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Abstract

State-of-the-art multi-compartment microstructural models of diffusion MRI
(dMRI) in the human brain have limited capability to model multiple tissues
at the same time. In particular, the available techniques that allow this multi-
tissue modelling are based on multi-TE acquisitions. In this work we propose a
novel multi-tissue formulation of classical multi-compartment models that relies
on more common single-TE acquisitions and can be employed in the analysis of
previously acquired datasets. We show how modelling multiple tissues provides
a new interpretation of the concepts of signal fraction and volume fraction in the
context of multi-compartment modelling. The software that allows to inspect
single-TE diffusion MRI data with multi-tissue multi-compartment models is
included in the publicly available Dmipy Python package.

Keywords: diffusion MRI, microstructure, multi tissue, single-TE, volume
fraction, signal fraction

1. Introduction

Diffusion MRI (dMRI) is an imaging technique that allows to inspect the
brain tissue microstructure in-vivo non-invasively. One of the most commonly
studied microstructural feature is the volume fraction of a tissue in a sample.
In particular, the intra-axonal (a.k.a. intra-cellular - IC), extra-axonal (a.k.a.
extra-cellular - EC) and isotropic (ISO) or cerebro-spinal fluid (CSF) volume
fractions have been investigated in the past literature with several models.
Among all, we mention the neurite orientation dispersion and density imag-
ing (NODDI) (Zhang et al., 2012) and NODDI-X (Farooq et al., 2016), Ac-
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tiveAx (Alexander et al., 2010), the multi-compartment microscopic diffusion
imaging framework (Kaden et al., 2016), the CHARMED model (Assaf and
Basser, 2005), the intravoxel incoherent motion model (Le Bihan et al., 1988),
the Stanisz model (Stanisz et al., 1997), the AxCaliber model (Assaf et al.,
2008), the ball and stick model (Behrens et al., 2003), the Bingham-NODDI
model (Tariq et al., 2016), FERNET (Parker et al., 2020), CODIVIDE (Lam-
pinen et al., 2017), COMMIT (Daducci et al., 2015), VERDICT (Panagiotaki
et al., 2014) and the DIAMOND model (Scherrer et al., 2016). The differ-
ences between these models lie on the representation employed in describing
the tissue-specific signal and on the assumptions made on the model parame-
ters. For example, intra-axonal diffusion can be modelled as the diffusion within
a stick or a cylinder and some models fix the value of the diffusivity or tortuosity.
A unifying aspect that characterizes most of the brain microstructure models is
the building-blocks concept behind their formalisation. In other words, models
are defined in a multi-compartment (MC) fashion, where the dMRI signal is de-
scribed as a linear combination of single-tissue models. The resulting models are
called MC models and they require the acquisition of multi-shell dMRI data in
order to accurately disentangle the contribution of each compartment (Scherrer
and Warfield, 2010). Thorough reviews have been dedicated to the design and
validation of such models (Jelescu and Budde, 2017), to the sensitivity of MC
models to experimental factors and microstructural properties of the described
tissues (Afzali et al., 2020), and to the abstraction of these models that allows
to obtain a unified theory (Fick et al., 2019).

Recent studies have highlighted that all of the available MC models are
transparent to the 𝑇2 relaxation times of the modelled tissues (Veraart et al.,
2018; Lampinen et al., 2019). As a consequence, they implicitly assume that all
the considered tissues have the same non-diffusion weighted signal 𝑆0. While
this is a reasonable assumption in some contexts, it is not true in general. In
fact, each brain tissue is characterized by a specific relaxation time which makes
𝑇2 imaging possible. Assuming that all the tissues have a single 𝑆0 response sim-
plifies the model at the cost of biophysical accuracy. Tissue fractions obtained
with this assumption are called signal fractions, in contrast with the unbiased
volume fractions which can be obtained with models that account for different
𝑆0 responses of the modelled tissues. The former measures the linear relation
between the signal generated by a single tissue compartment and the acquired
signal, while the latter measures the volume of single tissue compartment that
is present in the voxel.

Given the known interdependence between the 𝑇2 times of tissues and the
𝑇 𝐸 of the acquisition, some attempts at addressing this issue have been formu-
lated making use of multi-TE multi-shell dMRI acquisitions (Veraart et al., 2018;
Lampinen et al., 2020; Gong et al., 2020). Despite allowing to increase the signal-
to-noise ratio (SNR) (Eichner et al., 2020), these techniques require a complete
re-design of the experiments from acquisition to post-processing, posing severe
limitations in terms of usability of already acquired data. This aspect is cru-
cial in modern neuroimaging, where large studies like the Human Connectome
Project (HCP) (Van Essen et al., 2012), the UK Biobank (Sudlow et al., 2015)
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and the Alzheimer Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005) invest significant amounts of time and financial resources to acquire data
of large cohorts with standardised protocols that need to be carefully designed
a priori.

In this work1 we will show that signal fractions are a biased estimation of
volume fractions and that, under certain assumptions, the latter can still be
retrieved from the first without acquiring new data or re-fitting the MC model.
We call this new technique Multi-Tissue MC (MT-MC) model. To our knowl-
edge MT-MC is the only general framework that allows to estimate volume frac-
tions from single-TE multi-shell dMRI data. This novel formulation is inspired
by the technique of Jeurissen et al. (2014) for the estimation of tissue-specific
orientation distribution functions. The use of the MT-MC formulation solves
some limitations of the previously mentioned multi-TE approaches and opens
the door to the multi-tissue investigation of brain microstructure with data ac-
quired with standard single-TE multi-shell dMRI protocols. Two algorithms
for fitting the MT-MC model are proposed, one of which is designed to build
on top of data already processed with standard MC models. Our new model
is implemented and freely available in the Diffusion Microstructure Imaging in
Python (Dmipy) (Fick et al., 2019) framework, which is an open source tool
designed for the abstraction, simulation, and fitting of MC models of dMRI.
The ability of the MT-MC model to retrieve the unbiased volume fractions is
tested on both synthetic data generated with Dmipy and real data obtained
from the HCP database.

This article is organized as follows: Section 2 is devoted to the theoretical
aspects of MC modelling, highlighting why signal and volume fractions are not
equivalent in general, and to the formalization of the proposed MT-MC model.
In Section 3 we will present the design of the experiments and in Section 4
we will show the corresponding results, which are then discussed in Section 5,
where also some conclusive remarks are presented.

2. Theory

2.1. Multi-Compartment models
Complex microstructural configurations can be modelled as a linear com-

bination of few elementary compartments. For example, the diffusion within
axons can be described as the motion of water molecules along a stick or within
a cylinder, while diffusion in free water, like the one that can be observed in
the CSF, can be modelled as an isotropic 3D Gaussian function. A vast portion
of the dMRI literature of the last twenty years is devoted to the definition of
compartmental models for the anisotropic intra-axonal and extra-axonal diffu-
sivity and for the isotropic diffusivity. These are known as Multi Compartment

1This work has partially been presented at the International Symposium on Biomedical
Imaging of 2020 (Frigo et al., 2020b) and at the 26th meeting of the Organization for Human
Brain Mapping (Frigo et al., 2020c).
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(MC) models and they all describe the shape of the normalized dMRI signal 𝐸
by means of the following linear combination of compartment-specific shapes:

𝐸(𝑏, 𝐆) = 𝑆(𝑏, 𝐆)
𝑆0

=
𝑁𝑐

∑
𝑖=1

𝜙𝑖 ⋅ 𝐸𝑖(𝑏, 𝐆) (1)

where 𝑏 is the 𝑏-value, 𝑆 is the raw diffusion signal, 𝑆0 is the diffusion signal
acquired at 𝑏 = 0, and 𝐆 is the gradient direction, 𝑁𝑐 is the number of con-
sidered compartments, 𝐸𝑖 is the signal attenuation of compartment 𝑖, and 𝜙𝑖
is the portion of 𝐸 explained by compartment 𝑖, i.e. the signal fraction of the
compartment. The derivation of analytical expressions for the compartment-
specific response functions has been researched broadly and deeply in the past
literature. See the work of Panagiotaki et al. (2014) for a thorough review of
the topic. Among the most used MC models we can mention the stick-and-ball
model of Behrens et al. (2003), the ActiveAx model of Alexander et al. (2010)
and the neurite orientation dispersion and density imaging (NODDI) model
of Zhang et al. (2012). A generalized MC model has been proposed by Novikov
et al. (2019) in what they called the standard model of dMRI in the brain.

The standard model is composed of three compartments which, borrowing
the taxonomy from Panagiotaki et al. (2014), are defined as follows:

• The IC compartment is modelled as a stick whose free parameters are the
parallel diffusivity 𝜆∥ and the direction of the fiber population as the unit
vector 𝐧. The corresponding signal is given by

𝐸𝐼𝐶(𝑏, 𝐆, 𝜆∥, 𝐧) = 𝑒−𝑏𝜆∥⟨𝐧,𝐆⟩ (2)

where ⟨𝐧, 𝐆⟩ denotes the usual scalar product in ℝ2.

• The EC component is described by an axially symmetric Gaussian function
(i.e., zeppelin), which can be defined as a diffusion tensor that depends
on the parallel diffusivity 𝜆∥, the perpendicular diffusivity 𝜆⟂ and the
direction of the fiber population 𝐧 (which is assumed to be the same as
the one of the stick compartment). The signal shape is given by the
classical tensor model

𝐸𝐸𝐶(𝑏, 𝐆, 𝜆∥, 𝜆⟂, 𝐧) = 𝑒−𝑏𝐆𝑇 𝐷𝐆 (3)

where the diffusion tensor is defined as 𝐷 = (𝜆∥ − 𝜆⟂) 𝐧𝐧𝑇 + 𝜆⟂𝐼 and 𝐼
is the 3-by-3 identity matrix.

• The CSF compartment is modelled an isotropic Gaussian function (i.e.,
ball), which is defined as a zeppelin with 𝜆∥ = 𝜆⟂ = 𝜆𝑟 where 𝜆𝑟 is the
radial diffusivity. The expression for the signal shape reads as follows:

𝐸𝐶𝑆𝐹 (𝑏, 𝜆𝑟) = 𝑒−𝑏𝜆𝑟 . (4)

Notice that the first term in the definition of the diffusion tensor dis-
appears, hence the model does not depend on the principal direction 𝐧,
making the compartment isotropic as wanted.
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Additionally, fiber dispersion is formalized as the convolution of the stick and
zeppelin compartments with an ODF denoted by 𝒫. An example of such ori-
entation function is the Watson distribution 𝑊(𝐧, 𝜅) (Mardia and Jupp, 1990),
which assumes axial symmetry of the dispersion around the main direction of
the bundle 𝐧 ∈ 𝕊2 with concentration 𝜅. The corresponding orientation disper-
sion index (ODI) can be computed as 𝑂𝐷𝐼 = 2/𝜋 ⋅ arctan(1/𝜅) (Zhang et al.,
2012).

Given the elements described in the previous lines, the MC formulation of
the standard model is defined as

𝐸(𝐧, 𝜅, 𝜆∥, 𝜆⟂, 𝜆𝑟, 𝜙𝐼𝐶 , 𝜙𝐸𝐶 , 𝜙𝐶𝑆𝐹 ) =
𝒫(𝐧) ∗ [𝜙𝐼𝐶 ⋅ 𝐸𝐼𝐶 (𝜆∥, 𝐧) + 𝜙𝐸𝐶 ⋅ 𝐸𝐸𝐶 (𝜆∥, 𝜆⟂, 𝐧)] + 𝜙𝐶𝑆𝐹 ⋅ 𝐸𝐶𝑆𝐹 (𝜆𝑟) (5)

where ∗ is spherical convolution operator and the dependence on the acquisi-
tion parameters 𝑏 and 𝐆 has been omitted for the sake of readability. Several
constraints can be applied to the model given in Equation (5), among which the
most commons are:

• the sum of the signal fractions is unitary: 𝜙𝐼𝐶 + 𝜙𝐸𝐶 + 𝜙𝐶𝑆𝐹 = 1;

• the perpendicular diffusivity of the EC compartment is tortuous (Szafer
et al., 1995a,b), which in mathematical terms means

𝜆⟂ = 𝜙𝐸𝐶
𝜙𝐼𝐶 + 𝜙𝐸𝐶

⋅ 𝜆∥; (6)

• the parallel diffusivity of the IC and EC compartments is fixed (e.g. 𝜆∥ =
1.7 ⋅ 10−9𝑚2/𝑠 as in (Zhang et al., 2012));

• the radial diffusivity of the CSF compartment is fixed (e.g. 𝜆𝑟 = 3.0 ⋅
10−9𝑚2/𝑠 as in (Zhang et al., 2012)).

Recent studies questioned the validity of these constraints (Jelescu et al., 2016;
Lampinen et al., 2017; Dell’Acqua and Tournier, 2019).

As highlighted by the left hand side of Equation (5), the model depends on
eight parameters, where 𝐧 is two-dimensional, yielding 9 degrees of freedom, to
which one has to subtract the degrees of freedom covered by the constraints.
The remaining parameters can be estimated solving the minimization problem

𝑝∗ = argmin
𝑝

1
2 ∥

̂𝑆
̂𝑆0

− 𝐸(𝑝)∥
2

2
(7)

where 𝑝 is the parameter vector, ̂𝑆 is the acquired dMRI signal, ̂𝑆0 is the mean
𝑏 = 0 image and 𝐸(𝑝) is the realization of the forward model given in Equa-
tion (5). Fitting such parameters requires the acquisition of multi-shell data
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with at least one shell per compartment (Scherrer and Warfield, 2010). The
obtained parameters 𝑝∗ are the microstructural parameters that can finally be
analysed for clinical or research purposes. In practice, the fitted signal fractions
𝜙𝑖 will likely not sum to 1, as they absorb any discrepancies between the nor-
malised signal in the left hand side and the signal shapes in the left hand sides
of Equation (5), in particular when more than one image is acquired at 𝑏 = 0.

A thorough review on the variety of MC models of WM that can be defined
with the current state-of-the-art tools is the one of Fick et al. (2019), where
also the Dmipy package is presented. This software is the reference tool used
throughout this work for the study of microstructure. More recently, MC models
have been used to assess also the microstructural composition of the gray matter
(GM) (Ganepola et al., 2018; Fukutomi et al., 2019; Villalon-reina et al., 2020),
but the literature is still sparse and there is a lack of agreement on how to model
the GM with MC models.

The key operation behind the definition of MC models is the division of the
diffusion-weighted signal 𝑆 by the non-diffusion-weighted component 𝑆0, which
allows to retrieve the signal shape which is then modelled as the linear combi-
nation of the signal shape of the compartments that characterize the model. In
the next section we are going to question the applicability of this division by
𝑆0.

2.2. MC models do not account for T2 differences
As stated in the previous section and formalised in Equation (1), MC models

aim at fitting the signal shape 𝐸 as the ratio of the PGSE signal 𝑆 and the 𝑆0
amplitude. The implicit assumption that lies behind this formulation is that
the 𝑆0 by which the acquired signal is divided is the same for all the modelled
compartments. In particular, as the 𝑆0 image corresponds to the signal coming
from the non-diffusion-weighted spin-echo sequence, we know that its amplitude
depends on the echo time 𝑇 𝐸 and the repetition time 𝑇 𝑅 of the acquisition and
on the 𝑇1 and 𝑇2 times of the sample. The relationship between these quantities
reads as

𝑆0 ∼ [𝐻] ⋅ (1 − 𝑒−𝑇 𝑅/𝑇1) ⋅ 𝑒−𝑇 𝐸/𝑇2 (8)

where [𝐻] is the proton density in the sample. While in the formation of the 𝑆0
image the different 𝑇1 times of the tissues are negligible thanks to the length
of 𝑇 𝑅 (which is usually one order of magnitude longer than 𝑇 𝐸), tissues with
different 𝑇2 will generate sensibly different contrast in the image (Plewes, 1994;
Just and Thelen, 1988; Veraart et al., 2018). Figure 1 illustrates how this dif-
ference is visible in the 𝑆0 response of the WM and the CSF. These differences
are the result of the different contrast in 𝑇2-weighted images between the dif-
ferent compartments. In order to understand how this difference in the 𝑇2
impacts the signal-fraction estimation, consider the following example. Let a
voxel in the WM containing some partial volume of CSF, which is common in
the corpus-callosum near the ventricles. In particular, let’s assume that the
volume fractions are 𝑓𝑊𝑀 = 0.9 and 𝑓𝐶𝑆𝐹 = 0.1. The corresponding signal
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Figure 1: The figure shows the 𝑆0 response of the WM and of the CSF for twelve randomly
picked subjects from the HCP database. Values are obtained with the heuristic technique
of Dhollander et al. (2016) via Mrtrix3 (Tournier et al., 2019).

equation will be

𝑆 = 0.9 ⋅ 𝑆𝑊𝑀
0 ⋅ 𝐸𝑊𝑀 + 0.1 ⋅ 𝑆𝐶𝑆𝐹

0 ⋅ 𝐸𝐶𝑆𝐹 . (9)

As highlighted by Figure 1, the value of 𝑆𝐶𝑆𝐹
0 can be up to six times the one

of 𝑆𝑊𝑀
0 . Including this into our toy model, hence defining 𝑆𝐶𝑆𝐹

0 = 6 ⋅ 𝑆𝑊𝑀
0 ,

Equation (9) becomes

𝑆 = 0.9 ⋅ 𝑆𝑊𝑀
0 ⋅ 𝐸𝑊𝑀 + 0.6 ⋅ 𝑆𝑊𝑀

0 ⋅ 𝐸𝐶𝑆𝐹 (10)

which after dividing both sides of the equation by the composite 𝑆0 = 𝑓𝑊𝑀 ⋅
𝑆𝑊𝑀

0 + 𝑓𝐶𝑆𝐹 ⋅ 𝑆𝐶𝑆𝐹
0 becomes

𝑆
𝑆0

= 0.6 ⋅ 𝐸𝑊𝑀 + 0.4 ⋅ 𝐸𝐶𝑆𝐹 (11)

yielding the signal fractions 𝜙𝑊𝑀 = 0.6 and 𝜙𝐶𝑆𝐹 = 0.4. This exampled showed
how signal fractions and volume fractions are not interchangeable concepts when
it comes to modelling multiple tissues having different 𝑆0 responses. Not taking
into account this differences can lead to significant misrepresentations of the tis-
sue composition, as showed in the previous example and in the results reported
in Section 4.

2.3. Leveraging multi-TE sequences in Multi-Compartment modelling of the
dMRI signal

If the problem of MC models is that they do not distinguish the 𝑆0 of different
tissues because of the limitations of single-TE acquisition sequences like the one
considered in the previous sections, the solution could simply be to use multi-TE
(MTE) acquisitions, despite the required longer acquisition time. This idea has
been investigated in recent works of Veraart et al. (2018), Lampinen et al. (2019,
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2020), and Gong et al. (2020). These works are all based on the assumptions
that the volume fraction of a tissue can not be computed with conventional
multi-shell dMRI data acquired with a single echo time.

The TE-dependent Diffusion Imaging (TEdDI) technique proposed by Ver-
aart et al. (2018) technique considers a rewriting of the MC equation that
directly includes the contribution of the 𝑇2 time of the tissue modelled by
the compartment and the 𝑇 𝐸 of the acquisition into the volume fraction of
each compartment. The same principles are followed in the more recent works
of Lampinen et al. (2019, 2020) and of Gong et al. (2020). For the sake of
coherence, we adapted the original notation used in the articles. The TEdDI
model is designed to account for the 𝑇 𝐸/𝑇2 effects in the same way as in the
𝑆0-image formation process described in Equation (8), obtaining

𝑆(𝑏, 𝑇 𝐸, 𝑇 𝑖
2, 𝐩𝑖) = 𝑆0 ⋅

𝑁𝑐

∑
𝑖=1

𝜙𝑖 ⋅ 𝑒−𝑇 𝐸/𝑇 𝑖
2 ⋅ 𝐸𝑖(𝑏, 𝐩𝑖),

𝑁𝑐

∑
𝑖=1

𝜙𝑖 = 1 (12)

where 𝑒−𝑇 𝐸/𝑇 𝑖
2 plays the role of the compartment-specific contribution of the 𝑇2

time and 𝑆0 is the proton density- and 𝑇1-weighted image, which corresponds
to Equation (8) for 𝑇 𝐸 = 0. Notice that the 𝑇2 time of each compartment is
an independent variable of the model, hence it must be estimated in the fitting
process. This requires the acquisition of multi-shell (to allow the use of multiple
compartments) and multi-TE (to avoid degeneracy in the joint fitting of 𝜙𝑖 and
𝑇 𝑖

2) dMRI data. The volume fraction of each compartment is defined by Veraart
et al. (2018) and Gong et al. (2020) as follows:

𝑓𝑖(𝑇 𝐸) = 𝜙𝑖 ⋅ 𝑒−𝑇 𝐸/𝑇 𝑖
2

∑𝑗 𝜙𝑗 ⋅ 𝑒−𝑇 𝐸/𝑇 𝑗
2

(13)

where one should notice how the volume fraction 𝑓𝑖 depends on the echo time
𝑇 𝐸. Conversely, Lampinen et al. (2019, 2020) opted for defining the volume
fractions as

𝑓𝑖 = 𝜙𝑖
∑𝑗 𝜙𝑗

, (14)

which corresponds to the normalisation of the 𝜙𝑖 retrieved from fitting the model
given in Equation (12). The formulation provided in Equation (12) can be
regarded as the multi-TE standard model of the dMRI signal in the human
brain, in analogy with what reported by Novikov et al. (2019) (see Equation (5)).

Close variants of the MTE standard model have already been used in the
previously cited works of Veraart et al. (2018), Lampinen et al. (2019, 2020)
and Gong et al. (2020) to investigate the microstructure of the white matter of
the brain. They showed that particular instances of the MTE standard model
allow to assess how the 𝑇2 time of the acquired sample is formed by the different
compartments. Also, with MTE-MC models they showed that the concept
of volume fraction should not just be abandoned in favor of the concept of
signal fraction. Its straightforward interpretability is of much appeal in brain
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pathology research (Suzuki et al., 2017; Hara et al., 2018; Vestergaard-Poulsen
et al., 2007), where biomarkers are not only quantified but also contextualized,
related to other non-microstructural information and interpreted.

Some limitations come with the use of such formulation. First, the volume
fractions defined in Equation (13) are 𝑇 𝐸-dependent. This poses severe lim-
itations in terms of usability and prevents from having a single index for the
volume fraction of a compartment, which intuitively should be a characteristic
of the sample, not of the acquisition. An additional limitation of MTE-MC
modelling that we highlight is of methodological nature. Classical MC models
are representations of the dMRI signal that rely on standard multi-shell acqui-
sitions designed in a HARDI fashion which have been used in the last 15 years
for the study of both microstructure and tractography-based structural connec-
tivity. The MTE framework does have the merit to correct the signal/volume
fraction ambiguity, but this is achieved by increasing the complexity of the ac-
quisition, which requires multiple 𝑇 𝐸 to be considered. For this reason, the
MTE framework is not to be considered an alternative to the MC formulation
but rather a new method for the estimation of microstructural parameters that
spans the whole range from acquisition design to post-processing, preventing
from correcting the estimation of volume fractions on datasets acquired in the
past.

2.4. Multi-Tissue Multi-Compartment models
The standard formulation of MC models includes a normalization of the

dMRI signal 𝑆0 by its non-diffusion-weighted component 𝑆0. This operation is
performed in order to retrieve the shape 𝐸 of the acquired signal. The shape
is then modelled as a linear combination of signal shapes of different compart-
ments. In Section 2.2 we showed how this formulation hides the assumption that
all the tissues modelled by the compartments have the same 𝑇2 time (hence 𝑆0),
highlighting how this is not true a-priori. The solutions to the multi-tissue prob-
lem proposed in the literature have the remarkable limitation of requiring the
acquisition of multi-TE data to be used.

A solution to a similar problem has been proposed by Jeurissen et al. (2014)
in the context of fODF estimation for multi-shell data, where the shell- and
tissue-specific signal amplitude is leveraged in order to rescale the fODF that
describes the signal shape of each considered tissue. This includes the response
of each tissue in the 𝑏 = 0 shell, hence the 𝑆0 of the tissues. The technique
we are proposing builds on top of this idea. We highlight how similar solutions
have been exploited also in the estimation of single-shell single-tissue response
functions for the estimation of fODFs (Descoteaux et al., 2007; Tournier et al.,
2007).

Let 𝑁𝑐 be the number of compartments included in the model we want to
design and let 𝑆𝑖

0 be the 𝑆0 response of compartment 𝑖. We define the Multi-
Tissue Multi-Compartment (MT-MC) model as follows:

𝑆 (𝑏, 𝑇 𝐸) =
𝑁𝑐

∑
𝑖=1

𝑓𝑖 ⋅ 𝑆𝑖
0(𝑇 𝐸) ⋅ 𝐸𝑖 (𝑏, p𝑖) (15)
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where 𝑓𝑖 is the volume fraction of compartment 𝑖 and 𝑆𝑖
0(𝑇 𝐸) is the 𝑆0 response

of the tissue modelled by compartment 𝑖. Notice that Equation (15) is equivalent
to Equation (1) whenever 𝑆𝑖

0 = 𝑆𝑗
0 ∀ 𝑖, 𝑗, namely when all the tissues described

by the MT-MC model have equal 𝑆0 responses.
In general, the signal fraction 𝜙𝑖 is not equivalent to the volume fraction 𝑓𝑖

of the tissue modelled by the compartment. The only case in which they are
equivalent is when all the tissues modelled by the MT-MC model have equal
𝑆0 responses. In that case, Equation (15) reduces to (1) after multiplying both
the sides by 𝑆0. For this reason we say that 𝜙𝑖 is a biased estimator of 𝑓𝑖. One
could argue that the relationship between the signal fractions 𝜙𝑖 and the vol-
ume fractions 𝑓𝑖 is just a rescaling, in which case the volume fractions could be
retrieved with a simple correction that takes into account the 𝑆0 signal and the
𝑆𝑖

0 response of the compartment. This is always true, except when the volume
fraction of the compartment is an independent variable in some other compart-
ment. Using the tortuosity constraint to define the perpendicular diffusivity of
the extra-axonal compartment, we establish a non-linear dependence between
the compartmental fraction of the intra- and extra-cellular compartments. In
this way, the diffusivity of the extra-axonal compartment, which has a non-
linear relationship with the model, is defined as in Equation (6), forcing the
intra- and extra-cellular signal/volume fractions to be non-linear parameters of
the model. For instance, if the intra- and extra-axonal compartments have dif-
ferent 𝑆0, the perpendicular diffusivity of the EC computed with the tortuosity
constraint defined on the signal fractions will be different from the one obtained
from the volume fractions. As a consequence, two models defined with the
two possible tortuosity constraints are not interchangeable and rescaling one’s
volume fractions does not yield the other’s signal fractions.

2.4.1. Fitting MT-MC models
The fitting of a MT-MC model is designed in a fashion similar to the one

of MC models. Here we propose two different approaches. The first is a di-
rect fitting that provides only the volume fractions (VF), while the second is
a two-step strategy that builds on top of the fitting of the signal fractions and
yields both the signal and the volume fractions (SVF), allowing to re-process
in a MT fashion results that had previously been obtained on standard MC
models. Given the acquired dMRI signal 𝑆, the corresponding 𝑆0, the number
of compartments 𝑁𝑐, the signal shape 𝐸𝑖(𝐩𝑖) of compartment 𝑖 depending on
the parameter vector 𝐩𝑖 and the compartment-specific signal amplitude 𝑆𝑖

0, the
fitting can be performed in the two following ways.

VF. The first approach directly fits the volume fractions by solving a least
squares problem with respect to the microstructural parameters 𝑓𝑖 and 𝐩𝑖:

𝑓∗, 𝑝∗ = argmin
𝑓𝑖,𝑝𝑖

∥𝑆 −
𝑁𝑐

∑
𝑖=1

𝑓𝑖 ⋅ 𝑆𝑖
0 ⋅ 𝐸𝑖(𝐩𝑖)∥

2

2

(16)
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which can be solved with ordinary inverse-problem solvers. Here, the forward
model is the one given in Equation (15). The procedure yields the volume
fractions (VF) of the compartments.

SVF. The second approach extracts the volume fractions after fitting the signal
fractions 𝜙𝑖 and the microstructural parameters 𝐩𝑖 from the MC formulation
of Equation (5). The volume fractions are retrieved as a rescaling of the signal
fractions. The described procedure reads as follows:

1. Solve the associated MC problem:

𝜙∗, 𝐩∗ = argmin
𝜙𝑖,𝐩𝑖

∥ 𝑆
𝑆0

−
𝑁𝑐

∑
𝑖=1

𝜙𝑖 ⋅ 𝐸𝑖(𝐩𝑖)∥
2

2

(17)

where the product of the minimization problem is the signal fraction 𝜙𝑖
and the parameter vector 𝐩𝑖 of each compartment 𝑖;

2. Fix the fitted non-signal-fraction parameters in the MT-MC model. At
this point the volume fractions are not related to each other (or to other
compartments in general) and it is therefore possible to estimate them by
rescaling the signal fractions. The rescaling is the one suggested by the
comparison of the coefficients that multiply the signal shapes in Equa-
tions (1) and (15) and reads as follows:

𝑓𝑖 ⋅ 𝑆𝑖
0 = 𝜙𝑖 ⋅ 𝑆0

𝑓𝑖 = 𝜙𝑖 ⋅ 𝑆0
𝑆𝑖

0

(18)

yielding a simple operation that allows to retrieve volume fractions from
signal fractions once the 𝑆0 of each compartment is known. Both the
signal and volume fractions of each compartment are returned.

To employ either of the two fitting strategies, extra caution must be taken
towards the use of the tortuosity constraint. The intra- and extra- axonal frac-
tions used for the definition of the perpendicular diffusivity can be either the
signal fractions or the volume fractions of the compartments, i.e.,

𝜆⟂ = 𝜙𝐸𝐶
𝜙𝐼𝐶 + 𝜙𝐸𝐶

𝜆∥ or 𝜆⟂ = 𝑓𝐸𝐶
𝑓𝐼𝐶 + 𝑓𝐸𝐶

𝜆∥. (19)

The choice influences the whole model design and can not be reverted in the
fitting process. In particular, switching between signal fractions and volume
fractions with the 𝑆0/𝑆𝑖

0 rescaling must be done keeping in mind that the tor-
tuous parameters have been obtained using a specific type of fraction, and the
results should be interpreted accordingly. In an effort to keep the notation co-
herent with the previous literature, we will say that whenever the tortuosity
constraint is defined using the volume fractions 𝑓𝑖 we will have a MT-corrected
tortuosity constraint.
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The SVF strategy is the one implemented in Dmipy (Fick et al., 2019), which
to our knowledge is the only available framework for generalised MC modelling
that includes the definition of MT-MC models. As far as specific instances
of MT-MC models are concerned, the multi-shell multi-tissue CSD technique
of (Jeurissen et al., 2014) is implemented in Mrtrix3 (Tournier et al., 2019).

2.5. The MT Standard Model of dMRI in White Matter
In this Section, we define a MT generalization of the standard model of

dMRI in WM as described by Novikov et al. (2019). We recall that the model
includes a stick and a zeppelin compartment for the intra- and extra-cellular
diffusivity respectively and a ball that accounts for the isotropic diffusivity in
the CSF and other isotropic structures. Let 𝑆𝑖

0 be the 𝑆0 response of the tissue
modelled by each compartment 𝑖 and 𝒫 ∶ 𝕊2 → ℝ+ the orientation distribution.
The MT standard model of dMRI in WM is given by

𝑆(𝐧, 𝜅, 𝜆∥, 𝜆⟂, 𝜆𝑟, 𝑓𝐼𝐶 , 𝑓𝐸𝐶 , 𝑓𝐶𝑆𝐹 ) =

𝑃(𝐧) ∗ ⎛⎜⎜
⎝

𝑓𝐼𝐶 ⋅ 𝑆𝐼𝐶
0 ⋅ 𝐸𝐼𝐶 (𝜆∥, 𝐧)⏟⏟⏟⏟⏟⏟⏟⏟⏟
intra-axonal

+ 𝑓𝐸𝐶 ⋅ 𝑆𝐸𝐶
0 ⋅ 𝐸𝐸𝐶 (𝜆∥, 𝜆⟂, 𝐧)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

extra-axonal

⎞⎟⎟
⎠

+ 𝑓𝐶𝑆𝐹 ⋅ 𝑆𝐶𝑆𝐹
0 ⋅ 𝐸𝐶𝑆𝐹 (𝜆𝑟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶𝑆𝐹
(20)

where the compartment specific parameters are defined as in Section 2.1. Three
scenarios can be described with this model:

• 3-tissue model - The three compartments describe tissues with distinct 𝑆0
responses. This corresponds to the explicit case of Equation (20).

• 2-tissue model - The two anisotropic compartments model tissues whose
𝑆0 is equal. Typically, it is the 𝑆0 of the WM, so we say that 𝑆𝐼𝐶

0 =
𝑆𝐸𝐶

0 = 𝑆𝑊𝑀
0 and 𝑆𝑊𝑀

0 ≠ 𝑆𝐶𝑆𝐹
0 .

• 1-tissue model - In absence of any prior knowledge on the 𝑆0 of the three
tissues, they are considered all equal. We denote this as 𝑆𝐼𝐶

0 = 𝑆𝐸𝐶
0 =

𝑆𝐶𝑆𝐹
0 = 𝑆0 where 𝑆0 is the average across the images acquired at 𝑏 =

0 𝑠/𝑚𝑚2.
Notice that the 1-tissue scenario is mathematically equivalent to the single-tissue
(ST) standard model of Equation (20), hence in that case the volume fractions
are equivalent to the signal fractions.

3. Methods

3.1. Dataset
3.1.1. Synthetic data

The simulated dataset is obtained from the forward model given by Equa-
tion (20) and generated with Dmipy (Fick et al., 2019). A total of 10000 voxels
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Parameter Min Max
𝑓𝐼𝐶 0.5 0.8
𝑓𝐸𝐶 0.3 0.5
𝑓𝐶𝑆𝐹 0.3 0.7
𝑇 𝐼𝐶

2 0.080𝑠 0.100𝑠
𝑇 𝐸𝐶

2 0.050𝑠 0.070𝑠
𝑇 𝐶𝑆𝐹

2 0.900𝑠 1.100𝑠
𝑂𝐷𝐼 0.02 0.99

Table 1: For each parameter used in the definition of the forward model of the synthetic
dataset we report the minimum and maximum value of the uniform distribution from which
it was drawn.

was simulated on a multi-shell acquisition scheme identical to the one that
will be considered on the real dataset, which includes a TE of 0.0895𝑠 and
is composed of 288 samples subdivided in 18 points at 𝑏 = 0𝑠/𝑚𝑚2 and 90
diffusion-weighted samples obtained with uniformly distributed directions at
𝑏 = 1000𝑠/𝑚𝑚2, 𝑏 = 2000𝑠/𝑚𝑚2 and 𝑏 = 3000𝑠/𝑚𝑚2 for a total of 3 diffusion-
weighted shells plus the 𝑏 = 0 shell. The direction of the two anisotropic com-
partments was set to 𝐧 = [0, 0] ∈ 𝕊2 for all the voxels. The 𝑇2 time of each
tissue was randomly sampled from a uniform distribution in the range specified
in Table 1. The corresponding 𝑆0 was then computed as 𝑆0 = 𝑐 ⋅ 𝑒−𝑇 𝐸/𝑇2 where
𝑐 is a scaling parameter that positions the value of 𝑆0 in a realistic range and
we tuned to 𝑐 = 1400. The ODI of the Watson distribution was sampled from
a uniform distribution in the range specified in Table 1. Finally, the volume
fractions of each compartment were randomly generated from a uniform distri-
bution in the range specified in Table 1, then normalized in such a way that
their sum was equal to 1. The choice of each range was tuned to mimic the
single-bundle configuration in the WM that one expects to be able to model
with the considered formulation. An additive rician noise was added to the
simulated data to obtain a signal-to-noise ratio equal to 30.

3.1.2. Real data
From the Human Connectome Project (HCP) database we considered three

randomly picked subjects2 available at the Connectome Coordination Facil-
ity (Van Essen et al., 2012; Sotiropoulos et al., 2013). For each subject a to-
tal of 288 images is acquired, subdivided in 18 volumes at 𝑏 = 0𝑠/𝑚𝑚2 and
90 diffusion-weighted volumes obtained at uniformly distributed directions at
𝑏 = 1000𝑠/𝑚𝑚2, 𝑏 = 2000𝑠/𝑚𝑚2 and 𝑏 = 3000𝑠/𝑚𝑚2 for a total of 3 shells.
All subjects provided written informed consent, procedures were approved by
the ethics committee and the research was performed in compliance with the
Code of Ethics of the World Medical Association (Declaration of Helsinki).

To our knowledge, current state-of-the-art techniques do not allow to esti-

2ID subject 1: 100307, ID subject 2: 100408, ID subject 3: 101107.
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mate subject-specific 𝑆0 responses of the IC and EC compartments, while the 𝑆0
of the CSF compartment can be estimated together with 𝑆𝑊𝑀

0 via techniques
such as the heuristic approach of Dhollander et al. (2016). For this reason, we
analysed the aforementioned data with a 1-tissue and a 2-tissue model where
𝑆𝑊𝑀

0 and 𝑆𝐶𝑆𝐹
0 have been estimated with the Dhollander technique. The ob-

tained values of 𝑆0 are displayed in Figure 1 and reported in Table 2.

Subject 𝑆𝑊𝑀
0 𝑆𝐶𝑆𝐹

0
#1 3024 12740
#2 2794 13531
#3 2811 12598

Table 2: 𝑆0 response of the WM and of the CSF of the three studied HCP subjects. Values
are obtained with the heuristic technique of Dhollander et al. (2016) via Mrtrix3 (Tournier
et al., 2019).

3.2. Model fitting
The model considered in the performed experiments is the MT standard

model defined in the previous section with fixed 𝑆𝑖
0 and three additional con-

straints:

• The fiber orientation distribution is modelled with a Watson distribution
of axis 𝐧 and fixed ODI.

• The perpendicular diffusivity is subject to the tortuosity constraint, hence

𝜆⟂ = (1 − 𝑓𝐼𝐶
𝑓𝐼𝐶 + 𝑓𝐸𝐶

) ⋅ 𝜆∥. (21)

• The parallel and radial diffusivity are fixed to 𝜆∥ = 1.7 ⋅ 10−9𝑚2𝑠−1 and
𝜆𝑟 = 3.0 ⋅ 10−9𝑚2𝑠−1 respectively.

The free parameters that are left are [𝑓𝐼𝐶 , 𝑓𝐸𝐶 , 𝑓𝐼𝑆𝑂, 𝐧, 𝜅], where we recall
that the unit vector 𝐧 is expressed in spherical coordinates [𝜃, 𝜑]. the fitting was
performed with Dmipy (Fick et al., 2019, version 1.0.3) using the SVF procedure
described in Section 2.4.1 in order to retrieve both the signal fractions and the
volume fractions to be compared.

The difference between the absolute errors obtained with each instance of
the model is tested with a Wilcoxon signed-rank test (Wilcoxon, 1945) with
𝛼 = 0.05 and measured with the rank biserial correlation, i.e., an effect size
measure in the [0, 1] range.

4. Results

4.1. Synthetic data
We fitted the volume fractions ̂𝑓𝑖 of each compartment with the SVF pro-

cedure explained in Section 2.4.1 with the 1-tissue, 2-tissue and 3-tissue model,
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both with standard and MT-corrected tortuosity. The latter is actually differ-
ent from the standard tortuosity only when the 3-tissue model is considered.
When the 2-tissue model is employed, the 𝑆𝑊𝑀

0 response is computed as the
weighted average of the 𝑆0 response of the IC and EC compartments, hence

𝑆𝑊𝑀
0 = 𝑓𝐼𝐶 ⋅ 𝑆𝐼𝐶

0 + 𝑓𝐸𝐶 ⋅ 𝑆𝐸𝐶
0

𝑓𝐼𝐶 + 𝑓𝐸𝐶
. (22)

Once each ̂𝑓𝑖 was estimated, we computed the absolute fitting error ∣𝑓𝑖 − ̂𝑓𝑖∣.
The difference between the absolute errors obtained with each model is tested
with a Wilcoxon signed-rank test (Wilcoxon, 1945) with 𝛼 = 0.05 and measured
with the rank biserial correlation, i.e., an effect size measure in the [0, 1] range.
In Figure 2 we report the boxplot of the distribution of the absolute fitting error
across 10000 simulations (top row) and the rank biserial correlation (bottom
row). As we expected, the signal fractions retrieved by the 1-tissue model

Figure 2: The first row shows the boxplot of the absolute error of the estimated volume frac-
tion of each compartment computed on the synthetic dataset. The 1T categorical variable
corresponds to the 1-tissue model, 2T to the 2-tissue, 3T to the 3-tissue with standard tortuos-
ity and 3T MTT to the 3-tissue model with MT-corrected Tortuosity (MTT). The second row
shows, for each compartment, the rank biserial correlations measuring the difference between
the absolute errors of each model obtained from a Wilcoxon test with 𝛼 = 0.05: the lower
the correlation value, the higher the difference between the underlying distributions. Only
statistically significant results are reported.

are biased estimates of the volume fractions retrieved with the 2-tissue and 3-
tissue model. The bias in the estimation of the volume fraction of the CSF
compartment is four times bigger than the one of the IC and EC compartment.
This is coherent with the fact that the 𝑆0 of the CSF compartment is much
higher than the one of the IC and EC compartments. The error decreases

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.01.29.428843doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428843
http://creativecommons.org/licenses/by-nc-nd/4.0/


importantly when the 2-tissue model is used. Here, the IC volume fraction
has absolute error comparable to the one of the 3-tissue models. The first
factor that could induce such phenomenon is the definition of 𝑆𝑊𝑀

0 , which by
design of the experiment will be closer to the 𝑆0 of the IC than to the one of
the EC compartment (𝑓𝐼𝐶 > 𝑓𝐸𝐶 as reported in Table 1). This induces the
estimated EC volume fraction to be farther from the ground truth than the
one of the IC compartment. This difference is reflected in the absolute error
of the estimated volume fraction of the CSF compartment, which is affected by
the presence of the non-zero perpendicular diffusivity of the EC compartment.
Nevertheless, the estimation error of the CSF volume fraction is much lower
than in the 1-tissue model thanks to the inclusion of the specific 𝑆𝐶𝑆𝐹

0 in the
formulation. Finally, the 3-tissue model retrieves volume fractions that are in
line with the ground truth ones. A notable aspect concerns the inclusion of the
MTT correction, which is shown to significantly improve the estimation of the
IC volume fraction. This improvement corresponds to a deterioration (albite
lower in scale) of the estimation of the EC volume fraction. The estimation of
the CSF volume fraction does not change significantly when the MTT correction
is employed.

4.2. Real data
For each model, we fitted the signal and volume fractions with the SVF

technique. Figure 3 shows the distribution of the signal fraction and volume
fraction of each compartment in the WM for three HCP subjects. The WM
mask was computed with FSL fast from the 𝑇1-weighted image with 1.25𝑚𝑚
voxel size available at the HCP database, then dilated by one voxel with Mr-
trix3’s (Tournier et al., 2019) maskfilter command to smooth the boundary.
For each subject, the difference between the distribution of the signal and the
volume fractions is tested with a Wilcoxon signed-rank test (Wilcoxon, 1945)
with 𝛼 = 0.05 and measured with the rank biserial correlation, i.e., an effect
size measure in the [0, 1] range. The results of this test are reported in Table 3.

We recall that we considered a 2-tissue model by compressing the IC and
EC compartments in a unique block that describes the WM tissue. The dis-
tribution of the volume fractions of the IC and EC compartments showed in
Figure 3 is right-shifted with respect to the distribution of the corresponding
signal fractions. On the contrary, the distribution of CSF volume fractions in
the WM mask is shifted towards lower values with respect to the corresponding
signal fractions. This means that the signal fraction underestimates the pres-
ence of the intracellular compartment in favour of the CSF compartment. This
behaviour is consisted in all the tested subjects.

This is coherent with the proportion between 𝑆𝑊𝑀
0 and 𝑆𝐶𝑆𝐹

0 , as the former
is typically lower than the acquired 𝑆0 and the latter is higher. The results
displayed in Figure 4 show how, within the WM mask, the WM volume fraction
is globally higher than the WM signal fraction. Also, the absolute difference
between the two exhibits some uniformity within the considered sample. The
macroscopic differences between the left and right hemispheres present in all the
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Figure 3: The displayed data are obtained three subjects of the HCP database (solid lines,
dashed lines, and dotted lines). Each panel shows the distribution of the signal fraction and the
volume fraction of the IC, EC and CSF compartments respectively. The blue lines correspond
to signal fractions and the orange lines to volume fractions.

Subject IC EC CSF
𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

#1 0.243 0.0 0.036 0.0 0.002 0.0
#2 0.221 0.0 0.142 0.0 0.002 0.0
#3 0.197 0.0 0.100 0.0 0.001 0.0

Table 3: For each subject (1, 2, 3) and compartment (IC, EC, CSF), the table displays the
value of the rank biserial correlation 𝑟 and the corresponding p-value 𝑝 computed obtained
from a Wilcoxon signed rank test (Wilcoxon, 1945) with 𝛼 = 0.05. The showed values
are computed with Scipy (Harris et al., 2020) and all the performed comparisons exhibit
statistically significant differences.

three subjects may be due to some bias field effect that we did not include in
the model and survived the minimal preprocessing of the data (Glasser et al.,
2013).

5. Discussion

In this paper we analysed how multi-compartment models of brain tissue
microstructure can be adapted to account for the presence of tissues having
different 𝑇2 relaxation times. In particular, we focused on the capability of
such models to estimate the volume fraction of each tissue in the WM. We
proposed a solution based on single-TE dMRI data, in contrast with the state-
of-the-art techniques that require multi-TE dMRI data. Our results on both
synthetic and in-vivo data show that signal fraction and volume fraction are
not interchangeable concepts in the context of MC microstructure modelling.
The shift of paradigm from signal fractions to volume fractions has already
been shown to improve the estimation of fODFs (Jeurissen et al., 2014) and
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Figure 4: Signal fractions (first column), volume fractions (second column), and their absolute
difference (third column) for three subjects of the HCP database. Brighter colors correspond
to higher fractions (in the first two columns) and errors (in the third column). Voxels shown
in orange/red and black correspond to decreasingly lower values of the same fractions and
errors.

in this work we transferred the same approach to the field of MC models of
brain tissue microstructure, leveraging the differences between the 𝑆0 responses
of each modelled tissue.

Overall, the presented results yielded an empirical confirm of the theoreti-
cal considerations made in this work. In particular, the following aspects are
highlighted:

• With single-TE dMRI data it is possible to retrieve tissue-specific volume
fractions. Under the assumption that the IC and EC compartments have
equal 𝑆0 response, techniques like the one of Dhollander et al. (2016)
allow to define the 2-tissue model used in this section, opening the door
to a better estimation of the compartment-specific volume fractions. This
is made possible by the MT-version of the standard model of dMRI in
the WM that we presented in this work. It models multiple tissues in a
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MC fashion without requiring multi-TE acquisition, which are conversely
necessary in order to use other state-of-the-art models.

• Signal fractions and volume fractions are not equivalent in general. This
fact has considerable implications in clinical context. Previous studies that
drew conclusions based on the idea of inspecting volume fractions with
single-TE dMRI need to be re-interpreted in light of the fact that what
they are based on is the signal fraction of the tissues and not their volume
fraction. How those differences are expressed in the presence of pathology
or group differences remains unexplored and needs to be assessed in future
studies.

We designed a multi-tissue version of the standard model of dMRI in the
WM, which allows to separate the contribution of the intra-axonal, the extra-
axonal and the CSF compartments and estimate the corresponding three volume
fractions. The results reported in Figure 2 suggest that 2-tissue and 3-tissue
models are always preferable to the 1-tissue model. A bigger improvement is
obtained by considering two tissues instead of one, compared to the shift from
the 2-tissue to the 3-tissue model. This is due to the proportion between the
𝑆0s of each tissue, which sees 𝑆𝐶𝑆𝐹

0 >> 𝑆𝑊𝑀
0 , with 𝑆𝐼𝐶

0 > 𝑆𝐸𝐶
0 but the latter

difference is lower than the former (Jeurissen et al., 2014).
A remarkable property of the proposed MT-MC model is that not only it

can be straightforwardly fitted on single-TE dMRI data (VF strategy), but it
can also re-use the results obtained with the MC version of the model (which in
principle would have returned only the signal fraction of each compartment) and
yield the volume fractions by means of an elementary rescaling operation (SVF
strategy). While employing the SVF solution, extra care must be devoted to the
use of the tortuosity constraint. Rescaling signal fractions obtained using the
non-MT-corrected tortuosity constraint yields the volume fractions of a model
where the perpendicular diffusivity of the EC compartment has been obtained
using signal fractions, configuring an ambiguous (if not degenerate) solution.

The proposed model strongly relies on the external estimation of the 𝑇2 or
the 𝑆0 of the modelled tissues. Our experiments on real data leveraged the
heuristic of Dhollander et al. (2016) to retrieve the 𝑆0 of the WM and the CSF.
Understanding how this choice affects the estimation of volume fractions is out
of the scope of this work, but the raised question suggests that further efforts
should be devoted to researching techniques that estimate tissue-specific 𝑆0
responses using single-TE data. Additionally, analysing the proportion between
the 𝑆0 of each tissue in a large cohort of subjects could highlight patterns that
could be exploited. If hypothetically the 𝑇2 relaxation time of extra-axonal
compartment was showed to be a constant fraction of the 𝑇2 of the intra-axonal
compartment, this could straightforwardly be encoded in the model.

The difference between signal fractions and volume fractions has implications
also in the field of tractography filtering (Frigo et al., 2020a), where a coefficient
is assigned to each streamline in a tractogram weighing its contribution to the
formation of the dMRI signal. In the COMMIT framework (Daducci et al.,
2015) these coefficients are the signal fractions associated to each streamline.
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The model can be easily adapted to obtain the volume fraction associated to
each streamline, in particular in the context of the recent work of Barakovic
et al. (2020), where streamlines are associated to bundle-specific 𝑇2 times.

6. Conclusion

In this work, we analyzed the brain tissue microstructure estimation via
multi-compartment models of dMRI. We tackled the known limitation concern-
ing the inability of state-of-the-art multi-compartment models to describe mul-
tiple tissues having distinct 𝑇2 relaxation times. We showed how what has
always been considered the volume fraction of a certain tissue is actually the
signal fraction of the same tissue. State-of-the-art techniques for overtaking such
limitation rely on multi-TE dMRI data. Here, we introduced the Multi-Tissue
Multi-Compartment models of dMRI, which allow to model multiple tissues at
the same time using single-TE dMRI data. Moreover, we formulated a gener-
alised multi-tissue modelling framework that encompasses both single-TE and
multi-TE multi-tissue models. Our results indicate that with single-TE dMRI
data alone one can model multiple tissues at the same time using the proposed
multi-tissue multi-compartment models.
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