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ABSTRACT 
T-cells are sentinels of adaptive cell-mediated immune responses. T-cell activation, proliferation 
and differentiation involves metabolic reprogramming involving the interplay of genes, proteins and 
metabolites. Here, we aim to understand the metabolic pathways involved in the activation and 
functional differentiation of human CD4+ T-cell subsets (Th1, Th2, Th17 and iTregs). We combined 
genome-scale metabolic modeling, gene expression data, targeted and non-targeted lipidomics 
experiments, together with in vitro gene knockdown experiments and showed that human CD4+ T-
cells undergo specific metabolic changes during activation and functional differentiation. In 
addition, we identified and confirmed the importance of ceramide and glycosphingolipid synthesis 
pathways in Th17 differentiation and effector functions. Finally, through in vitro gene knockdown 
experiments, we substantiated the requirement of serine palmitoyl transferase (SPT), a de novo 
sphingolipid pathway in the expression of proinflammatory cytokine (IL17A and IL17F) by Th17 
cells. Our findings may provide a comprehensive resource for identifying CD4+ T-cell-specific 
targets for their selective manipulation under disease conditions, particularly, diseases 
characterized by an imbalance of Treg / Th17 cells. Our data also suggest a role for elevated levels 
of ceramides in conditions comorbid with these diseases, e.g., obesity and insulin resistance. 

 

KEYWORDS: CD4+ T-cells; Ceramides; Gene expression; Genome-scale metabolic modeling; 
Glycosphingolipid metabolism; Lipid metabolism; Lipidomics; Metabolic pathways; Sphingolipids.  
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INTRODUCTION 

CD4+ T-cells play a central role in the adaptive immune system. They orchestrate the immune 
responses and mediate protective immunity against pathogens [1]. An aberrant T-cell response is 
associated with cancer and autoimmune disorders [2, 3]. Circulating naïve T helper (Th) cells are 
metabolically quiescent and predominantly use oxidative phosphorylation (OXPHOS) to fuel their 
biological processes [4-7]. When exposed to antigens, naïve T-cells undergo activation, clonal 
expansion and differentiation to various effector (Teff) cells including Th1, Th2, Th17 and regulatory 
T-cells (Tregs), each driving various aspects of the immune responses [8, 9]. 

Upon activation, T-cells undergo metabolic reprogramming in order to provide energy and 
biosynthetic intermediates for growth and effector functions [5, 7, 10-12]. At this stage, aerobic 
glycolysis is augmented (the Warburg effect), which increases the activities of glycolytic enzymes. 
Their extracellular uptake of glucose increases by 40-50% [13], which, in turn, enhances their 
lactate production. Concomitantly, oxygen (O2) intake is increased by ~60% [14], whilst the 
utilization of glucose via OXPHOS is reduced [4]. Activated T-cells induces a metabolic sensor, i.e., 
mammalian target of rapamycin (mTOR), to either differentiate into Teff cells, or become suppressive 
Treg cells [15]. mTOR signaling induces the transcription factors Myc and HIF-1a, driving the 
expression of genes important for glycolysis and glutaminolysis as well as regulate STAT signaling 
for T-cell differentiation [16].  

There is increasing evidence that metabolic reprograming may convert the proinflammatory Th17 
phenotype towards the anti-inflammatory Treg phenotype in pathological disease condition [15, 
17]. Furthermore, dysregulation of such metabolic reprogramming of T-cells can impair their clonal 
expansion [6, 7]. Depletion of glutamine in in vitro culture markedly impairs proliferation and 
cytokine production of T-cells [18]. Also, increased intracellular L-arginine is linked to metabolic 
regulation, survival and the anti-tumor activity of T-cells [19]. T-cell subsets such as Th1, Th2, and 
Th17, require acetyl-CoA carboxylase I (ACC1) for maturation [5]. In mice, T-cell-specific ACC1 
deletion, or inhibition by inhibitor Soraphen A, prevents Th17 differentiation and cell-mediated 
autoimmune disease development [20]. 

Taken together, there is clear evidence that T-cell activation, differentiation and effector function is 
intrinsically linked to metabolic pathways [5, 7, 10-12, 21-23]. However, not much is known about 
the common and specific metabolic signatures, in human CD4+ T-cells and their functional subsets. 
Such knowledge could enable the selective manipulation of metabolism in these cells, with 
relevance to specific disease conditions [24].  

Genome-scale metabolic models (GEMs) are computational frameworks which link the genes, 
proteins / enzymes, metabolites and pathways found in cells, tissues, organs, and organisms [25-
28]. Over the past decade, genome-scale metabolic modeling (GSMM) has emerged as a powerful 
tool to study metabolism in human cells [26, 29, 30]. GSMM allows us to infer mechanistic 
relationship between genotype and phenotype [25-28].  

Here we combined GSMM, published gene expression data, targeted and non-targeted lipidomics 
experiments, together with in vitro gene silencing, with the aim of understanding how human CD4+ 
T-cells modulate their metabolism during activation and subsequent functional differentiation. Our 
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integrative approach identified several metabolic processes of interest, namely, we reveal the 
essentiality of glycosphingolipid (GSL) pathways in Th17 cells. 

 

RESULTS 

HTimmR: a genome-scale metabolic reconstruction of human CD4+ T-cells  

We developed ‘Human T-immuno reconstructor' (HTimmR), a generic and consensus metabolic 
reconstruction of human CD4+ T-cells. HTimmR includes 3841 metabolic genes (MGs), 7558 
reactions, and 5140 metabolites (Figure 1A). HTimmR includes eight cellular compartments: 
extracellular cavity, peroxisome, mitochondria, cytosol, lysosome, endoplasmic reticulum, golgi 
apparatus, nucleus, and a cellular boundary which mimics a CD4+ T-cell. HTimmR was 
contextualized, i.e., the active metabolic reactions in the model were selected using the gene 
expression data (Methods). Cell-type functional GEMs for T-naïve (Thp), Th1, Th2, Th17 and iTreg 
cells were developed (Figure 1A). The genes, reactions, and metabolites of these GEMs are given 
in (Figure S1). 

Identification of metabolic genes of human CD4+ T-cell activation and subsets differentiation 

When mapping the published gene expression data of each CD4+ T-cell subset to the various 
available human metabolic reconstructions and pathway databases, we found that approximately 
17% of the genes expressed in each CD4+ T-cell subset were found in the human metabolic reaction 
(HMR2) [30] database, whilst only ~5% of the genes were found in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [31], and the Encyclopedia of Human Genes and Metabolism (HumanCyc) 
[32] pathway databases (Figure S2). The mapped genes for each CD4+ T-cell subset were 
assembled and listed as metabolic genes (MGs). A total of 638 MGs were common to both the 
human metabolic reconstructions and metabolic pathway databases, whilst 750 MGs were unique 
to HMR2 (Figure 1B). Since HMR2 had the highest coverage of MGs in our CD4+ T-cell datasets, it 
was used as a background model for the reconstruction of HTimmR. 

When we investigated the differential expression of MGs between naïve (Thp), activated (Th0), and 
differentiated CD4+ T-cell subsets, we found that 853 MGs were differentially expressed (False 
Discovery Rate, FDR < 0.05), i.e., up- or down-regulated in Th0 cells as compared to Thp cells 
(Figure S2). Similarly, 173, 506, 106 and 99 MGs were differentially expressed (FDR < 0.05) between 
Th1, Th2, Th17 and iTreg cells, respectively, as compared to Th0 cells at 72 hours of polarization 
(Figure S2). Gene ontology (GO) term mapping of biological processes linked to the MGs suggested 
that, 30.43% of MGs identified in CD4+ T-cell subsets encode metabolic processes (GO:0008152), 
whilst 31.52% and 1.09% encode cellular processes (GO:0009987) and immune responses 
(GO:0002376), respectively (Figure 1C). 

Reporter metabolites of specific lipids and amino acids are altered during activation of human 
CD4+ T-cells 

Reporter metabolite (RM) analysis is an approach for the identification of metabolites in a metabolic 
network, around which significant transcriptional changes occur [33, 34]. RM analysis can predict 
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hotspots in a metabolic network that are altered between two different conditions, in this case, Th0 
vs. Thp cells.  

The RM analysis suggests that biosynthetic intermediates of glycolysis and the tricarboxylic acid 
(TCA) cycle are altered upon CD4+ T-cell activation (Figure 2A). RMs such as acetyl-CoA (p=0.02), 
oxaloacetate (OAA) (p=0.01), itaconate (p=0.04) and itaconyl-CoA (p=0.04) were upregulated, whilst 
citrate (p=0.02) and fumarate (p=0.01) were downregulated in Th0 cells as compared to Thp cells. 
This implies that, upon activation of CD4+ T-cells, citrate can be diverted from the TCA cycle to form 
itaconate via aconitate. This phenomenon has been observed previously in macrophages [35], 
where itaconate is upregulated under inflammatory conditions to promote an anti-inflammatory 
response. However, it remains to be elucidated if itaconate accumulation during TCR activation 
plays a significant role in metabolic reprogramming [36] of T-cells.  

RMs of amino acids (valine (p=0.03), cystine (p=0.007), leucine (p=0.03), isoleucine (p=0.03), 
tyrosine (p=0.03), phenylalanine (p=0.01), and threonine (p=0.01)), and glycerophospholipids 
(phosphatidylcholine (PCs) (p=0.008) and phosphatidylethanolamine (PEs) (p=0.008)) were 
upregulated in Th0 as compared to Thp cells (Figure 2A).  

Intriguingly, several intermediates of sphingolipids, particularly glycosphingolipid (GSL) pathways 
such as lactosylceramides (LacCers) (p=0.01) and D-galactosyl-N-acylsphingosine (p=0.03), were 
downregulated in Th0 as compared to Thp cells (Figure 2A). 

Overrepresentation analysis of the RM pathways showed that, primarily, lipid (glycerophospholipids 
and GSL), and amino acid metabolism were altered (hypergeometric test, q-value < 0.05) upon 
CD4+ T-cell activation (Figure S3). 

Differentiation of human CD4+ T-cell subsets depicts regulation of unique metabolic 
pathways  

RMs of Th1, Th2, Th17, and iTreg cells were identified at 72 hours of polarization (Figure 2A). In 
Th1 cells, we observed that RM pools of NADP+ (p=0.004) and NADPH (p=0.01) were upregulated 
as compared to Th0 cells. Differentiation of Th1 cells may alter intracellular levels of oxidative stress, 
as suggested by the downregulation of peroxisomal glutathione (GSH) (p = 0.01) and H2O2 (p = 
0.009). Prostaglandins and leukotrienes (12-dehydro-leukotriene B4 and 12-oxo-leukotriene B3) 
were also downregulated (p = 0.017) (Figure 2A). Overrepresentation analysis of RM pathways 
suggests that prostaglandin biosynthesis, aromatic amino acid, estrogen, fructose and mannose 
metabolism are altered (hypergeometric test, q-value < 0.05) in the Th1 cells as compared to Th0 
cells (Figure 2B). 

In Th2 cells, mitochondrial fatty acyl-CoA, including myristoyl-CoA (p=0.002) and palmitoyl-CoA 
(p=0.005) RMs were upregulated as compared to Th0 cells. Intriguingly, these activated fatty acyl-
CoAs might induce fatty-acid oxidation (FAO) and degradation. On the other hand, cytosolic 
malonyl-CoA (p=0.04) was elevated in Th2 cells. Malonyl-CoA inhibits the rate-limiting step of FAO, 
i.e., transport of FAs to mitochondria via the carnitine shuttle. Our results suggest that there might 
be a trade-off between fatty acid synthesis (FAS) and FAO that underpins the functional 
differentiation of Th2 cells (Figure 2A). Several RM pathways such as b-oxidation of unsaturated 
fatty acids, alanine, aspartate, glutamate and histidine metabolism, the pentose phosphate pathway 
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(PPP), GSL and nucleotide metabolism were altered (hypergeometric test, q-value < 0.05) in Th2 
cells as compared to Th0 cells (Figure 2C). 

RM analysis of Th17 showed a markedly-different pattern of regulation as compared to Th1 and 
Th2 cells. Several classes of GSLs (cerebrosides, gangliosides (GMs), N-acetylneuraminic acid 
(NANA)) were upregulated (p<0.05) in the differentiated CD4+ Th17 cells as compared to Th0 cells 
at 72 hours. In addition, some of the aromatic amino acids were downregulated (p<0.05) (Figure 
2A). Overrepresentation analysis of RM pathways showed that sphingolipid, particularly GSL, amino 
acid metabolism, and other related metabolic processes were altered (hypergeometric test, q-value 
< 0.05) in Th17 cells as compared to Th0 cells (Figure 2D). Notably, GSLs (LacCers, GMs and 
NANA) were found to be a unique signature of differentiated CD4+ Th17 cells as compared to Th1 
and Th2 cells. Some of these GSLs displayed a similar trend in the iTreg vs. Th0 cells, but the 
changes did not reach statistical significance (p=0.09). Additionally, RMs of the tryptophan / 
kynurenine pathways, i.e., kynurenine, 3-hydroxyanthranilate, formylanthranilate and quinones, 
were downregulated (p=0.0008) (Figure 2A). Of note, tryptophan is metabolized to kynurenine by 
indoleamine 2,3-dioxygenase, an enzyme that is induced by pro-inflammatory cytokines [37]. In 
addition, several short and long chain fatty acids such as butyric (p=0.06), decanoic (p=0.06) and 
valeric (p=0.06) acids were upregulated in the iTreg vs. Th0 cells. Overrepresentation analysis of 
RM pathways showed that, tryptophan, glutathione, butanoate, galactose and purine metabolism 
were overrepresented in iTregs cells as compared to Th0 cells (Figure 2E). 

Dynamic regulation of molecular lipids in human CD4+ T-cell subsets 

Taken together, RM analysis of CD4+ T-cell activation and differentiation predicted several classes 
of metabolites and pathways as being altered between the various subsets (Figure 2 and Figure 
S4). RMs of lipids and amino acids were found to be the predominant classes significantly altered 
in CD4+ T-cells during activation and at 72 hours of differentiation. While the importance of amino 
acids in CD4+ T-cell differentiation is well-established [18, 38], the role of molecular lipids in the 
differentiation of human CD4+ T-cells remains uncharacterized. Furthermore, RMs of 
glycerophospholipids and GSLs were markedly altered in Th17 and iTreg cells as compared to Th1 
and Th2 cells (Figure 2). Thus, the above findings directed us to investigate the dynamics of 
molecular lipids in CD4+ T-cell differentiation. 

We profiled the molecular lipids of human CD4+ T-cell subsets (n=5) (Figure S5-7) using the 
established lipidomics platform, which is based on ultra-high performance liquid chromatography 
coupled to time-of-flight mass spectrometry (UHPLC-QTOFMS). Sparse Partial Least Square 
Discriminant Analysis (sPLS-DA) [39] of the lipidomic dataset reveled that the lipidome of resting 
naïve (Thp) cells was different from the activated or differentiated T-cell subsets (R2X = 0.933, R2Y 
= 0.988, N=7-fold cross-validated Q2 = 0.886; Figure 3A). Th17 and iTreg cells were different from 
each other, and also from the Th1 and Th2 cells (Figure 3A). Several classes of lipids, such as 
lysophosphatidylcholines (LPCs), PCs, PEs, sphingomyelins (SMs), ceramides (Cers) and 
triacylglycerols (TGs) were altered (regression coefficient, RC (>± 0.05) and Variable Importance in 
Projection (VIP) scores [40] > 1) in the CD4+ T-cell subsets at 72 hours of differentiation (Figure 3B).  

We combined multivariate (sPLS-DA, n=7-fold cross validation, CV) and univariate (paired t-test) 
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approaches to identify cellular lipid signatures that were altered significantly (area under the curve 
(AUC) ~0.85, regression coefficient RC (>± 0.05) and VIP scores > 1.2 and paired t-test, p-adjusted 
< 0.05) between the CD4+ T-cell subsets, and their paired Th0 (controls) (Figure 3C). We found that 
PCs, LPCs, SMs and Cers were altered in the T-cell subsets during activation and early 
differentiation (Figure 3C). The majority of cellular PCs were upregulated in the Th2, Th17 and iTreg 
cells, whilst these were downregulated in Th1 cells, as compared to their paired Th0 cells (Figures 
3C and S8). Cer(d18:1/16:0), Cer(d18:1/24:1) and diHexCer(d18:1/16:0) were elevated in Th17 and 
iTreg cells. Mostly, SMs were altered in Th2 and iTreg cells. Some SMs (SM(d32:1), SM(d36:1) and 
SM(d42:1)) were upregulated in Th17 cells (vs. Th0), whilst downregulated in iTreg cells (vs. Th0) 
(Figures 3C and S9). Cellular TGs were markedly elevated in iTreg and Th17 cells (Figures 3C and 
S10). The lipidome data suggests that glycerophospholipids (PCs, PEs and LPCs) and sphingolipids 
(Cers, GSLs and SMs) are the major indicators of CD4+ T-cell differentiation (Figure 3B-C). 

Dynamic regulation of ceramides and glycosphingolipids during the early differentiation of 
human CD4+ Th17 and iTreg cells  

GSLs and Cers play an important role in maintaining the integrity of the plasma membrane. They 
are involved in cellular signaling, proliferation, endocytosis, and modulate cellular responses to 
inflammatory and apoptotic stress signals [41, 42]. However, the functional role of these metabolites 
in CD4+ T-cell activation and differentiation remains unknown [41]. Here, RM predictions and 
lipidome analysis of human CD4+ T-cells have, together, identified several species of GSLs that 
were altered in Th17 (vs. Th0) and iTreg cells (vs. Th0 cells) at 72 hours of differentiation (Figures 
2A and 3B-C).  

Next, by applying RM analysis, we investigated the regulation of GSLs and Cers in Th17 and iTreg 
cells during the first 48 hours of polarization. RM analysis was performed between Th17 vs. Th0 
cells at 0.5, 1, 2, 4, 6, 12, 24, 48 hours of differentiation. Initially, the RM of Cers were elevated at 1 
hour, and subsequently, there was a transient decrease at 2 hours, followed by an increase at 12, 
24, 48 hours of differentiation (Figure S11). A similar pattern of regulation was also observed in 
ceramide 1-phosphate (C1P), an active intermediate of sphingolipid metabolism (Figure S11).  

In iTreg cells, several RMs of the sphingolipid pathway such as digalactosylceramides, D-
galactosyl-N-acylsphingosine, UDP-galactose and diHexCers, particularly, lactosylceramides 
(LacCers) were upregulated (vs. Th0) by 6 hours of polarization (Figure S12). However, no change 
in the levels of LacCers were observed in Th17 cells at these early time-points (Figure S11). 

Targeted lipid measurements reveal the regulation of ceramide levels in human CD4+ Th17 
and iTreg cells at 72 hours of differentiation  

A targeted lipidomics experiment was designed to measure the levels of Cers and GSLs (i.e. 
hexosylceramides (HexCers) and diHexCers in human CD4+ Th17 (n=3) (Figure S7) and iTreg cells 
(n=5) (Figure S6), at 72 hours of differentiation (Figure 4 and Table S1). Increased levels of Cers, 
and decreased levels of HexCers, were found in both Th17 and iTreg cells, except for 
HexCer(18:1/24:0), which was elevated (p=0.04) in iTreg cells (Figure 4H). Intriguingly, diHexCers 
(d18:1/16:0) were elevated in Th17 vs. Th0 cells (p=0.001), while these changes were not apparent 
(p>0.05) in iTreg cells vs. Th0 cells (Figure 4I). 
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There was congruence between the results obtained from GSMM-RM predictions (Figure 2A), non-
targeted (Figure 3B-C) and targeted (Figure 4) lipidomics measurements showing that GSLs 
(specifically HexCers and diHexCers) were elevated in CD4+ Th17 cells (p<0.05).  

Relative contribution of the sphingolipid pathways to the production of ceramides in Th17 
cells 

We evaluated the effect of various sphingolipid pathways on Cer production in Th17 cells at 72 
hours of differentiation (Figure 5A). An in-silico knockout (KO) of the Th17-cell-specific pathways 
was simulated using GSMM, where each sphingolipid pathway was knocked out iteratively, one at 
a time, and the percentage of maximum flux contributions for Cer production via eight different 
metabolic reactions were estimated (Figure 5A-B). Optimization of Cer production in a wild type 
(WT) model suggests that, ~40% of the total flux of Cer production can be carried by de novo 
synthesis, i.e., by conversion of dihydroceramide to Cer (Figure 5A-B). As expected, KO of serine 
palmitoyltransferase (SPT) pathway, a rate-limiting-step in the de novo sphingolipid synthesis 
pathway [43], decreased the total flux of Cer production, however, knockout could not completely 
abolish Cer formation (Figure 5B). This is due to the presence of redundant sphingolipid pathways 
which are able to replenish Cers in Th17 cells (Figure 5A-B). 

Effects of SPTLC123 silencing on ceramide levels in human CD4+ Th17 cells 

De novo biosynthesis of Cer starts with the serine palmitoyl transferase (SPT) pathway, a rate-
limiting step that aids in the condensation of serine and palmitoyl-CoA by an enzyme complex 
called serine palmitoyl transferase (SPTLC) (Figures 5A and 6A). Currently, there are three major 
SPTLC subunits identified, including SPTLC1, SPTLC2 and SPTLC3, which are known to be 
expressed in humans [44].  

Based on our RNA-Seq data, the three SPTLC subunits are expressed during human Th17 cell 
differentiation. Among these, SPTLC1 and SPTLC2 showed higher levels of expression than 
SPTLC3 (Figure S13). To examine changes in Cer biosynthesis during Th17 cell development, we 
simultaneously silenced these three SPTLC subunits (SPTLC123 triple knockdown, TKD) using 
small interfering RNAs (siRNAs). As illustrated in (Figure 6B-E), the three siRNAs successfully 
downregulated their targets. Importantly, silencing of SPTLC decreased the expression of the 
proinflammatory cytokines IL17A (p=0.08) and IL17F (p=0.001) in Th17 cells at 72 hours of following 
cell activation (Figure 6F-G), suggesting that Cer synthesis is vital for Th17 cell function.  

Similarly, through a mass spectrometry-based targeted lipidomics experiment, we measured the 
Cer levels in these Th17 (TKD) cells at 72 hours of polarization. Several species of Cers and GSLs 
(HexCers, diHexCers) were significantly decreased in SPTLC-deficient Th17 cells (Figure 6H-P). 
Most importantly, diHexCers levels were significantly reduced upon SPTLC silencing, suggesting 
that regulation of diHexCers is associated with the Th17 differentiation and effector function (Figure 
6N-P). Overall, these results suggest that silencing of the three SPTLC subunits negatively 
influences the development and secretory function of human CD4+ Th17 cells (Figure 6F-G). 

Effect of UGCG silencing on hexosyl- and lactosylceramide synthesis in human CD4+ Th17 
cells 
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diHexCers (LacCers) can be generated from HexCers (GlcCers) which, in turn, are produced from 
Cers and glucose, catalyzed by glucosylceramide synthase (GCS)(EC 2.4.1.80), encoded by the 
UGCG gene. This is the first committed step in the production of GlcCer-related GSLs [45] (Figure 
5A and Figure 7A,D). Results from the SPTLC gene silencing experiment in Th17 cells showed an 
effective downregulation of diHexCers (Figure 6N-P). Further, these findings guided us to evaluate 
the importance of the GCS-pathway for the production of GlcCers and diHexCers in human CD4+ 
Th17 cells.  

Similarly, by taking a siRNA-mediated silencing approach, we knocked down expression of the 
UGCG gene (Figure 7B), which encodes GCS in Th17 cells (Figure S13). Although expression of 
the IL17 cytokine was not influenced by UGCG knockdown in Th17 cells, we decided to determine 
changes in the HexCers, diHexCers and SMs production in UGCG-deficient Th17 cells. As 
expected, several species of Cers, HexCers (GlcCers and / or GalCers) and diHexCers (except 
diHexCer(d18:1/16:0)) were decreased in the UGCG-silenced Th17 cells (Figure 7C). A decrease in 
Cer levels implies that Cer can be diverted to other sphingolipid pathways (CerS, SMS, C1PP; 
Figure 5A), and thus might enhance the production of sphingosine, SMs and ceramide-1-
phosphate, respectively, which, in turn, regulate cytokine production. Intriguingly, several species 
of SMs were elevated in the UGCG-silenced Th17 cells suggesting that, production of SMs via the 
SMS-pathway was enhanced with a pertinent decrease in Cers and GSLs (Figure 5A and Figure 
S14). 

 

DISCUSSION 
We showed that human CD4+ T-cell subsets, i.e., Th1, Th2, Th17 and iTreg cells, undergo both 
common and subset-specific metabolic alterations, in order to both successfully differentiate and 
subsequently carry out their specific functions. RM analysis suggests that, upon the activation of 
naïve T-cells, the levels of the amino acids increase, while the majority of these amino acids then 
decrease during towards a Treg phenotype. Indeed, iTreg cells are thought to be less dependent 
on amino acids [46]. For instance, depletion of glutamine can skew the differentiation of CD4+ T-
cells towards a Treg lineage [47]. 

Cers are key intermediates of sphingolipid metabolism, composed of sphingosine base and a fatty 
acyl chain (C14:0 - C26:0) [48]. Cers are important for T-cell activation and differentiation at multiple 
levels, such as intracellular signal transduction, modulation of membrane fluidity, receptor 
clustering and by contributing to CD95-mediated cell death via multiple mechanisms [49]. However, 
the Cer pathways are highly redundant. One of the key, novel observations from our RM and 
lipidome analyses was that several species of Cers and GSLs are markedly altered in Th17 and 
iTreg cells at 72 hours of differentiation. The observed alterations in the levels of Cers and GSLs 
(HexCers, diHexCers) were prominent in the Th17 cells as compared to the iTreg cells. diHexCers 
(LacCers) were markedly-high in the differentiated Th17 vs. Th0 cells. Furthermore, in vitro KD 
experiments substantiated the essentiality of sphingolipid metabolic pathways (SPT, GCS) in the 
formation of Cers and GlcCers / diHexCers, and these are intrinsically linked to proinflammatory 
cytokine (IL17A and IL17F) expression in Th17 cells. Several species of diHexCers were decreased 
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in the knockdowns, suggesting that accumulation of diHexCers is required for Th17 differentiation. 
In addition, RM analysis of Th17 cells showed a persistent increase in the Cer pool from 12 hours 
until 72 hours of polarization.  

An earlier study observed accumulation of Cers in Treg cells as a consequence of low 
sphingomyelin synthase SMS1 (encoded by Sgms1), an enzyme catalyzing the conversion of Cers 
and PCs to diacylglycerols and SMs [42]. In line with this, several species of SMs measured in our 
study were shown to be decreased in the iTregs vs. Th0, and increased in Th17 cells vs. Th0, while 
few SMs (SM(d16:1/18:1) and SM(d42:3)) elevated in both iTregs and Th17 cells (Figure 3C). In 
Treg cells, FOXP3 directly binds to Sgms1 to suppress SMS1, and retroviral overexpression of 
FOXP3 in Jurkat human T lymphocytes decreased the expression of SGMS1 [42, 50]. The 
accumulation of Cers constrains SET activity towards protein phosphatase A (PP2A). Intriguingly, 
PP2A can suppress mTORC1 activity and promotes Treg and Th17 cell differentiation [42, 51, 52] 

Furthermore, several studies indicate that co-expression of CD39 (ENTPD1) and CD161 (KLRB) in 
Th17 cells increases the activity of acid sphingomyelinase (ASM), an enzyme encoded by the gene 
SMPD1, which hydrolyzes SMs to form Cers and phosphorylcholine, in turn leading to an increase 
in the Cer pool [53-55]. Although ENTPD1 levels remain unchanged during the early differentiation 
of iTreg and Th17 cells; KLRB is specifically downregulated in Th17 cells [56, 57]. Further, SMPD1 
is upregulated in iTreg cells [56], suggesting intrinsic regulation of Cers in both Th17 and iTreg cells.  

Taken together, our study identified several common and subset-specific metabolic signatures and 
pathways in human CD4+ T-cells, for their activation, and functional differentiation. This enabled us 
to improve understanding of how molecular lipids are regulated in different subsets of CD4+ T-cells. 
We demonstrated the essentiality of ceramide and glycosphingolipid synthesis pathways for Th17 
differentiation and effector function. Our study may, therefore, provide a comprehensive resource 
for identifying CD4+ T-cell-specific metabolic pathways and useful targets for their selective 
manipulation under disease conditions characterized by an imbalance of Treg / Th17 cells [5, 10, 
24, 29].  

Our study may also offer clues about the poorly-understood overlap in co-morbidities between 
these immune-mediated diseases and metabolic diseases, such as has been found to occur in 
COVID19 [58]. Obesity is commonly associated with chronic elevation of circulating fatty acids, 
which results in the accumulation of, among others, toxic lipids, such as Cers, in peripheral cells / 
tissues – a phenomenon referred to as lipotoxicity [59]. The presence of elevated levels of 
ceramides in conditions such as obesity and insulin resistance may thus skew the Treg / Th17 
balance towards the pro-inflammatory Th17 phenotype, which is also being reported as one of the 
notable hallmarks of severe COVID19 [60, 61]. 

 

METHODS 

Human CD4+ T-cell Isolation, activation, and differentiation  

CD4+ T-cells were isolated from human umbilical cord blood as described previously [56, 62, 63]. 
For Th17 cell differentiation, isolated CD4+ cells were activated with a combination of plate-bound 
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anti-CD3 (750 ng/24-well culture plate well; Immunotech/Beckman Coulter REF # IM-1304) and 
soluble anti-CD28 ((1ug/mL; Immunotech/Beckman coulter REF # IM1376) antibodies in serum-free 
X-Vivo 20 medium (Lonza), in the absence (Th0) or presence (Th17) of IL-6 (20ng/ml, Roche, Cat# 
11138600 001); IL-1β (10ng/ml, R&D Systems Cat # 201 LB); TGF-β1 (10ng/ml, R&D Systems Cat# 
240); anti-IL-4 (1 µg/ml) R&D Systems Cat# MAB204) and anti-IFN-γ (1 μg/ml R&D Systems 
Cat#MAB-285). Differentiation of Th17 cells was confirmed by measuring IL-17 expression by 
quantitative real-time PCR, at 72 hours of Th17 / Th0 culturing [62]. 

For iTreg cell culturing, after of CD25+ cells, done using LD columns and a CD25 depletion kit 
(Miltenyi Biotec), CD4+CD25− cells were activated with plate-bound anti-CD3 (500 ng/24-well 
culture plate well) and soluble anti-CD28 (500 ng/mL) at a density of 2 × 106 cells/mL of X-vivo 15 
serum-free medium (Lonza). For iTreg differentiation, the medium was supplemented with IL-2 
(12 ng/mL), TGF-β (10 ng/mL) (both from R&D Systems), all-trans retinoic acid (ATRA) (10 nM; 
Sigma-Aldrich), and human serum (10%) and cultured at 37°C in 5% CO2. Control Th0 cells were 
stimulated with plate-bound anti-CD3 soluble anti-CD28 antibodies without cytokines. For 
confirmation of iTreg cell differentiation, we used intracellular staining to measure, at 72 hours of 
iTreg culturing, expression of FOXP3 which is the major transcription factor driving Treg 
differentiation. Intracellular staining was performed using buffer sets of Human Regulatory T-cell 
Staining Kit (eBioscience/Thermo Fisher Scientific), following the manufacturer’s protocol. The 
following antibodies were used: anti-human FOXP3-PE (eBioscience, Cat. No. 12-4776-42) and rat 
IgG2a isotype control (eBioscience, Cat. No. 72-4321-77A). All samples were acquired by a flow 
cytometer (LSRII) and analyzed either with FlowJo (FLOWJO, LLC) or with Flowing Software [56]. 

Th1 and Th2 cell differentiation were done as described previously [64]. Briefly, purified naive CD4+ 
T-cells were activated with plate-bound anti-CD3 (500 ng/24-well culture plate well) and 500 ng/ml 
soluble anti-CD28 and cultured in the absence (Th0) or presence of 2.5 ng/ml IL-12 (R&D Systems) 
(Th1) or 10 ng/ml IL-4 (R&D Systems) (for Th2). At 48 hours following the activation of the cells, 17 
ng/ml IL-2 (R&D Systems) was added to the cultures. Differentiation of Th1 and Th2 cells was 
confirmed by measuring (using flow cytometry) the expression of T-bet and Gata3 at 72 hours after 
cell activation. Briefly, cells were fixed and permeabilized using the Intracellular Fixation & 
Permeabilization Buffer Set (eBioscience / Thermo Fisher Scientific), according the manufacturer’s 
protocol. The following antibodies were used: anti-human GATA3-PE (eBioscience, 12-9966), anti-
human T-bet-BV711 (BD, 563320) and corresponding isotype controls (BV711 Mouse IgG1, BD, 
563044 and PE Rat IgG2b, eBioscience, 12-4031-82). Samples were acquired by BD 
LSRFortessa™ cell analyzer and data were analyzed using FlowJo software (FLOWJO, LLC).  

siRNA mediated gene knockdown  

For SPTLC triple knock down (TKD) and UGCG single knock down (KD) experiments, freshly-
isolated CD4+ cells were suspended in Optimem I (Invitrogen) and transfected with siGenome 
SMARTpool small interference RNA (siRNA) oligonucleotides (Dharmacon) using the nucleofection 
technique by Lonza. Scrambled non-targeting siRNA (5’-AAUUCUCCGAACGUGUCACGU-3’) was 
used as control (Sigma). Briefly, four million cells were transfected with 12 µg of SPTLC-targeting 
siRNAs (4 µg of SMARTpool SPTLC1 siRNA M-006673-02; 4 µg of SMARTpool SPTLC2 siRNA M-
006674-01; and 4 µg of SMARTpool SPTLC3 siRNA M-010285-02) or 12 µg of Scramble siRNA. 
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For UGCG single knockdown experiments 12 µg of UGCG-targeting siRNA (siGenome SMARTpool, 
M-006441-02) were used. Cells were rested for 24h in RPMI 1640 medium (Sigma-Aldrich) 
supplemented with penicillin/streptomycin, 2 mM L-glutamine and 10% FCS and subsequently 
activated and cultured under Th17 conditions. SPTLC1 and SPTLC2 knockdown was validated by 
western blot at 24 hours, UGCG and SPTLC3 knockdown was determined using quantitative real-
time PCR (at 12 and 72 hours, respectively). 

Western blot 

Fresh cell samples were lysed in RIPA buffer (Thermo) supplemented with complete EDTA-free 
Protease inhibitor cocktail and phosphatase inhibitors (Roche) and sonicated on a Bioruptor 
(Diagenode). Protein concentration was determined using DC Protein assay (Biorad). After boiling 
in 6× loading dye (330 mM Tris-HCl, pH 6.8; 330 mM SDS; 6% β-ME; 170 μM bromophenol blue; 
30% glycerol), the samples were loaded on Mini-PROTEAN TGXPrecast Protein Gels (BioRad 
Laboratories) and transferred to PVDF membranes (Trans-Blot TurboTransfer Packs, BioRad 
Laboratories). The following primary antibodies were used: SPTLC1 (sc-374143, Santa Cruz), 
SPTLC2 (ab236900, abcam) and beta-actin (A5441, Sigma-Aldrich). 

TaqMan Quantitative Real-time PCR 

Total RNA was extracted using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) and treated 
in-column with DNase (RNase-Free Dnase Set; QIAGEN) for 15 minutes. For quantitative real-time 
PCR purified RNA was treated with DNase I (Invitrogen) to ensure complete removal of genomic 
DNA followed by cDNA synthesis with SuperScript II Reverse Transcriptase (Invitrogen). 
Quantitative real-time PCR (qPCR) was performed using the TaqMan® Gene Expression UGCG 
Assay ID:Hs00916612_m1 and SPTLC3 Assay ID:Hs00217867_m1 (Thermo Fisher Scientific) or 
KAPA™ probe fast qPCR Master Mix (Kapa Biosystems) and Universal ProbeLibrary probes (Roche 
Applied Science) with custom ordered primers. The qPCR runs were analyzed with Applied 
Biosystems QuantStudio 12K Flex Real-Time PCR System. All reactions were performed in 
triplicate. 

Analysis of molecular lipids 

The samples were randomized and extracted using a modified version of the previously-published 
Folch procedure [65]. Briefly, 150 µL of 0.9% NaCl was added to cell pellets, and samples then 
vortexed and ultrasonicated for 3 minutes. Next, 20 µL of the cell suspension was mixed with 150 
µL of the 2.5 µg mL-1 internal standards solution in ice-cold CHCl3:MeOH (2:1, v/v). The internal 
standard solution contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-
phosphoethanolamine (PE (17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine 
(SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadeca-
noyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-
phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine 
(PC(16:0/d31/18:1)). These were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). In 
addition, triheptadecanoin (TG(17:0/17:0/17:0)) was purchased from (Larodan AB, (Solna, Sweden). 
The samples were vortexed and incubated on ice for 30 min after which they were centrifuged at 
7800 × g for 5 min. Finally, 60 µL from the lower layer of each sample was collected and mixed with 
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60 µL of ice cold CHCl3:MeOH (2:1, v/v) in LC vial. The total protein content in cells was measured 
by the Bradford method [66]. 

The UHPLC-QTOFMS analyses were done in a similar manner to as described earlier, with some 
modifications [67, 68] on two separate instruments. The initial lipidomic results were acquired on a 
UHPLC-QTOFMS system from Agilent Technologies (Santa Clara, CA, USA) combining a 1290 
Infinity LC system and 6545 quadrupole time of flight mass spectrometer (QTOFMS), interfaced 
with a dual jet stream electrospray (dual ESI) ion source. MassHunter B.06.01 software (Agilent 
Technologies, Santa Clara, CA, USA) was used for all data acquisition. The SM results for UGCG-
silenced Th17 cells data was acquired on a UHPLC-QTOF system from Bruker (Bruker, Billerica, 
MA, USA) combining an Elute UHPLC binary pump and an Impact II system QTOF system. The 
samples for this experiments were the same extracts that the Cer data was acquired from and had 
SM(18:1/17:0) spiked in prior to acquisition. The data was acquired using the Hystar suite of 
software. MZmine 2 was used for all the untargeted data processing [69]. 

Chromatographic separation was performed using an Acquity UPLC BEH C18 column (100 mm × 
2.1 mm i.e., 1.7 µm particle size) and protected using a C18 precolumn, both from Waters 
Corporation (Wexford, Ireland). The mobile phases were water (phase A) and acetonitrile:2-propanol 
(1:1, v/v) (phase B), both containing 1% 1M ammonium acetate and 0.1% (v/v) formic acid 
ammonium acetate as ionization agents. The LC pump was programmed at a flow rate of 0.4 mL 
min–1 and the elution gradient was as follows: from min 0–2, the percentage of phase B was modified 
from 35% to 80%, from min 2-7, the percentage of phase B was modified from 80% to 100% and 
this final percentage held for 7 min. A post-time of 7 min was used to regain the initial conditions 
for the next analysis. Thus, the total analysis time per sample was 21 min (including 
postprocessing). The settings of the dual ESI ionization source were as follows: capillary voltage 
3.6 kV, nozzle voltage 1500 V, N2 pressure in the nebulizer 21 psi, N2 flow rate and temperature as 
heat gas 11 L min–1 and 379 °C, respectively. Accurate mass spectra in MS scan were acquired in 
the m/z range 100 – 1700 in positive ion mode. 

MS data were processed using the open source software MZmine 2.53 [70]. The following data 
processing steps were applied to the raw MS data: (1) Crop filtering with a m/z range of 350 – 1200 
m/z and a retention time (RT) range of 2 to 15 minutes; (2) Mass detection with a noise level of 900; 
(3) Chromatogram builder with a min time span of 0.08 minutes, minimum height of 900 and m/z 
tolerance of 0.006 m/z or 10.0 ppm; (4) Chromatogram deconvolution using the local minimum 
search algorithm with a 70% chromatographic threshold, 0.05 min minimum RT range, 5% 
minimum relative height, 1200 minimum absolute height, a minimum ration of peak top/edge of 1.2 
and a peak duration range of 0.08 - 1.01 minutes; (5) Isotopic peak grouper with a m/z tolerance of 
5.0 ppm, RT tolerance of 0.05 minute, maximum charge of 2 and with the most intense isotope set 
as the representative isotope; (6) Join aligner with m/z tolerance of 0.009 or 10.0 ppm and a weight 
of 2, RT tolerance of 0.1 minute and a weight of 1 and with no requirement of charge state or ID 
and no comparison of isotope pattern; (7) Peak list row filter with a minimum of 7 peaks in a row 
(10% of the samples); (8) Gap filling using the same RT and m/z range gap filler algorithm with an 
m/z tolerance of 0.009 m/z or 11.0 ppm; (9) Identification of lipids using a custom database (based 
on UHPLC-MS/MS data using the same lipidomics protocol, with RT data and MS and MS/MS) 
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search with an m/z tolerance of 0.009 m/z or 10.0 ppm and a RT tolerance of 0.2 min. In general, 
lipids were identified at the total number of carbons and double bonds in the structure as there was 
insufficient evidence to assign the specific acyl chains. Where the acyl chains are identified these 
have been confirmed with MS/MS level experiments and/or authentic standards. (10) Normalization 
using internal standards (PE (17:0/17:0), SM (d18:1/17:0), Cer (d18:1/17:0), LPC (17:0), TG 
(17:0/17:0/17:0) and PC (16:0/d30/18:1)) for identified lipids and closest internal standard (based 
on RT) for the unknown lipids, followed by calculation of the concentrations based on lipid-class 
calibration curves. 

Identification of lipids was done using an in-house spectral library with MS (and retention time), 
MS/MS information, and by searching the LIPID MAPS spectral database 
(http://www.lipidmaps.org). MS/MS data were acquired in both negative and positive ion modes in 
order to maximize identification coverage. Additionally, some lipids were verified by injection of 
commercial standards. The identification was carried out in pooled cell extracts.  

The peak area obtained for each lipid was normalized with lipid-class specific internal standards 
and with total content of protein. A (semi) quantitation was performed using lipid-class specific 
calibration curves. Pooled cell extracts were used for quality control, in addition to in-house plasma. 
The raw variation of the peak areas of internal standards in the samples was on average 15.3% and 
the RSD of retention times of identified lipids across all samples was on average 0.28%. The RSD 
of the concentrations of the identified lipids in QC samples and pooled extracts was on average 
17.7%. 

Measurement of ceramides in Th17 and iTreg cells 

Sample extraction 

The frozen cell preps were defrosted on ice. The samples were extracted using a modified Folch 
method [71]. Briefly, 120 µL of cold (4 °C) extraction solvent (CHCl3: MeOH, (2:1 v/v) was added to 
the samples. The extraction solvent containing the following internal standards: C17 Lactosyl(b) 
ceramide (D18:1/17:0, 20 ppb), C17 Glucosyl(b) ceramide (D18:1/17:0, 20 ppb), C17 ceramide 
(D18:1/17:0, 20 ppb), C16 ceramide-d7 (d18:1-d7/16:0, 16,57 ppb), C18 ceramide-d7 (d18:1-
d7/18:0, 8.75 ppb), C24 ceramide-d7 (d18:1-d7/24:0, 20 ppb), and C24:1 ceramide-d7 (d18:1-
d7/24:1(15Z), 9,96 ppb). The samples were the vortexed briefly and left on ice for 30 minutes. The 
samples were then centrifuged (9400g, 5 min, 4 °C) and then 60 µL of the bottom layer was transfer 
to a clean mass spectrometry vial (2 mL). The samples were then stored at –80 °C. 

Mass Spectrometry 

The ceramides were quantified using a targeted multiple reaction monitoring (MRM) method using 
UHPLC as a separation technique. The LC separation was based on the global lipidomics method 
previously described [71]. Briefly, the UHPLC was a Exion AD (Sciex) integrated system. The 
samples were held in a cool box at 15 °C prior to the analysis. The needle was washed with both a 
10% DCM in MeOH and ACN: MeOH: IPA: H2O (1:1:1:1 v/v/v/v) with 1% HCOOH for a total of 7.5 
seconds each. The solvents were delivered using a quaternary solvent and a column oven (set to 
50 °C). The separation was performed on an ACQUITY UHPLC BEH C18 column (2.1 mm × 100 
mm, particle size 1.7 µm, Waters, Milford, MA, USA). The flow rate was set at 0.4 ml/min throughout 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428853


 15 

the run with an injection volume of 1 µL. The following solvents were used for the gradient elution: 
Solvent A was H2O with 1% NH4Ac (1M) and HCOOH (0.1%) added. Solvent B was a mixture of 
ACN: IPA (1:1 v/v) with 1% NH4Ac (1M) and HCOOH (0.1%) added. The gradient was programmed 
as follows: 0 to 2 min 35-80% B, 2 to 7 min 80-100 % B, 7 to 14 min 100% B. The column was 
equilibrated with a 7min period of 35 % B prior to the next run. The mass spectrometer was a Sciex 
5500 QTRAP (Sciex) set in scheduled MRM mode. The details of the MRM transitions can be seen 
in (Table S1). All lipids were identified for their fatty acid composition by MS/MS to confirm their 
exact identification, there was also a linear relationship between the increasing number of carbons 
in the lipid chain and its corresponding retention time. Due to the isobaric nature of sugars we were 
unable to differentiate Glc and Glc head groups. All data were integrated using the quantitation tool 
in MultiQuant (3.0.3), all peaks were manually checked. Any analytes which were over the 
concentration of the standard curve were diluted (1:25) with the same extraction solvent minus the 
internal standards. The quantification was performed using class-based internal standards and in 
the case of those ceramide species without an authentic standard in the standard curve mix, we 
used the closest related structure. The standard curve mixture contained: Glucosyl (b) C12 
ceramide, Lactosyl (b) C12 ceramide, C18 ceramide (D18:1/18:1), C18:1 dihydroceramide 
(d18:0/18:1(9Z)) and was run at the following levels (all in ppb): 100, 80, 60, 50, 40, 30, 20, 10 for 
the C12 standards and 10, 8, 6, 5, 4, 3, 2,1 for all C18 standards. 

Statistical analysis 

The lipidomic dataset was log2 transformed. Principal component analysis (PCA) was performed 
using ‘prcomp’ function included in the ‘stats’ R package, no outliers found. Sparse Partial Least 
Squares Discriminant Analysis (sPLS-DA) [39] of the T-cell subsets was performed using the 
'splsda' function coded in the 'mixOmics v6.3.2' R package. In addition, several PLS-DA models 
between Th0 vs. Thp, Th1 vs. Th0, Th2 vs. Th0, Th17 vs. Th0 and iTreg vs. Th0 cells were developed 
and Variable Importance in Projection (VIP) scores [40] were estimated. The PLS-DA models were 
cross-validated [72] by 7-fold cross-validation and model diagnostics were generated using 'perf' 
function. 

The multivariate PLS-DA analysis was followed by a univariate statistic; a paired t-test using the 
't.test' function was performed to identify significant differences in the lipid intensities between T-
cell subsets and their paired control (Th0). All lipids that passed one or more criteria for variable 
selection, i.e., with the sPLS-DA model with an area under the ROC curve (AUC) >= 0.85; RC (>± 
0.05), VIP scores > 1 or paired t-test; p-value < 0.05) were listed as significant. Initial p-values were 
subjected to multiple hypothesis testing correction, vis-à-vis False Discovery Rate (FDR) adjustment 
using the ‘p-adjust’ function. The ‘Heatmap.2’, ‘boxplot’, 'beanplot', ‘gplot’, and ‘ggplot2’ 
libraries/packages were used for data visualization. 

Standardization of gene expression data for metabolic genes identification, T-cell-specific 
GEMs reconstruction and RM analysis 

Lineage-specific normalized gene expression profiles of the human CD4+ Thp, Th1 and Th2 [73], 
Th17 [57], iTreg cells [56] and their paired control (Th0) were obtained from the literature and / or 
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) [74] with the accession 
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numbers (Thp, Th1 & Th2, GEO: GSE71646), (Th17, GEO: GSE52260) and (iTreg, GEO: GSE90570) 
respectively. A list of differentially-expressed genes (FDR < 0.05) for each T-cell subset vs. Th0 was 
retrieved. The expression datasets were used for the identification of MGs and contextualization of 
HTimmR to T-cell-specific GEMs. In order to identify MGs, genes expressed in Thp, Th1, Th2, Th17 
and iTreg cells were searched in the existing human metabolic reconstructions, i.e., HMR2 [30], 
Edinburgh Human Metabolic Network (ETHMN) [75], RECON2 [76], and databases, i.e., the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)[31] and the Encyclopedia of Human Genes and 
Metabolism (HumanCyc) [32]. We found that HMR2 had the highest coverage of the MGs from our 
datasets. However, 160 MGs were missing in HMR2 and other metabolic reconstructions. 
Metabolic reactions (MRs) encoded by these genes were identified from the literature. These MRs 
were used for the reconstruction of HTimmR. 

Genome-scale metabolic reconstruction and modeling of human CD4+ T-cell subsets 

Contextualization of HTimmR to CD4+ T helper-specific GEMs 

Functional GEMs of Thp, Th1, Th2, Th17 and iTreg cells were developed by combining the E-Flux 
[77] and INIT [28] algorithms applied to HTimmR, used as a template model. HTimmR was 
contextualized for each CD4+ T-cell subset using lineage-specific gene expression data [28]. 
Subsequently, a draft GEM for each CD4+ T-cell subset that include the active metabolic reactions 
and their associated components (e.g., metabolic genes, enzymes, metabolites and their 
interactions) was generated. The draft models were subjected to gap-filling by assigning basic 
metabolic tasks exhibited by normal, activated and / or differentiated T-cells (e.g., secretion of L-
lactate). A quality control / sanity check [27] was performed using COnstraint-Based Reconstruction 
and Analysis Toolbox (COBRA toolbox v3.0) [78]. All the models were able to carry out basic 
metabolic tasks [30, 79]. Any blocked reactions were rectified or removed before knockout and flux 
analysis was performed. Mixed integer linear programming (MILP) was performed using 'MOSEK 
8' solver (licensed for the academic user) integrated in the RAVEN 2.0 suite [80]. Linear 
programming (LP) and optimization was performed using 'ILOG-IBM CPLEX (version 128)' solver. 

Reporter metabolite analysis 

The lineage-specific, differentially-expressed MGs identified in this study from different human 
CD4+ T-cell subsets was employed for the RM predictions. RM analysis was performed using the 
'reporterMetabolites' function of the RAVEN 2.0 suite [80].  

Overrepresentation analysis (ORA) of the RMs in the metabolic subsystems / pathways of human 
CD4+ T-cell subset was evaluated by a global hypergeometric test. RMs that were significantly (p < 
0.05) altered between the T-cell subsets vs. Th0 were subjected to ORA. All the metabolic 
subsystems / pathways with (False Discovery Rate, FDR < 0.05) were listed.  

Pathway knockout and essentiality analysis 

An in-silico knockout (KO) analysis of sphingolipid pathways in human CD4+ Th17 cells was 
performed. Here, we evaluated the ability of a sphingolipid pathway to produce Cers in a wild type 
(WT) and KO models. In a WT model (no KO), flux through 8 different sphingolipid pathways which 
are directly associated with Cer biosynthesis were maximized one-by-one (as the objective 
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function), and flux incurred by these pathways were recorded. Consequently, these fluxes were 
converted to (%), which depicts the relative contribution of the sphingolipid pathways towards total 
Cer production. 

Next, we developed several KO models by iteratively removing a particular reaction / pathway (one 
at a time) from sphingolipid metabolism, and simultaneously estimating the maximum flux incurred 
by these 8 different pathways towards total Cer production. Likewise, the (%) of flux contributed by 
these pathways towards total Cer production was estimated in a KO model. The reaction / pathway 
KO analysis was performed using ‘removeReactions’ function coded in the COBRA toolbox (v3.0) 
[78]. All simulations were performed in MATLAB 2017b (Mathworks, Inc., Natick, MA, USA). 
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Figure Legends 
Figure 1. Metabolic reconstruction of human CD4+ T-cell subsets. (A) A schematic 
representation showing metabolic reconstruction of generic CD4+ T-cell (HTimmR), and 
contextualization of HTimmR to functional genome-scale models (GEMs) for T-naïve (Thp), T-
activated (Th0), and differentiated T-helper (Th) subsets, using lineage-specific gene expression 
datasets. (B) Venn diagram showing metabolic genes (MGs) of human CD4+ T-cells identified in this 
study, which were commonly or uniquely found in various human metabolic reconstructions (HMR2, 
ETHMN, RECON), and pathway databases (KEGG and humanCyc). (C) A pie-chart showing the 
gene ontology (GO term) mapping of several biological processes exhibited by the MGs of the CD4+ 
T-cells. 

Figure 2. Reporter metabolites and overrepresented pathways of CD4+ T-cell activation and 
differentiation at 72 hours of polarization. (A) A heatmap of reporter metabolites (RMs) that are 
significantly (p < 0.05) up- (red color) or downregulated (blue color) or remained unchanged (white 
color), in the CD4+ T-cell subsets as compared to their paired control (Th0). The RMs were grouped 
by their metabolic subsystems / pathways and marked by the color bars. An asterisk (‘*’) denotes 
levels of statistical significance as determined by p-values. (B-E) Bar plots showing 
overrepresented (q < 0.05) reporter pathways (RPs) of the CD4+ T-cell subsets. 

Figure 3. Lipidome of human CD4+ T-cell activation and differentiation. (A) Scatter / score plot 
for the PLS-DA classification model (model performance: R2X = 0.933, R2Y = 0.988, N = 7-fold 
cross-validated (CV), Q2 = 0.886), showing differences in the lipidomes of the T-cell subsets, isolated 
from the umbilical cord of (n=5) healthy neonates. Ellipse denotes 95% confidence region. (B) A bar 
plot showing VIP scores of the lipids included in the PLS-DA classification model. The lipids are 
grouped and color-coded by their chemical classes. Different classes of lipids such as cholesterol 
esters (CEs), phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), 
phosphatidylethanolamines (PEs), sphingomyelins (SMs), ceramides (Cers), dihexosyl ceramides 
(diHexCers) and triacylglycerols (TGs) with (VIP scores >1) are shown. (C) Heatmap showing log2 
fold changes (FC) of the significantly-altered lipids between T-cell subsets versus Th0 cells at 72 
hours of polarization. Red color denotes increase whilst blue color denotes decrease, while white 
denotes no change. An asterisk (‘*’) denotes a significant difference in the levels of the lipids, as 
determined by the univariate (paired t-test, FDR < 0.05) and multivariate (PLS-DA; abs(RCV) > 0.05 
and VIP > 1.2) analyses. 

Figure 4. Targeted quantification of ceramide levels in Th17 and iTreg cells. (A-D) Beanplots 
showing ceramide levels (log2(ng/mL)) measured in Th17 and iTreg cells isolated from the umbilical 
cord of (n=5) healthy neonates, and their paired controls (Th0) at 72 hours of polarization. (E-I) 
Showing the cellular levels of HexCers and diHexCers in the Th17 and iTreg cells along with their 
paired controls (Th0), at 72 hours of polarization. Significant differences (paired t-test, p < 0.05) are 
shown by the p-values. The dotted line denotes the mean of the population, and the black dashed 
lines in the bean plots represent the group mean. 

Figure 5. Regulation of sphingolipid pathways in human CD4+ T-cells. (A) An Illustration of 
sphingolipid metabolism in human CD4+ T-cells. (B) In silico knockout (KO) analysis showing, the % 
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of maximum flux contribution of different sphingolipid pathways towards the Cer production, by 
knocking out (one-by-one) an alternate sphingolipid pathway.  

Abbreviations: C1P, ceramide 1-phosphate; CDase, ceramidase; CerS, ceramide synthase; DES, 
dihydroceramide desaturase; GalCDase, galactosidase; GCDase, glucosidase; S1P; sphingosine 1-
phosphate; S1PPase, sphingosine phosphate phosphatases; SK, sphingosine kinase; SMase, 
sphingomyelinase pathway; SPT, serine palmitoyl-CoA transferase.  

Figure 6. Effect of SPTLC deficiency on serine palmitoyltransferase (SPT) de novo pathway 
and Th17 differentiation. (A) Illustration of SPT (SPTLCs) TKD. (B-E) Immunoblots and 
corresponding quantified intensities of SPTLC1 and SPTLC2 protein expression at 24 hours and 
fold changes of SPTLC3 mRNA expression by quantitative real-time PCR at 72 hours upon SPTLC 
TKD in Th17 cell differentiation (Scr vs SPTLC TKD; n=3; paired t-test, p<0.05). (F-G) Fold changes 
of IL17A and IL17F mRNA expression (Scr vs. SPTLC TKD) at 72 hours of Th17 cell differentiation 
(n=3; paired t-test, p<0.05). H-P) Beanplots showing the targeted quantification levels of (log2 

(ng/mL)) Cers, HexCers, and diHexCers measured in control (Scr) and SPTLC-deficient Th17 cells 
at 72 hours (n=3). Significant differences (paired t-test, p < 0.05) are shown by the p-values. The 
dotted line denotes the mean of the population, and the black dashed lines in the bean plots 
represent the group mean. 

Figure 7. Targeted quantification of the Cer and GSL levels in the UGCG-deficient Th17 cells 
(A) Illustration of GCS pathway and (UGCG) knockdown. (B) Fold change of UGCG gene expression 
in control (Scr) and UGCG-deficient Th17 cells at 12 hours (n=3; paired t-test, p<0.05). (C) Bar plot 
showing log2 fold changes of the Cers, HexCers, and diHexCers measured in UGCG-deficient (KD) 
vs. control (Scr) Th17 cells at 72 hours (n=3). (D) Elevated RM pathway module (p < 0.05) comprising 
GlcCers, diHexCers, and their congeners in Th17 cells, identified in this study.
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Figure 2  
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Figure 3  
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Figure 4  

 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428853


 29 

Figure 5 
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Figure 6 
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Figure 7 
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Quantitative analysis and genome-scale modeling of human CD4+ T-cell 
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Figure S1 
 
Genome-scale metabolic models (GEMs) of human CD4+ T-cell subsets. A bar plot 
comparing the number of reactions, metabolites and genes, included in the genome-scale 
metabolic models (GEMs) of the CD4+ T-cell subsets (Thp = T-naïve cells, T helpers: Th1, Th2, 
Th17, and iTreg cells). ‘HMR’ is Human Metabolic Reaction (GEM) [1] and ‘HTimmR’ is ‘Human 
T-immuno Reconstructor’ developed in this study. 
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Figure S2  

Metabolic genes and their differential expression in the human CD4+ T-cell subsets. A-E) It 
shows the percentage of genes in each CD4+ T-cell subset that are mapped to human metabolic 
reconstructions (HMR2, ETHMN, RECON) and pathway databases (KEGG and humanCyc). 
HMR2 has the highest coverage. ETHMN: Edinburg Human Metabolic Reconstruction [2], 
Recon2: a community-driven consensus metabolic reconstruction [3], HMR2: Human Metabolic 
Reaction, and databases [1], HumanCyc [4] and KEGG: Kyoto Encyclopedia of Genes and 
Genomes [5]. F-J) Log2 fold changes of differentially expressed (False discovery rate, FDR < 0.05) 
metabolic genes (MGs) in human CD4+ T-cell subsets (vs. Th0) during activation, and at 72 hours 
of polarization. Red and blue color denotes up- and downregulation of the MGs respectively. 
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Figure S3 
 
A bar plot showing overrepresented (hypergeometric test, q-values < 0.05) reporter pathways 
in the activated (Th0) vs. naïve (Thp) CD4+ T-cells. 
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Figure S4 

Venn diagram showing overrepresented metabolic subsystems / pathways which are common 
or unique among the CD4+ T-cell subsets when compared to Th0. 
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Figure S5 

Intracellular protein expression of GATA3 and T-bet in 5 donors (D1-5) at 72 hours of Th0, Th1 
and Th2 cell differentiation using flow cytometry. 
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Figure S6 

Intracellular FOXP3 expression in iTreg cells at 72 hours obtained from 5 donors (D1-5). 
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Figure S7 
Flow cytometry analysis of CCR6 expression and TaqMan qPCR IL17A mRNA expression as the 
polarization readout for Th17 cells differentiated at 72h, and control Th0 cells. The data shown 
are representative dot plots, and bar plots for (A) five donor (D1-5) samples used for untargeted 
lipidomics and (B) three donor (D1-3) samples used for targeted ceramide measurements. 
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Figure S8 

Beanplots showing the levels of PCs measured in T-naïve (Thp), Th1, Th2, Th17 and iTreg cells 
and their paired control (Th0) by non-targeted lipidomics, at 72 hours of polarization. >1 million 
cells were isolated from the umbilical cord of (n=5) healthy neonates. A significant difference is 
being determined by (paired t-test, p < 0.05). The black dashes in the bean plots represent the 
group mean. The legends show the p-values that are colored based on the groups/pairs. 
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Figure S9 

Beanplots showing the levels of Cers and SMs measured in Thp, Th1, Th2, Th17 and iTreg cells 
and their paired control (Th0) by non-targeted lipidomics, at 72 hours of polarization. A significant 
difference is being determined by (paired t-test, p < 0.05). The black dashes in the bean plots 
represent the group mean. The legends show the p-values that are colored based on the 
groups/pairs. 
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Figure S10 

Beanplots showing the levels of TGs measured in Thp, Th1, Th2, Th17 and iTreg cells and their 
paired control (Th0) by non-targeted lipidomics, at 72 hours of polarization. A significant 
difference is being determined by (paired t-test, p < 0.05). The black dashes in the bean plots 
represent the group mean. The legends show the p-values that are colored based on the 
groups/pairs. 
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Figure S11 

Reporter metabolites (RMs) of Th17 cells during the first 48 hours of differentiation. A-C) 
Heatmap of RMs (divided in multiple panels), that are significantly (p < 0.05) up- (red color) or 
downregulated (blue color) or remained unchanged or undetected (white color) in the Th17 cells 
as compared to their paired controls (Th0). The direction of regulation is given by the directional 
p-values [1, 6-8]. Stars (*) denotes various levels of significance (**p < 0.05). 
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Reporter metabolites (RMs) of iTreg cells during the first 48 hours of differentiation. 
Heatmap of RMs that are significantly up- (red color) or downregulated (blue color) or remained 
unchanged or undetected (white color) in the iTreg cells as compared to their paired control 
(Th0). The direction of RM regulation is given by the directional p-values. Stars (*) denotes various 
levels of significance (* p < 0.1, ** p < 0.05). 

 

 
Figure S13 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428853


 

 S14 

Expression profiles (RNA-Seq, mean ± SE) of SPTLC1,2,3, and UGCG genes in Th17 and Th0 
cells obtained from cord blood of individuals across different time-points. ‘RPKM’ is Reads Per 
Kilobase Million. 
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Figure S14 
 
Targeted quantification of Sphingomyelins (SMs) in the UGCG-deficient Th17 cells. Bar plot 
showing log2 fold changes of the SMs measured in UGCG-deficient (KD) vs. control (Scr) Th17 
cells at 72 hours (n=3). 
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Table S1. List of ceramides analyzed by targeted method. 
 

Compound Retention 
time (min) 

Internal Standard Precursor 
ion 

Product 
ion 

CE (+) 

Cer(d18:1/12:0) 6.29 Cer(d18:1-d7/16:0) 482.4 264.2 45 

Cer(d18:1/14:0) 6.86 Cer(d18:1-d7/16:0) 510.5 264.2 45 

Cer(d18:1/16:0) 7.43 Cer(d18:1-d7/16:0) 538.5 264.2 45 

Cer(d18:1/18:0) 7.93 Cer(d18:1-d7/18:0) 566.5 264.2 33 

Cer(d18:1/20:0) 8.41 Cer(d18:1-d7/18:0) 594.6 264.2 33 

Cer(d18:1/22:0) 8.9 Cer(d18:1-d7/18:0) 622.6 264.2 33 

Cer(d18:1/24:0) 9.45 Cer(d18:1-d7/24:0) 650.6 264.2 36 

Cer(d18:1/25:0) 9.69 Cer(d18:1-d7/24:0) 664.7 264.2 36 

Cer(d18:1/26:0) 9.99 Cer(d18:1-d7/24:0) 678.7 264.2 36 

Cer(d18:1/18:1(9Z)) 7.43 Cer(d18:1-d7/24:1(15Z)) 564.5 264.2 29 

Cer(d18:1/24:1) 8.79 Cer(d18:1-d7/24:1(15Z)) 658.6 264.201 38 

Cer(d18:1/26:1) 9.37 Cer(d18:1-d7/24:1(15Z)) 676.6 264.2 38 

HexCer(d18:1/12:0) 5.96 HexCer(D18:1/17:0) 644.5 264.2 45 

HexCer(d18:1/16:0) 7.01 HexCer(D18:1/17:0) 700.5 264.2 45 

HexCer(d18:1/18:0) 7.57 HexCer(D18:1/17:0) 728.1 264.2 43 

HexCer(d18:1/20:0) 8.02 HexCer(D18:1/17:0) 756.6 264.2 45 

HexCer(d18:1/22:0) 8.48 HexCer(D18:1/17:0) 784.7 264.2 45 

HexCer(d18:1/23:0) 8.69 HexCer(D18:1/17:0) 798.7 264.2 45 

HexCer(d18:1/24:0) 8.93 HexCer(D18:1/17:0) 812.7 264.2 45 

HexCer(d18:1/18:1(9Z)) 7.01 HexCer(D18:1/17:0) 726.6 264.2 45 

HexCer(d18:1/24:1) 8.36 HexCer(D18:1/17:0) 810.7 264.2 45 

diHexCer(d18:1/12:0) 5.79 diHexCer(D18:1/17:0) 806.5 264.2 45 

diHexCer(d18:1/14:0) 6.24 diHexCer(D18:1/17:0) 834.6 264.2 53 

diHexCer(d18:1/16:0) 6.83 diHexCer(D18:1/17:0) 862.6 264.2 53 

diHexCer(d18:1/18:0) 7.4 diHexCer(D18:1/17:0) 890.2 264.2 52 

diHexCer(d18:1/20:0) 10.52 diHexCer(D18:1/17:0) 918.7 264.2 53 
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