
GraphUnzip: unzipping assembly graphs with long reads and Hi-C

Roland Faure1,*, Nadège Guiglielmoni1,*+, and Jean-François Flot1,2

1Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
2Interuniversity Institute of Bioinformatics in Brussels - (IB)2, 1050 Brussels, Belgium

*these authors contributed equally to this work
+corresponding author: nadege.guiglielmoni@ulb.be

Abstract

Long reads and Hi-C have revolutionized the field of genome assembly as they have made highly continuous
assemblies accessible for challenging genomes. As haploid chromosome-level assemblies are now commonly
achieved for all types of organisms, phasing assemblies has become the new frontier for genome reconstruction.
Several tools have already been released using long reads and/or Hi-C to phase assemblies, but they all start
from a linear sequence, and are ill-suited for non-model organisms with high levels of heterozygosity. We
present GraphUnzip, a fast, memory-efficient and accurate tool to unzip assembly graphs into their constituent
haplotypes using long reads and/or Hi-C data. As GraphUnzip only connects sequences in the assembly graph
that already had a potential link based on overlaps, it yields high-quality gap-less supercontigs. To demonstrate
the efficiency of GraphUnzip, we tested it on a simulated diploid Escherichia coli genome, and on two real
datasets for the genomes of the rotifer Adineta vaga and the potato Solanum tuberosum. In all cases, GraphUnzip
yielded highly continuous phased assemblies.

keywords: genome assembly, phasing, long reads, Hi-C

1 Introduction

The field of genomics is thriving and chromosome-level assemblies are now commonly achieved for all types
of organisms, thanks to the combined improvements of sequencing and assembly methods. Chromosome-level
assemblies are generally haploid, regardless of the ploidy of the genome. To obtain a haploid assembly of a mul-
tiploid (i.e. diploid or polyploid) genome, homologuous chromosomes are collapsed into one sequence. However,
assemblers often struggle to collapse highly heterozygous regions, which leads to breaks in the assembly and
duplicated regions [1]. Furthermore, haploid assemblies provide a partial representation of multiploid genomes;
ideally, multiploid genomes should be phased rather than collapsed if the aim is to grasp their whole complexity
[2].
The combination of low-accuracy long reads, such as Oxford Nanopore Technologies reads (ONT) and Pacific
Biosciences (PacBio) Continuous Long Reads (CLR), and proximity ligation (Hi-C) reads has made chromosome-
level assemblies accessible for all types of organisms. The latest development of PacBio, high-accuracy long
circular consensus sequencing (CCS) reads (a.k.a. HiFi), is now starting to deliver highly continuous phased
assemblies [3, 4, 5]. Existing tools are able to use either long reads (Falcon-Unzip [6], WhatsHap [7]) or Hi-C
reads (Falcon-Phase [8], ALLHiC [9]) for phasing assemblies, but they are limited to phasing local variants or
well-identified haplotypes and are not suited for complex, highly heterozygous genomes.
We present GraphUnzip, a new tool to phase assemblies using long reads and/or Hi-C. GraphUnzip implements
a radically new approach to phasing that starts from an assembly graph instead of a collapsed linear sequence.
In an assembly graph, heterozygous regions result in bubbles every time the assembler is unable to collapse the
haplotypes or to choose one of them. GraphUnzip ”unzips” the graph, meaning that it separates the haplotypes
by: 1) duplicating homozygous regions that have been collapsed; 2) partitioning heterozygous regions into hap-
lotypes. As it takes as input and produces as output an assembly graph, our tool only connects contigs that
are actually adjacent in the genome and yields gap-less scaffolds, i.e. supercontigs. We tested GraphUnzip on
a simulated diploid Escherichia coli genome, and on the genomes of the rotifier Adineta vaga and the potato
Solanum tuberosum. Graphunzip is available at github.com/nadegeguiglielmoni/GraphUnzip.

1

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://github.com/nadegeguiglielmoni/GraphUnzip
https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


2 Methods

2.1 Inputs

GraphUnzip requires an assembly graph in GFA format. The Hi-C input is a sparse matrix, such as the one
obtained when processing the reads with hicstuff [10]. The long reads are mapped to the assembly graph using
GraphAligner [11].

2.2 Overview of GraphUnzip

In an assembly graph, contigs (segments) that are inferred to be adjacent or overlap in the assembly are con-
nected with edges. However, some of these connections between contigs may be artefacts. To discriminate
correct links from erroneous ones, GraphUnzip relies on long reads and/or Hi-C data. These data are translated
to interactions between segments: two segments have a strong interaction based on long reads when many
reads align on both segments; strong Hi-C interactions correspond to frequent Hi-C contacts between the two
segments.
GraphUnzip first builds one or two interaction matrices, depending on whether long-read data, Hi-C data or
both are provided (Figure 1). GraphUnzip reviews all segments and their links. For each link, an interaction
intensity value i is computed based on long reads data; if no link can be categorically deleted based on this
data, the intensity value is computed based on Hi-C data.
When assessing two putative links A-B and A-C between segments A, B and C, the respective strengths of
these links are calculated as the number of contacts (long reads or Hi-C) exclusive to A and B vs. the number
of contacts exclusive to A and C. For example, in the third step of Figure 1, when trying to associate segment
(a,b) to either (d,e) or (d’,f), (a,b) shares its contacts with contig d/d’ between all its neighbors, so only the
contacts with e and f are considered.
When one segment has several potential links to other segments, these links are compared in a pairwise fashion.
This comparison is made using two user-provided thresholds: the rejection threshold TR and the acceptance
threshold TA, where TR < TA. Considering two links X and Y and their respective interaction values i(X) and
i(Y ), if i(X) < i(Y ): if i(X)/i(Y ) < TR, then the link X is removed; else, if i(X)/i(Y ) < TA, the link is flagged
as dubious, as GraphUnzip is unable to make a decision. The link is considered correct when i(X)/i(Y ) ≥ TA.
Then, if long reads data is provided, GraphUnzip trims loops (where one segment has a potential link to itself
or to both ends of another segment). Weak links are removed and every segment that has several correct links is
duplicated. These segments are typically collapsed homozygous regions that need to be duplicated to be phased
with each allele. Every copy of the duplicated segment keeps the links of the original segment at its other end.
This entails that the duplication of segments creates many new links.
The links are iteratively processed to entirely phase the assembly for s steps, where s is a user-provided param-
eter. Because extremely long segments tend to share a significant number of Hi-C contacts even if they are not
adjacent, we observed that in extreme cases the algorithm could join two chromosomes by their telomeric ends.
The Hi-C matrix is used at the end of the process to detect such chimeric connections in the assembly graph,
based on low Hi-C interactions, and break them.

2.3 Escherichia coli simulations and assembly

We simulated a diploid Escherichia coli by randomly mutating 200 blocks of 10 kilobases (kb) with a 3% error
rate. Based on this genome, we simulated 250 basepairs (bp) paired-end reads with a 1% error rate (as is usual
for Illumina reads), a 100X coverage, using the tool sim reads from the package IDBA [12].
These reads were assembled using Bwise [13], available at github.com/Malfoy/Bwise. Bwise is a de Bruijn
assembler that takes as input short reads with a coverage of 50X or more, and provides as output both the
linear sequence in FASTA and the assembly graph in GFA format. It does not collapse heterozygous regions,
making it appropriate for creating an interesting assembly to phase. The output was a typical partly diploid,
partly haploid assembly, with a total assembly length of 8.3 Mb. In GFA format, links have an ’overlap’, meaning
that a few nucleotides at the end of the first contig are also present at the beginning of the other. As long overlaps
can lead to many multimapped Hi-C reads, we modified a version of gimbricate (github.col/ekg/gimbricate)
and used it to recompute the graph without overlaps.
With sim3C (github.com/cerebis/sim3C) [14], we simulated 1 million 150 bp paired-end Hi-C reads from the
complete mock genome, based on a DpnII preparation. The Hi-C reads were mapped and preprocessed with
hicstuff, with 98% mapping rate. GraphUnzip was run with parameters --accept 0.20 --reject 0.10. The
dotplot (Figure 2) was obtained by mapping the supercontigs longer than 100 kb, outputted by GraphUnzip,
against the mock genome with minimap2 [15] with the parameter -x asm5 and then the plot was built with
minidot (github.com/lh3/miniasm) with parameter -i 1.00.

2

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://github.com/Malfoy/Bwise
https://github.com/ekg/gimbricate
https://github.com/cerebis/sim3C
https://github.com/lh3/miniasm
https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Description of GraphUnzip: workflow of the program (left), interaction matrix (top right), and
overview of the algorithm to discriminate links (bottom right). This example algorithm analyzes the potential
links between the segments a, b, c, d, e, f, g. The red arrows represent the intensity of interactions between the
segments, computed based on the values in the matrix.

3

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


2.4 Adineta vaga assemblies

HiFi reads were generated at the Leiden Genome Technology Center. The HiFi dataset had a total size of 30.8
Gb and a N50 = 16.9 kb. Other reads were published in [16], and consist of: ONT (17.5 Gb, N50 = 18.8 kb),
PacBio CLR (23.5 Gb, N50 = 11.6 kb), Illumina (2*250 bp, 11.4 Gb), Hi-C (2*66 bp, 55 million pairs). The
full HiFi dataset was assembled with Flye [3] with the parameters --pacbio-hifi reads --keep-haplotypes.
HiFi reads longer than 20 kb were assembled with hifiasm [4] with the parameter -l 0, and the p utg assembly
graph was used. Assembling the full dataset with hifiasm would yield an oversized assembly (258 Mb with-
out overlaps). Low-accuracy long reads (ONT or PacBio CLR) were corrected with the Illumina reads using
Ratatosk [17] to generate high-accuracy long reads, with default parameters. These corrected long reads were
assembled with Flye using the same parameters as for HiFi assemblies. Long reads were mapped to the assembly
graph using GraphAligner with the parameter -x vg. Hi-C reads were processed with hicstuff using the param-
eters --aligner bowtie2 --enzyme DpnII --iterative. For all runs of GraphUnzip, the parameters were
set to --exhaustive --whole match --minimum match 0.8 and only --accept and --reject were adapted:
Flye HiFi assembly --accept 0.30 --reject 0.10; hifiasm HiFi assembly --accept 0.25 --reject 0.10;
corrected ONT assemblies --accept 0.30 --reject 0.30; corrected PacBio CLR assemblies --accept 0.50

--reject 0.20. The GFA was then analyzed with Bandage [18], available at rrwick.github.io/Bandage/, and
all non-ambiguous paths were merged. The Flye and hifiasm assemblies of HiFi reads were also scaffolded
with ALLHiC to compare with the GraphUnzip supercontigs. First, the Hi-C reads were mapped to the draft
assemblies using the Burrows-Wheeler Aligner [19] with bwa aln and bwa sampe. Then the mapped reads
were processed with the scripts PreprocessSAMs.pl (with parameter GATC) and filterBAM forHiC.pl. Us-
ing the processed mapped Hi-C reads, the contigs of the draft assembly were partitioned in 12 groups with
ALLHiC partition -k 12. The data and groups were further processed with allhic extract --RE GATC and
allhic optimize, and finally the contigs were scaffolded using ALLHiC build.

2.5 Solanum tuberosum assemblies

Reads published in [20] were retrieved from the NCBI Sequence Read Archive with the Bioproject accession
number PRJNA573826. The HiFi reads were assembled with hifiasm with the parameter -l 0, and we then used
the p utg assembly graph. All the HiFi reads and the ONT reads longer than 25 kb were mapped to the assembly
using GraphAligner with the parameter -x vg. Hi-C reads were processed with hicstuff using the parameters
--aligner bowtie2 --enzyme MboI --iterative. GraphUnzip was run with parameters --accept 0.40

--reject 0.10 --exhaustive --whole match --minimum match 0.8. All non-ambiguous paths in the GFA
were merged with Bandage.

2.6 Assemblies evaluation

We used calN50 available at github.com/lh3/calN50 to compute NG50s. The NG50 was computed against an
estimated size of 192.6 Mb for Adineta vaga, as the haploid genome size was estimated to 96.3 Mb [16], and 1.67
Gb for Solanum tuberosum (published assembly size [20]). BUSCO v4 [21] was run with parameters -m genome

--long against the dataset metazoa odb10 for Adineta vaga, viridiplantae odb10 for Solanum tuberosum. The
contact maps of Adineta vaga were built using the hicstuff pipeline, as described previously, and with the
commmand hicstuff view --binning 30.

2.7 Computational performance

RAM usage and CPU time were measured with the command /usr/bin/time -v. Adineta vaga was tested on
a laptop with 16 GB of RAM and a i7-8550U 1.8 GHz processor. Solanum tuberosum was tested on a desktop
computer with 128 GB of RAM and a i9-9900X 3.5 GHz processor.

3 Results

3.1 Simulated data

To check that GraphUnzip behaved as expected, we first tested it on a simulated diploid Escherichia coli genome
(O157:H7 Sakai strain). To obtain a diploid organism, the whole genome was duplicated and we created an
alternation of conserved and mutated regions along the genome, as would be expected in a real diploid organism.
The final simulated genome reached a size of 11.2 Megabases (Mb) and a heterozygosity rate of 1%. The draft
assembly of simulated high-accuracy short reads reached a size of 8.3 Mb. We unzipped the assembly graph
using simulated Hi-C reads, and the assembly size grew to 10.7 Mb, closer to the expected size. The NG50 rose
from 10 to 107 kb. We compared this assembly to the reference and found that GraphUnzip did not introduce

4

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://rrwick.github.io/Bandage/
https://github.com/lh3/calN50
https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2: Comparison of the GraphUnzip supercontigs longer than 100 kb (y axis) versus the two chromosomes
of the reference simulated diploid genome of Escherichia coli (x axis).

any phasing error (Figure 2).

3.2 Adineta vaga

We then tested GraphUnzip on the diploid genome of the bdelloid rotifer Adineta vaga. As this genome
has variable levels of heterozygosity along its chromosomes, which include highly heterozygous regions, it has
proven difficult to collapse its haplotypes into a haploid assembly [1]. High-accuracy short reads (Illumina),
low-accuracy long reads (ONT and PacBio CLR) and Hi-C reads were already available [16], and we additionally
sequenced high-accuracy long reads (HiFi) in order to test different assembly strategies. To improve the accuracy
of ONT and PacBio CLR, they were corrected with Illumina reads and the tool Ratatosk [17]; the corrected
datasets are dubbed cONT and cPacBio in what follows.
The HiFi reads were assembled using Flye and hifiasm; for corrected long reads, we only present assemblies
with Flye, as hifiasm did not handle well these corrected reads (data not shown). GraphUnzip was run on
these draft assemblies using long reads and/or Hi-C data. We evaluated the resulting phased assemblies based
on their total size, NG50, complete single-copy and duplicated BUSCO features [21], and contact maps of the
longest supercontigs (Table 1, Figure 3). All assemblies phased by GraphUnzip increased in assembly size as
collapsed homozygous regions became duplicated. The NG50 of the HiFi assemblies rose from 4.8 to 11.9 Mb
after GraphUnzip (using only Hi-C reads). Assemblies of cONT also reached high NG50 values when phasing
with ONT/cONT and/or Hi-C (up to 16.0 Mb using both). The NG50s of cPacBio assemblies were not as high
as for cONT assemblies, yet they reached a NG50 up to 4.6 Mb, whereas the initial NG50 was only 249 kb.
As expected, the assemblies showed an increase in the number of complete duplicated BUSCO features. The
contact maps did not display any error.
We scaffolded the Flye and hifiasm draft assemblies of HiFi reads with ALLHiC to compare with the GraphUnzip
supercontigs. For both assemblies, ALLHiC connected the contigs excessively as the scaffolds had N50s of 27.3
Mb (Flye) and 132.3 Mb (hifiasm), while the largest scaffold in the chromosome-level haploid reference is only
20.4 Mb. Besides, the ALLHiC scaffolds had poor BUSCO scores, lower than the draft assemblies: 51.8% of
complete single-copy features and 35.5% of complete duplicated features for the Flye scaffolds; 74.9% and 11.5%
for the hifiasm scaffolds.

3.3 Solanum tuberosum

To benchmark GraphUnzip against a larger assembly, we further tested it on the diploid genome of the potato
Solanum tuberosum RH89-039-16, for which a phased assembly of 1.67 Gb [20] was recently published. We
assembled the HiFi reads with hifiasm and then ran GraphUnzip using the HiFi, ONT and/or Hi-C reads.
The draft assembly was 1.51 Gb, and after phasing with GraphUnzip, the assembly size rose to 1.67-1.73 Gb.
GraphUnzip also increased the continuity: from 2.2 Mb, the NG50 reached 3.4 to 5.9 Mb. The combination of
both ONT and Hi-C reads yielded the highest NG50. As observed with Adineta vaga assemblies, Hi-C reads

5

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Contact maps of the four largest supercontigs after unzipping the Adineta vaga Flye and hifiasm
assemblies of HiFi reads using GraphUnzip with HiFi and Hi-C reads.

improved the continuity better than long reads. The number of duplicated BUSCO features also increased,
from 77.9% (raw assembly) to 89.4-92.2%. It should be noted that the reference sequence had only 76.9% of
duplicated BUSCO features. In addition, the overall BUSCO completeness of the GraphUnzip supercontigs is
slightly higher than the reference: 98.6-99.3% against 98.5% for the reference.
We also tried an assembly of the HiFi reads with Flye, but the draft assembly was only 827 Mb, little below
half the expected size, which indicates that the haplotypes were collapsed. A good candidate assembly for
GraphUnzip should have uncollapsed heterozygous regions, as GraphUnzip is not able to retrieve a missing
haplotype in collapsed heterozygous regions and can only duplicate the remaining haplotype, leading in that
case to a suboptimal result.

3.4 Computational performance

For both the small Adineta vaga genome (192.6 Mb) and the larger Solanum tuberosum genome (1.67 Gb),
GraphUnzip required limited computational resources. For Adineta vaga, GraphUnzip ran in less than 15 min-
utes, and in less than a minute when using only long reads. The RAM usage reached a maximum of 2.1 GB.
For Solanum tuberosum, GraphUnzip ran in less than 1 hour, and using up to 11.5 GB. The run time was also
shorter when using only long reads, below 1 minute. The longer run time when using Hi-C reads was due to
the building of the interaction matrix. As this interaction matrix is outputted by the program, this file can be
reused for other runs, that will finish faster. Therefore, users can try several sets of parameters to optimize the
result, with short runtimes.

4 Conclusion

GraphUnzip is a flexible tool that can phase assemblies of high-accuracy long reads (HiFi or corrected ONT
or corrected PacBio CLR) with long reads and/or Hi-C. As genome projects now usually include long reads
and Hi-C to obtain chromosome-level assemblies, GraphUnzip can easily be integrated in assembly projects to
obtain de novo phased assemblies for non-model organisms.

6

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


Table 1: Assembly metrics. The NG50 values were computed based on an estimated genome size of 192.6 Mb
for Adineta vaga, and 1.67 Gb for Solanum tuberosum.

Organism Assembly GraphUnzip Size NG50
BUSCO

CPU RAM
Single Dup.

Adineta Flye - 191 Mb 4.8 Mb 18.4% 68.7% - -
vaga HiFi HiFi 214 Mb 7.0 Mb 13.3% 73.1% 9s 0.1 GB

Hi-C 214 Mb 11.9 Mb 12.3% 74.2% 6min 58s 2.1 GB
HiFi + Hi-C 231 Mb 11.1 Mb 10.6% 75.9% 5min 29s 2.1 GB

hifiasm - 212 Mb 4.8 Mb 18.7% 67.1% - -
HiFi HiFi 275 Mb 10.3 Mb 15.3% 68.2% 8s 0.1 GB

Hi-C 283 Mb 12.4 Mb 8.7% 75.5% 5min 8s 1.9 GB
HiFi + Hi-C 230 Mb 10.5 Mb 18.4% 66.9% 4min 54s 1.9 GB

Flye - 199 Mb 4.2 Mb 19.3% 66.5% - -
cONT ONT 236 Mb 9.6 Mb 12.9% 71.3% 22s 0.1 GB

cONT 252 Mb 9.8 Mb 10.5% 75.5% 11s 0.1 GB
Hi-C 210 Mb 12.1 Mb 12.9% 71.3% 4min 5s 1.2 GB
ONT + Hi-C 233 Mb 12.4 Mb 16.1% 68.8% 4min 4s 1.1 GB
cONT + Hi-C 237 Mb 16.0 Mb 16.6% 68.8% 4min 35s 1.2 GB

Flye - 182 Mb 249 kb 21.9% 63.5% - -
cPacBio PacBio 205 Mb 509 kb 13.4% 71.8% 47s 0.1 GB

cPacBio 207 Mb 478 kb 13.9% 71.8% 37s 0.1 GB
ONT 210 Mb 1.3 Mb 14.9% 71.0% 38s 0.1 GB
cONT 218 Mb 1.5 Mb 14.0% 72.2% 33s 0.1 GB
Hi-C 216 Mb 4.6 Mb 11.5% 74.8% 13min 15s 1.3 GB
PacBio + Hi-C 222 Mb 4.6 Mb 12.7% 73.5% 10min 52s 1.3 GB
cPacBio + Hi-C 209 Mb 3.7 Mb 13.1% 73.8% 11min 42s 1.3 GB
ONT + Hi-C 215 Mb 3.4 Mb 16.4% 69.8% 9min 27s 1.3 GB
cONT + Hi-C 208 Mb 3.4 Mb 16.4% 70.1% 10min 8s 1.3 GB

Solanum hifiasm - 1.51 Gb 2.2 Mb 21.2% 77.9% - -
tuberosum HiFi HiFi 1.69 Gb 3.7 Mb 7.1% 91.5% 16s 0.2 GB

ONT 1.67 Gb 3.4 Mb 6.8% 92.2% 52s 0.2 GB
Hi-C 1.69 Gb 5.6 Mb 7.8% 91.5% 38min 27s 11.5 GB
HiFi + Hi-C 1.69 Gb 4.9 Mb 9.4% 89.4% 39min 59s 11.5 GB
ONT + Hi-C 1.73 Gb 5.9 Mb 7.3% 91.8% 39min 10s 11.5 GB

Competing interests

The authors declare no competing financial interests.

Author contributions statement

R.F., N.G. and J.-F.F. jointly designed GraphUnzip. R.F. and N.G. implemented GraphUnzip. R.F. and N.G.
tested GraphUnzip. R.F., N.G. and J.-F.F. wrote the manuscript.

Acknowledgments

This project was funded by the Horizon 2020 research and innovation program of the European Union under the
Marie Sk lodowska-Curie grant agreement No 764840 (ITN IGNITE, www.itn-ignite.eu). Part of this analysis
was performed on computing clusters of the Leibniz-Rechenzentrum (LRZ) and the Consortium des Équipements
de Calcul Intensif (CÉCI) funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11.

References

[1] Guiglielmoni, N., Houtain, A., Derzelle, A., Van Doninck, K. & Flot, J.-F. Overcoming uncollapsed
haplotypes in long-read assemblies of non-model organisms. bioRxiv (2020).

7

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

http://www.itn-ignite.eu
https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/


[2] Zhang, X., Wu, R., Wang, Y., Yu, J. & Tang, H. Unzipping haplotypes in diploid and polyploid genomes.
Computational and Structural Biotechnology Journal 18, 66–72 (2020).

[3] Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat
graphs. Nature Biotechnology 37, 540–546 (2019).

[4] Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly with
phased assembly graphs. arXiv preprint arXiv:2008.01237 (2020).

[5] Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from
high-fidelity long reads. Genome Research 30, 1291–1305 (2020).

[6] Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nature
Methods 13, 1050–1054 (2016).

[7] Patterson, M. et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads.
Journal of Computational Biology 22, 498–509 (2015).

[8] Kronenberg, Z. N. et al. Extended haplotype phasing of de novo genome assemblies with FALCON-Phase.
bioRxiv (2019).

[9] Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale au-
topolyploid genomes based on Hi-C data. Nature Plants 5, 833–845 (2019).

[10] Matthey-Doret, C. et al. koszullab/hicstuff (2020). URL https://doi.org/10.5281/zenodo.4066363.

[11] Rautiainen, M. & Marschall, T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome
Biology 21, 1–28 (2020).

[12] Peng, Y., Leung, H. C., Yiu, S.-M. & Chin, F. Y. IDBA – a practical iterative de Bruijn graph de novo
assembler. In Annual International Conference on Research in Computational Molecular Biology, 426–440
(Springer, 2010).

[13] Limasset, A. Novel approaches for the exploitation of high throughput sequencing data. Ph.D. thesis,
Université Rennes 1 (2017).

[14] DeMaere, M. Z. & Darling, A. E. Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing
technologies. GigaScience 7, gix103 (2018).

[15] Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

[16] Simion, P. et al. Homologous chromosomes in asexual rotifer adineta vaga suggest automixis. bioRxiv
(2020).

[17] Holley, G. et al. Ratatosk: hybrid error correction of long reads enables accurate variant calling and
assembly. Genome Biology 22, 1–22 (2021).

[18] Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome
assemblies. Bioinformatics 31, 3350–3352 (2015).

[19] Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinfor-
matics 25, 1754–1760 (2009).

[20] Zhou, Q. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics 1–6
(2020).

[21] Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212
(2015).

8

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.428779doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.4066363
https://doi.org/10.1101/2021.01.29.428779
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Inputs
	Overview of GraphUnzip
	Escherichia coli simulations and assembly
	Adineta vaga assemblies
	Solanum tuberosum assemblies
	Assemblies evaluation
	Computational performance

	Results
	Simulated data
	Adineta vaga
	Solanum tuberosum
	Computational performance

	Conclusion

