Abstract
A mechanistic understanding of how SARS-CoV-2 (sarbecovirus, betacoronavirus) infects human cells is emerging, but the evolutionary trajectory that gave rise to this pathogen is poorly understood. Here we scan SARS-CoV-2 protein sequences in-silico for innovations along the evolutionary lineage starting with the last common ancestor of coronaviruses. SARS-CoV-2 substantially differs from viruses outside sarbecovirus both in its set of encoded proteins and in their domain architectures, indicating divergent functional demands. Within sarbecoviruses, sub-domain level profiling using predicted linear epitopes reveals how the primary interface between host cell and virus, the spike, was gradually reshaped. The only epitope that is private to SARS-CoV-2 overlaps with the furin cleavage site, a “switch” that modulates spike’s conformational landscape in response to host-cell interaction. This cleavage site has fundamental relevance for both immune evasion and cell infection, and the apparently ongoing evolutionary fine-tuning of its use by SARS-CoV-2 should be monitored.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
The discussion related to the gain of the furin claevage site has been adjusted to better reflect the diverse role of this site during SARS-CoV-2 infection.
https://applbio.biologie.uni-frankfurt.de/download/SARS-CoV-2/