons, and uses Sigmoid activation and Xavier initializer with Uniform distribution34. 464 

 465 

Performance measures 466 

To assess the performance of EXPERT models and other methods, we used these measures: 467 

 468 

Where  is true positive,  is true negative,  is false positive,  is false negative, 469 

 is the quantified contribution from a biome source  for a microbial community sample , 470 

threshold  with a step size of ,  is a set of actual biomes for a sample , and  is 471 

a logical operation function, the value of  is 1 when the result of logical operation is TRUE, 472 

else 0. 473 

Then, two evaluation metrics (F-max, AUROC) were introduced. F-max stands for the 474 

maximal F1-measure and was calculated with the following formula. AUROC stands for the 475 

area under the ROC (Receiver Operating Characteristics) and was calculated using the 476 

composite trapezoidal rule. 477 
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  478 

Finally, we treated the average performance across all biomes as the performance of the 479 

entire model. Notably, in the subsection “Efficiency, accuracy, and adaptivity of EXPERT”, 480 

we only considered biomes with the number of samples > 100 to compute the average 481 

performance for the general model, the independent model, Transfer (GM) model, and 482 

Transfer (GM0) model. 483 

 484 

Evaluating fundamental models 485 

We assessed each model of the fundamental models through cross-validation, and selected 486 

the best model among all trained models as the final model.  487 

We assessed the general model by applying eight-fold cross-validation to the 125,823 488 

microbial community data collected from 132 biomes, and selected the best model among 489 

eight trained models as the general model to be transferred.  490 

We assessed the human model by applying repetitive cross-validation (90% as sources to 491 

train a model, the resting 10% as queries to test its performance, repeated for five times) to 492 

the 52,537 microbial community data collected from 25 biomes, and selected the best model 493 

among five trained models as the general model to be transferred.  494 

The assessment of the disease model is the same as the assessment of the human model, but 495 

using another dataset consists of 13,462 gut microbial communities associated with 19 496 

diseases.  497 

 498 

Experiment design 499 

We compared EXPERT’s performance with FEAST and the NN approach using the human-500 

associated dataset (Supplementary Table S1, S3). We measured the running time using the 501 

Linux command “time” and considered the real-time usage for comparison. The efficiency 502 
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was then calculated using the running time we measured. Refer to Supplementary Note 5 for 503 

detailed comparison procedure for each experiment. 504 

We demonstrated EXPERT’s utility in context-aware MST in three contexts. In these 505 

contexts, we used standard hyperparameters for training the model (Supplementary Note 1). 506 

Detailed descriptions are provided in Supplementary Note 6. 507 

 508 

Statistical analysis 509 

Statistical analyses of the contributions have been performed utilizing the Wilcoxon test, at 510 

the significance level of�0.05. For all the tests, when the p-value associated is lower than the 511 

significance level, one should reject the null hypothesis H0, and accept the alternative 512 

hypothesis Ha. 513 

Visualization of data distribution 514 

Throughout the paper, the box-plot elements are centerline, median; box limits, upper and 515 

lower quartiles; whiskers, 1.5 ×�interquartile range (IQR); points, and outliers. The Violin 516 

plot is also used for data distribution analysis, mainly for comparison. The PCoA is also used 517 

for data distribution analysis, with ellipses representing a confidential interval of 0.95. The 518 

Principle Coordination is obtained through applying beta diversity measurement (Scikit-bio 519 

version 0.5.6, Supplementary Table S5) on the abundance of all taxa in seven ranks, namely 520 

Superkingdom, Kingdom, Phylum, Class, Order, Family, Genus, and Species. The source 521 

code of the PCoA analysis is hosted on GitHub at https://github.com/AdeBC/UniPCoA. 522 

  523 

Data availability 524 

The collected samples from MGnify and GMrepo databases were annotated with their 525 

associated biomes/phenotypes in Supplementary Table S2-S4, S8-S10. All the processed 526 

data are uploaded and hosted at https://github.com/HUST-NingKang-Lab/EXPERT-use-cases. 527 

  528 
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Code availability 529 

All source codes have been uploaded to the website at https://github.com/HUST-NingKang-530 

Lab/EXPERT. Detailed software and models used in this study are provided in 531 

Supplementary Table S5. 532 
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Figures Legends 553 

Figure 1: Illustration of EXPERT’s knowledge transfer process. a. EXPERT can adapt 554 

the knowledge of a fundamental model to an MST context through three steps: transfer (reuse 555 

parameters of a fundamental model and reinitialize contextual layers according to the context, 556 

red dotted arrows), adaptation (quickly optimize only the contextual layers using iterative 557 

forward-backward propagation, green circular arrows), and fine-tuning (further optimize the 558 

entire model using the iterative forward-backward propagation). The fundamental model is a 559 

pre-trained EXPERT model to be adapted, with several NN layers relatively independent to 560 

contexts and a series of contextual NN layers highly specified to a context). Different 561 

background colors of the model indicate the suitability of different modules to the context. 562 

The contextualized model can serve a broad-spectrum of source tracking applications (based 563 

on research purposes, illustrated in Fig. 1b). Abbreviations: MST: microbial source tracking; 564 

NN: Neural Network. 565 

 566 

Figure 2. Efficiency, accuracy, and adaptivity of EXPERT. a. Comparison of Transfer 567 

(GM) EXPERT model with FEAST on efficiency (number of queries/sinks per second, left 568 

Y-axis) and accuracy (based on cross-validation, right Y-axis). For FEAST, the sources were 569 

randomly selected 70, 140, and 210 samples (10, 20, and 30 samples per biome, respectively). 570 

EXPERT’s performance was measured by contextualizing the general model. b. The 571 

performances (validation F-max, Y-axis) of three models along with different proportions of 572 

sources used (X-axis). The NN model was trained solely based on contextual data. The 573 

results were obtained by using cross-validation and different proportions (1-10% by a step 574 

size of 1%, and 10-90% by a step size of 10%) of source samples. Loess regression was 575 

applied to these points using the number of source samples used and F-max. 576 

 577 

Figure 3. Robust adaptation to the newly introduced microbiome data. a. Partial 578 

representation of the baseline data and the newly introduced data (with sample size 579 

annotations) used to measure the impact of batch effects on MST models and assess the 580 

utility of EXPERT. The baseline data contains 118,592 communities deposited before 581 
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January 2020. The newly introduced data contains 34,209 communities deposited between 582 

January 2020 and November 2020, including several newly introduced biomes (e.g. fish-583 

associated biomes). b. Performance of EXPERT models on the baseline data and the newly 584 

introduced data (performance for seven representative biomes). Furthermore, we can also 585 

adapt a fundamental model to newly introduced sources to evaluate these potential microbial 586 

sources. Abbreviations: “**”: significant difference; “NS”: non-significant difference; GM: 587 

the general model; Transfer (GM): the contextualized model based on the general model. 588 

Representative biomes: biomes in the fourth layer of the MGnify biome hierarchy and with 589 

sample size greater than 100 in both two datasets. 590 

 591 

Figure 4. EXPERT’s performance in characterizing gut microbial community 592 

development over time for infants. a. The hierarchy representing source environments, 593 

corresponding to infant samples collected from the ENA database. Environments in the 594 

second and third layers were grouped by sampling time and delivery modes. For this part of 595 

the study, sources include the gut microbiome of the mother, infant at birth, and four months, 596 

queries include the gut microbiome of the infant at 12 months. b. Estimated contributions by 597 

Transfer (HM) model, separated by two delivery modes. c. Distribution of infant gut 598 

microbial communities during their first year, using principal-coordinates analysis (PCoA) 599 

and distance metric of Jensen Shannon divergence. The dotted line refers to samples 600 

delivered vaginally, and the full line refers to samples delivered via cesarean section. The 601 

baby of 4 months is abbreviated to baby 4M, the baby of 12 months is abbreviated to baby 602 

12M. The letters “C” and “V” stand for cesarean section and vaginal delivery, respectively. 603 

Top panel: samples from the infant’s gut are plotted according to their source and collection 604 

date on the Y-axis, and position on the X-axis is plotted according to their first principal 605 

coordinate in the PCoA. d. The overall performance of models generated based on different 606 

fundamental models, in which the Independent model was solely based on the samples used 607 

in this context; Transfer (GM) and Transfer (HM) refer to models built based on the general 608 

model and human model with fine-tuning, respectively. 609 

 610 
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Figure 5. EXPERT reveals disease-specific patterns within gut microbial communities. a. 611 

Illustration of knowledge transfer utilized for disease pattern analysis. The knowledge 612 

transfer between MST contexts was illustrated using different colors (white for human-613 

associated biomes, yellow for gut microbiota-associated disease status). In this analysis, the 614 

knowledge from the human model was contextualized (transferred) to the dataset containing 615 

13,642 samples and 19 diseases as well as healthy control. b. The hierarchical organization of 616 

19 diseases and healthy control. The hierarchy was constructed by referring disease names to 617 

Medical Subject Headings and Human Disease Ontology. The hierarchy includes 20 different 618 

health statuses (19 different diseases and infections, plus healthy control) distributed in seven 619 

different layers (X-axis). c. Average source contribution among all diseases and healthy 620 

control, obtained by quantifying contribution from 90% samples (randomly selected) of the 621 

dataset to the remaining 10% samples, using Transfer (HM) model based on the human 622 

model. The process of random selection and quantification was repeated five times. The 623 

heatmap was obtained by averaging the contributions to all samples from each one out of 19 624 

diseases and healthy control. There is no sample overlap between source samples and query 625 

samples. d. The performance of the EXPERT models on the gut microbial community 626 

associated with each disease or healthy control, evaluated based on the source contribution 627 

(same as in Fig. 5c) and biome-specific evaluation (Methods). The dashed line indicates an 628 

AUROC of 0.800. e. The overall performances of the Transfer (HM) model. Settings of 629 

quantification and assessment were the same as Fig. 5d. 630 

 631 

Figure 6. EXPERT characterizes compositional shifts within host gut microbiota during 632 

CRC progression. a. Illustration of knowledge transfer utilized for characterizing the 633 

compositional shifts. The knowledge from the human model learned from 52,537 human-634 

associated communities, as well as the disease model learned from 13,642 human gut 635 

communities associated with 19 diseases and healthy control, were transferred to characterize 636 

the CRC-related compositional shifts. b. The five stages of CRC progression, and the number 637 

of samples for each stage. Stage 0: healthy control. c. The distribution of gut microbiomes, 638 

visualized by PCoA (using distance metric of weighted-UniFrac). d. The average 639 

contribution of different stages of CRC. The source samples were randomly selected 90% out 640 
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of the entire dataset. The query samples were the remaining 10% samples. This process of 641 

random selection and quantification was repeated five times. There is no sample overlap 642 

between source samples and query samples. e. The stage-specific performances (AUROC) of 643 

EXPERT on different CRC stages (see Methods for details of stage-specific evaluation). 644 
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d. e.Distinguishable patterns of diseases Overall performances 
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