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Abstract

Motivation: LncRNAs are much more versatile and are involved in many regulatory roles inside
the cell than previously believed. Existing databases lack consistencies in lncRNA annotations, and
the functionality of over 95% of the known lncRNAs are yet to be established. LncRNA transcript
identification involves discriminating them from their coding counterparts, which can be done with
traditional experimental approaches, or via in silico methods. The later approach employs various
computational algorithms, including machine learning classifiers to predict the lncRNA forming potential
of a given transcript. Such approaches provide an economical and faster alternative to the experimental
methods. Current in silico methods mainly use primary-sequence based features to build predictive
models limiting their accuracy and robustness. Moreover, many of these tools make use of reference
genome based features, in consequence making them unsuitable for non-model species. Hence, there
is a need to comprehensively evaluate the efficacy of different predictive features to build computational
models. Additionally, effective models will have to provide maximum prediction performance using the
least number of features in a species-agnostic manner.
It is popularly known in the protein world that “structure is function”. This also applies to lncRNAs as their
functional mechanisms are similar to those of proteins. Generally, lncRNA function by structurally binding
to its target proteins or nucleic acid forming complexes. The secondary structures of the lncRNAs are
modular providing interaction sites for their interactome made of DNA, RNA, and proteins. Through these
interactions, they epigenetically regulate cellular biology, thereby forming a layer of genomic programming
on top of the coding genes. We demonstrate that in addition to using transcript sequence, we can provide
comprehensive functional annotation by collating their interactome and secondary structure information.
Results: Here, we evaluated an exhaustive list of sequence-based, secondary-structure, interactome,
and physicochemical features for their ability to predict the lncRNA potential of a transcript. Based on
our analysis, we built different machine learning models using optimum feature-set. We found our model
to be on par or exceeding the execution of the state-of-the-art methods with AUC values of over 0.9 for
a diverse collection of species tested. Finally, we built a pipeline called linc2function that provides the
information necessary to functionally annotate a lncRNA conveniently in a single window.
Availability: The source code is accessible use under MIT license in standalone mode, and as a
webserver (https://bioinformaticslab.erc.monash.edu/linc2function).
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1 Introduction
LncRNAs account for 80% of RNA transcribed in the cell [1, 2]. These are
emerging as master regulators of gene expression via various interaction
mechanisms with other biomolecules at the transcription, translation, or
epigenetic level [3]. These RNAs are involved in various cellular biological
processes, and they do that in conjunction with other biomolecules through
complex pathways [4]. A large number of lncRNAs are being discovered
but about 95% of lncRNAs still lack functional annotation [5]. We reviewed
existing lncRNA annotation methods and databases, some are sourced
reliably while others are crowdsourced, and discovered that there is very
little consensus between them [6]. Inconsistencies between databases is a
major concern, and require newer methods to annotate these RNAs reliably.
For instance, we found in our analysis that 230 genes were omitted from
GENCODE human release v34, however, they are present in the previous
version v24. Additionally, 41 of them are verified to play a role in various
diseases as per the LncRNADisease 2.0 database [7, 8]. Furthermore, other
than a few species with well-studied reference genomes, there is very
little to no lncRNA annotations available for the remaining genomes. This
demands reference-free or /textitab initio methods to study these RNAs.

Dysfunction of lncRNA can lead to cellular disequilibria such as
in a disease state [9, 10]. Recent studies have revealed that many
diseases are caused by misregulation or mutation of lncRNAs [10]. As
an example, approximately 80% of experimentally validated lncRNAs
reported in the LncBook database [11] are associated with more than 400
diseases; and more than 200,000 predicted disease associations are present
in LncRNADisease 2.0 database [7, 8]. Therefore, understanding of
functional mechanisms of lncRNA would help in the diagnosis, prognosis,
prevention, and treatment of several disorders.

LncRNA functions by folding into a secondary (2D) and tertiary (3D)
structure containing multiple structural domains [12, 13, 14]. Moreover,
the binding target which are the biomolecules such as DNA, RNA, and
proteins, is mainly determined by its 2D structure [15]. Consequently, in
order to retain its function, the secondary structure of the lncRNAs is under
a higher evolutionary pressure resulting in higher conservation than its
sequence [16]. To confirm this hypothesis, we looked for ultra conserved
regions (UCRs) around 65 lncRNA genes implicated in endometriosis,
as sourced from the FANTOM-CAT dataset [17]. We did not find any
overlap of UCR regions with the exonic loci of these genes indicating
a poor sequence conservation. On the other hand, we observed 7 out
of the 65 genes had UCR regions in non-exonic regions in this study.
More details are available here: https://gitlab.com/tyagilab/linc2function/-
/blob/master/HumanDiseaseUcr/human_disease_ucr.md.

Thus, determining lncRNA folding and its structural domains are
crucial in unlocking its function in disease aetiology, and determining its
interactome [18, 19]. Any changes in the structure of lncRNA will result
in a partial or complete breakdown of its functional pathways and result
in cellular malfunction.

Some of the known lncRNA-DNA interactions involve forming triplex
structures such as R-loops [20], and triple helices [21] that in turn are
involved in transcriptional and post-transcriptional regulation, chromatin
remodeling, and DNA repair [22]. Thus, a transcript with high Triplex
Forming Potential (TFP) is more likely to be involved in these mechanisms
either in cis or in trans.

RNA Binding Proteins (RBPs) form RNA-protein complexes by
binding to lncRNAs and these complexes are associated with regulating
various cellular pathways [23]. The functions of RBPs include
transcription and translation regulation, DNA repair, splicing, apoptosis,
and mediating stress responses [24]. By knowing the potential RBPs
interactions with a lncRNA, it should be possible to estimate the functional
pathways in which the lncRNA is involved, and these RBP interactions can
be estimated by the presence of sequence or structural motifs on it.

LncRNA also interacts with other ncRNA and mRNA to perform their
function [25]. LncRNA-miRNA interaction is a well studied phenomenon
resulting in lncRNAs directly regulating the expression levels of a
particular gene. MiRNAs can down-regulate the expression of their
target mRNAs by binding in their UTR region [26]. LncRNAs can
act as competing endogenous RNA (ceRNA) where they compete for
miRNA binding along with mRNAs, as a result acting as regulators of
corresponding mRNA targets [27, 28]. Thus, knowing the possible miRNA
interactions of a lncRNA will enable us to know the genes that the lncRNAs
can possibly modulate.

Accordingly, functional annotation of a lncRNA would consist of two
parts: 1) distinguishing a lncRNA transcript from other non-coding and
coding transcripts; and 2) identifying its functional structure along with
its interacting biomolecules and their contact sites. We will refer to the set
of interacting biomolecules as the lncRNA interactome.

Primary data to identify lncRNA comes from High throughput
sequencing (HTS) experiments [29]. Short sequencing reads obtained
from a HTS run are assembled to build RNA sequences. The assembled
sequences are further analyzed to annotate them as various types of RNA
transcripts. It is challenging to obtain features of a transcript that can be
used to distinguish a lncRNA from other RNA transcripts due to their
high diversity, and lack of comprehensive high-confidence reference data.
However, a deep learning model can help identify such generic features in
an ab-initio manner. When trained on existing known lncRNAs examples
it can pick up similar patterns on screening the transcripts obtained in
RNA-seq experiments en masse[30, 31].

Experimental methods to identify RNA interactome are expensive,
time-consuming, and cannot be performed for each cell type or state.
Moreover, the expression level of these lncRNAs is very low compared to
mRNAs and also tissue-specific in nature, which pose further challenges
for in vitro methods. Hence, in silico approaches are a favourable choice
to predict the lncRNA interactome.

Table 1. Table listing different tools, year of release, machine learning model
used, and the type of features used (Sequence-Based, Conservation, Structure,
Experiment (e.g., expression), and Interactome. Row containing linc2function is
highlighed in bold text)

Tool Year ML model SB Con Str Exp Int

CPC 2007 SVM y y n n n
CPAT 2013 LR y n n n n
CNCI 2013 SVM y n n n n
PLEK 2014 SVM y n n n n
lncRScanSVM 2015 SVM y y n n n
lncRNAID 2015 RF y y n n n
lncRNAMFDL 2015 ANN y y y n n
lncScore 2016 LR y y n n n
DeepLNC 2016 ANN y n n n n
CPC2 2017 SVM y n y n n
COME 2017 RF y y n y n
Longdist 2017 SVM y n n n n
FEElnc 2017 RF y n n n n
LncADeep 2018 DL y y n n n
LncRNAnet 2018 CNN, RNN y n n n n
EVlncRNApred 2019 SVM y y y y y
LncFinder 2019 LR, SVM, RF, ELM, ANN y n y n n
linc2function 2021 ANN y n y n y

SB:Sequence-Based, Con:Conservation, Str:Structure, Exp:Experiment (e.g.,
expression), Int:Interactome
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Many in silico tools are developed to identify if a given sequence
is lncRNA using different machine learning algorithms [32, 33, 34].
We recently reviewed existing methods and current challenges in the
process [6]. Some of these methods are reference-based in which case
a given transcript sequence is compared against a pre-annotated reference
for annotation purpose. Other methods are ab initio that do not require
a reference, and predictions are made based on primary and derived
properties of a transcript sequence. Reference-based methods are limited
in their ability to perform cross-species predictions, and therefore, can not
be applied for non-model organisms lacking a pre-annotated reference.
Structural attributes are shown to be more important than its sequence,
and show higher evolutionary conservation [15]. Further, identification
of structural domains and interactome are required for full functional
annotation of lncRNA, but existing tools rarely make use of these
characteristics (refer Table 1).

To summarise, in this study first, we aim to develop a machine learning
model to identify lncRNA in a species-agnostic manner; and secondly, to
build a comprehensive pipeline for annotating lncRNA.

We propose an artificial neural network (ANN) that can identify the
lncRNA forming potential of a given transcript in a species-agnostic
manner. Using non-reference features extracted and diligently selected
from its sequence, structure, and interactome characteristics. We extend
this model to build a pipeline called linc2function, containing an
identification module, structural, and interactome modules by integrating
it with existing open-source methods for structural and interactome
predictions. It is deployed both as a web-server, and a standalone tool under
the MIT license for wider accessibility. To the best of our knowledge, such
a pipeline does not exist, and we believe it will be of great significance to
advance lncRNA research for biomedical applications.

2 Methods

2.1 lncRNA identification

2.1.1 Data Source
Various open-source repositories are available online that contain data
related to lncRNAs. Some of them contain only the identified lncRNAs and
their sequences, whereas others augment their structures, functions, and
disease associations. The information contained in these repositories was
obtained by manually curating the literature, low-throughput experiments,
high-throughput experiments, in silico predictions, or a combination of any
of these. Further, the information gathering might be handled by domain
experts, crowdsourced, or generated via computer automation. Besides
their varied origin, there are complications in comparing them directly
as the identifiers used by each one of these repositories are different [6].
For the purpose of obtaining consensus data from all four repositories we
opted to use the genomic coordinates matching with a tolerance of plus or
minus five nucleotide positions. This consensus data as depicted in Fig 1
was used as positive training set for our ANN model. An equal number of
coding sequences were selected randomly from the GENCODE database.

Fig. 1. Venn diagram showing the overlap of the transcripts between LncBook (blue),
LNCipedia (orange), GENCODE (green), and NONCODE (red). In the figure LB refers to
the LncBook, LP refers to the LNCipedia, GC refers to the GENCODE and NC refers to
the NONCODE

2.1.2 Feature Extraction
Various sequence-based, structural, and interactome features are extracted
from the curated nucleotide sequence data as described in section 2.1.1. We
analyzed the effectiveness of each feature in predicting lncRNA forming
potential in a standalone manner as well as in conjunction with other
features. For this purpose, we collected as many features as practically
possible. A hierarchical tree diagram of the collected features is shown in
Fig 2.

Fig. 2. A hierarchical tree diagram illustrating different features and their categories
considered in this study

Sequence-based features are obtained by the sequential characteristics
of the transcript which quantifies its various nucleotide distribution
patterns. Structural features are related to the properties of the secondary
structure of a transcript, such as minimum free energy (MFE),
paired-unpaired transition frequencies, and physicochemical features.
Interactome features are the measure of nature and magnitude of the
lncRNA interactions with their target RNA, DNA, or protein biomolecules.
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2.1.3 Feature Selection
In the first step, we eliminated the features using co-variance analysis,
univariate feature selection techniques [35], and by feature importance
measures using forests of trees. We looked at their co-variance, F-Value,
Chi-Squared, Mutual Information, and feature importance measures from
various tree-based classifiers. Primarily, this step is necessary to eliminate
the features which contribute more noise quotient to the model than their
contribution towards model prediction. In consequence, 35 features were
retained after the exclusion.

Next, the recursive feature elimination (RFE) method is used to
select the subset of features that contribute the most to the discriminative
ability of the model. RFE computes feature importance by building a
linear model and calculating the coefficients. Then the least important
features are pruned recursively until a predetermined stopping condition
is met as shown in Fig 3. Having fewer features also results in reduced
dimensionality of the input feature set and therefore, lowering the training
and prediction time. Obtaining some of the features can be a high
compute intensive and time consuming proposition and rendering it
impossible to screen large amounts of transcripts in real-time. Thus, we
obtained the feature_importances_attribute value to be 10 to make a set
of human-specific and species-agnostic features.

Fig. 3. A flowchart explaining the steps involved in the RFE algorithm in detail

Thus,from the above steps, we create a "Full" feature set (n=35) and
a "Light Weight" feature set (n=10). The model based on the former
feature set would be computationally intensive as compared to the later. For
constructing the models which are good at cross-species generalization,
we shortlisted two types of features, one including the reference-based
features, and the other one independent of the reference genome. By taking
different combinations of feature sets and types, 4 models namely were
build. As shown in Table 2, the models are called: HSF - Human Specific
Full, HSLW - Human Specific Light Weight, SAF - Species Agnostic Full,
and SALW - Species Agnostic Light Weight.

Table 2. A table containing different ANN models their acronym, number of
features, and presence or absence of reference-based features)

Acronym Features Reference Based Features

Species Agnostic Light Weight SAL 10 Absent
Species Agnostic Full SAF 35 Absent
Human Specific Light Weight HSL 10 Present
Human Specific Full HSF 35 Present

SB:Sequence-Based, Con:Conservation, Str:Structure, Exp:Experiment (e.g.,
expression), Int:Interactome

2.1.4 Model Architecture
We built four ANN models as listed in Table 2, and trained them with the
shortlisted feature sets. The primary objective is to keep the complexity
of the models as low as possible so that they are easily generalizable. The
models consist of 1 input layer with the number of nodes equal to the
number of input feature-length. The input layer is followed by a hidden
layer with l1_l2 regularization to avoid overfitting and then a relu activation
function (Fig 4 ). The l1_l2 regularization is applied to the kernel, bias,
and activity values for this layer. There is a dropout layer of ratio 0.3 which
randomly drops the nodes in the specified ratio during training to make the
model more robust, and to improve model generalization. Finally, there
is an output layer with one node and a sigmoid activation function that
will provide the lncRNA forming potential for the given sequence. Setting
an appropriate threshold for the lncRNA forming potential enables us to
predict the two classes, positive class consisting of lncRNA and a negative
class consisting of not lncRNA.

Fig. 4. A representative neural network architecture for the ANN model showing input,
hidden, and output layers. All the layers are densely connected with the color intensity of
edges proportional to the connecting weights between two nodes. The negative edges are
shown in red color and positive edges in blue color. The width of the edges is proportional
to their weight.

2.1.5 Model Training and Validation
Using our ANN architecture as explained in the previous section, we built
the models using the python library Keras which is configured to use the
TensorFlow library in the backend. We have trained the model using 80%
of the observations present in data and the rest 20% was held out for
validation.

Later, the models are used for prediction, where the classes (coding and
noncoding) of the validation data set are predicted and compared against
the true labels. Various classification metrics like Accuracy, Balanced
Accuracy, Precision, Recall, F1-Score, and Area Under Curve (AUC) are
calculated to establish the performance of the model. We also calculated
the confusion matrix, which provides True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) using which we
obtained Accuracy, Balanced Accuracy, Precision, Recall, and F1-Score.

2.1.6 Cross-Species Comparison
One of the main objectives of this work is to build a model that can predict
lncRNA given a transcript sequence regardless of the species. In this
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regard, we built two types of models, human-specific (HSLW and HSF) and
species-agnostic (SALW and SAF). To test the cross-species predictions
of our models, we shortlisted 8 species consisting of human, mouse,
zebrafish, fruit fly, roundworm, yeast, wheat, and sea vase transcripts
covering a wide evolutionary spectrum. The human and mouse data was
obtained from the GENCODE [36] database and all the other species data
was taken from the Ensembl [37] repository.

2.1.7 Benchmarking
We benchmarked our methods against two other prominent tools currently
available specifically, LncADeep [32] and LncRNAnet [34]. Both of
these tools use neural networks in different configurations. LncAdeep
uses an ANN built on a number of features covering sequence-based and
conservation characteristics of a given sequence. LncRNAnet employs
CNN and RNN which require only the sequence information which gets
one-hot encoded of a fixed length. The benchmarking data consisted of
randomly selected human transcripts from GENCODE, and randomly
selected zebrafish and wheat transcripts from Ensembl databses.

2.2 lncRNA annotation

In this section we describe how we obtain interactome for the sequence
provided.

LncRNA:DNA interactions were measured as the triplex forming
potential (TFP). This was obtained by TriplexFPP [38], a deep learning-
based utility. Similarly, for lncRNA:protein pairs we selected a list of
RNA binding proteins (RBP) that are known to interact with lncRNAs,
and used RBPDB [39] to scan sequences for RBP-binding sites. The
RBPDB is a freely available database of RNA-binding specificities, and
it is a collection of experimental observations of RNA-binding sites,
both in vitro and in vivo, manually curated from the primary literature.
Comprehensive lncRNA:RNA interactome analysis included interactions
of lncRNA with mRNA, miRNA and other ncRNA. RIblast [40] was used
to determine these RNA-RNA interactions, providing us an insight into the
regulatory mechanisms in which the lncRNA might be involved. RIblast
software is based on a seed-and-extension algorithm. We indexed ncRNA
sequences from RNAcentral [41] and miRBase database [42] using RIblast
db command to obtain RIblast database files. This indexed database is then
used to scan for possible lncRNA-RNA interactions using RIblast search
(ris) utility. The function of a lncRNA is determined by its structure, and
its sequence plays very little role. We optimize an existing pipeline called
SPOT-RNA [43] to predict an ensemble of two-dimensional structures in
real-time by limiting the consensus models used within. We extended the
length of sequences used in training and scanning.

2.3 The linc2function Pipeline

The above identification and annotation sub-modules were integrated
to build the linc2function pipeline. The pipeline provides multiple
characteristics of a lncRNA for the given sequence such as, the lncRNA
forming potential of a given sequence followed by the prediction of its
2D structure, TFP, and its interactome. The pipeline is deployed in a
web-server and as a standalone tool for wider accessibility.

3 Results

3.1 lncRNA identification

3.1.1 Feature Engineering
An extensive set of features are extracted primarily to study the effect
of an individual feature on predicting the lncRNA forming potential
of a transcript. In order to build a machine learning model, there is a
need to eliminate uninformative features. Although the machine learning
algorithm which we choose (i.e. ANN) is inherently capable of performing

feature selection by assigning less importance (weights) to the superfluous
features, computing those avoidable features is a complex and time-
consuming effort. To get an idea of which features are correlated with
the target variable we plotted a heatmap as shown in the figure (Fig 5).
It is observed from the heatmap that RBP and KOZAK motif related
features have the least correlation, while all others have a noticeable
relationship either positive or negative. The same observation was also
confirmed by the feature selection process followed by us, where these
features are usually ranked at the bottom. On the flip side, 5 out of the top
10 ranked features in our analysis are secondary structure based. Details
of our feature importance analysis can be found in the Fig A1, Fig A2,
Fig A3, Fig A4. This is in accordance with the studies showing that
the secondary structures formed by the folding of the lncRNAs form the
functional domains, through which they perform their biological functions.
Additionally, the ORF features i.e ORF_LENGTH and ORF_COVERAGE
are ranked highly along with EXON_COUNT reinforcing the importance
of the presence or absence of ORF and exons in determining the lncRNA
forming potential of a transcript. Hence, we decided to eliminate RBP
and KOZAK motif related features from the initial cohort. Two full
models HSF and SAF are built with human specific feature set containing
all the remaining features, and species agnostic feature set containing
non-reference features.

Fig. 5. A heatmap containing all the feature and the target considered in this study.
RBP-based features are labeled in red color, sequence-based features in green color,
physicochemical features in blue, and the target in orange color. The color intensity of
each cell corresponding to two features indicates the degree of correlation. Also, blue
indicates a positive correlation and red indicates a negative correlation.

The HSF and SAF models contain certain features such as MFE,
MIN_FE, MAX_FE, and TOTAL_FE that consume significantly more
compute resources and time to calculate. Although, it will not be a problem
in doing real-time analysis of individual transcripts, it is impractical to
screen thousands of transcripts at once. Hence, we performed recursive
feature elimination (RFE) where we found out only about 10 features are
sufficient to get maximum prediction performance as shown in the figure
6. With this insight, we obtained the list of the top 10 human-specific and
species agnostic features to build two light weight models i.e. HSLW and
SALW.
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Fig. 6. Cross-Validation Accuracies of the model on the training data for different values
of n_features_to_select obtained by running RFE algorithm.

3.1.2 Performance on human transcripts
As anticipated, when validated on unseen human transcripts, the human
specific model performs marginally better than the corresponding species
agnostic model. The decision to relinquish a small fraction of performance
is taken with the aim of generalizing the model for cross-species
predictions. Prediction probability distribution (Fig 7) shows a good
separation between the classes. It can also be observed that models perform
identically in predicting coding transcripts. However, the performance for
noncoding transcripts varies slightly with HSF giving the best accuracy,
followed by SAF, HSLW, and SALW in that order.

Fig. 7. Histogram and distribution of predictions of both the models on randomly selected
Human transcripts from Gencode. Blue - Human Specific. Orange - Species Agnostic.
Predictions closer to 1.0 belong to noncoding will be labeled as noncoding and the ones
closer to 0.0 as coding.

The testing ROC curve is drawn for both the models and obtained a
graph as shown in Fig 8. From this figure, once more it can be observed
that the human specific model is giving better predictions on the human
dataset in comparison to the corresponding species agnostic model by a
small margin. From the ROC curve, we calculated the AUC for the HSF
model to be 0.9580, the HSLW model to be 0.9460, the SAF model to be

0.9528, and for the SALW model to be 0.9430. Overall, the models show
AUC of above 0.94 on human transcripts with HSF performing marginally
better than the others. Please refer appendix tables A1-A8 for more details
on model performance on testing data.

Fig. 8. Testing ROC curve for linc2function Human Specific and Species Agnostic models
evaluated on randomly selected Human transcripts from Gencode.

3.1.3 Cross-species performance
It is observed that both the models are able to consistently achieve AUC
of over 0.94 over different species as shown in Fig 9. As expected the HS
model performed well on mammalian transcripts i.e. human and mouse,
but on all the other species including vertebrates such as, zebrafish, the
SA models prediction performance is superior. This demonstrates the
SA model’s capability of performing well on other divergent species by
capturing the generic characteristics of lncRNA transcript across species.

Fig. 9. Cross-Species prediction performance comparing Balanced Accuracy Human
Specific and Species Agnostic models evaluated on 8 different species (Fruit Fly, Human,
Mouse, Roundworm, Sea Vase, Wheat, Yeast, Zebrafish in no particular order).

3.1.4 Benchmarking
Benchmarking results (Fig 10, Fig 11, Fig 12) also show that the
linc2function model is able to generalize well for species other than the
one it was trained on. Its performance metrics are better for zebrafish
dataset as against the human dataset when compared to the two state
of the art methods namely, LncADeep [32] and LncRNAnet [34].
Moreover, its performance for the wheat dataset is as good as LncRNAnet
and outperformed LncAdeep. Overall, all three models were able to
consistently achieve an AUC value of around 0.94 or higher for all
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three datasets. One key highlight of linc2function from the benchmarking
results is that AUC values of linc2function have not dropped while used
for predicting other species, unlike the other two tools. Essentially, we
endeavored to provide a solution that successfully predicts the coding
ability of a wide range of species including non-model ones and the results
reflect our model’s ability to do so.

Fig. 10. ROC curve for LncADeep, LncRNAnet, linc2function Human Specific, and
linc2function Species Agnostic models evaluated on randomly selected Human transcripts
from Gencode.

Fig. 11. ROC curve for LncADeep, LncRNAnet, linc2function Human Specific, and
linc2function Species Agnostic models evaluated on randomly selected Zebrafish transcripts
from Ensembl.

Fig. 12. ROC curve for LncADeep, LncRNAnet, linc2function Human Specific and
linc2function Species Agnostic models evaluated on randomly selected Wheat transcripts
from Ensembl.

3.2 The linc2function Webserver

The webserver can take a FASTA sequence as input and results are
displayed as html output along with downloadable text, table and images
formats. The first section of the linc2function results provides basic details
of the predicted transcript such as, the name and length of the input FASTA
sequence. Additionally, it contains the lncRNA prediction confidence
percentage as predicted from the model selected by the user. Finally, the
triplex forming potential of the given transcript is also presented in this
section.

Fig. 13. Figure showing transcript details section from linc2function pipeline, displaying
its lncRNA forming potential and triplex forming potential (TFP).

The subsequent section contains protein interactome information for
the given transcript sequence. It contains interaction score, relative score,
RBP name, start position, end position, and matching sequence data of
RNA-RBP interactions for the selected list of RNA binding proteins.

Fig. 14. Figure showing protein interactome section from linc2function pipeline,
displaying most likely RBP interactions.
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The RNA-RBP interactome is followed by the RNA-RNA interactome
section which lists the potential miRNA interactions with the lncRNA
provided. Details provided in this section include target miRNA
name, length of the miRNA target, accessibility/hybridization/interaction
energies of the interaction, and bases involved in interaction from the
lncRNA and miRNA sequences.

Fig. 15. Figure showing RNA interactome section from linc2function pipeline, displaying
most likely miRNA interactions.

Next two sections shows the predicted secondary structure of the given
sequence. Fig 16 shows an example of arc diagram and Fig 17 shows an
example of 2D diagram for a representative sequence.

Fig. 16. Figure showing secondary structure - arc diagram section from linc2function
pipeline, displaying secondary structure in the form of an arc-diagram.

Fig. 17. Figure showing secondary structure - 2D diagram section from linc2function
pipeline, displaying secondary structure in the form of a 2D diagram.

4 Conclusion
Here, we present a comprehensive pipeline called Linc2function for
identifying and annotating long noncoding RNAs. The pipeline can be

run both in a species-specific or species-agnostic manner. Further, by
selecting light weight models, the pipeline can also be run in fast mode
when screening a large amount of nucleotide data. This flexibility allows
user to run our pipeline both on a basic compute infrastructure and high
performance computing cluster. The pipeline can be accessed through a
webpage and as a standalone installation covering a range of users from
bioinformaticians to biologists. The cross-species generalization ability is
unique to our approach, which makes it applicable to species that do not
have a well annotated reference genome. The pipeline include an ANN
model to identify lncRNA transcripts that achieved consistent high AUC
values of over 0.9 while testing for 8 disparate species. Our model is
flexible and scalable to test newer features or training on new species and
open-access code makes it reusable by others in the community. Thus, we
present a first end-to-end solution to identify and annotate new lncRNA
transcripts involved in disease and development processes.

The source code is made available under MIT license at our GitLab
page https://gitlab.com/tyagilab/linc2functionpipeline.
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