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Abstract: 

Self-assembly is often studied in a three-dimensional (3D) solution, but a significant 

fraction of binding events involve proteins that can reversibly bind and diffuse along a 

two-dimensional (2D) surface. In a recent study, we quantified how proteins can exploit 

the reduced dimension of the membrane to trigger complex formation. Here, we derive a 

single expression for the characteristic timescale of this multi-step assembly process, 

where the change in dimensionality renders rates and concentrations effectively time-

dependent. We find that proteins can accelerate complex formation due to an increase in 

relative concentration, driving more frequent collisions which often wins out over slow-

downs due to diffusion. Our model contains two protein populations that associate with 

one another and use a distinct site to bind membrane lipids, creating a complex reaction 

network. However, by identifying two major rate-limiting pathways to reach an equilibrium 

steady-state, we derive an accurate approximation for the mean first passage time when 

lipids are in abundant supply. Our theory highlights how the ‘sticking rate’, or effective 

adsorption coefficient of the membrane is central in controlling timescales. We also derive 

a corrected localization rate to quantify how the geometry of the system and diffusion can 

reduce rates of localization. We validate and test our results using kinetic and reaction-

diffusion simulations. Our results establish how the speed of key assembly steps can shift 

by orders-of-magnitude when membrane localization is possible, which is critical to 

understanding mechanisms used in cells.  
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I. Introduction: 

The speed with which populations of interacting biomolecules such as proteins relax to 

an equilibrium steady-state is an important reference point for understanding how fast 

they can self-assemble in the cell.  In clathrin-mediated endocytosis, the construction of 

a protein-coated membrane vesicles takes ~60s, across a variety of cell types1. However, 

the ultra-fast form of endocytosis is over 1000 times faster, while still requiring assembly 

of proteins and budding of the membrane2. The physical variables of protein 

concentrations, membrane lipid composition, association rates, diffusion, and cell 

geometry that determine these timescales thus must support this similar function at quite 

divergent timescales. Experiments performed in vitro can determine timescales of 

association and assembly under specific conditions, but transitioning to the cell requires, 

at the very minimum, accounting for changes in concentrations, membrane composition, 

and system dimensions. We focus here on how the ability of protein populations to 

reversibly localize to membranes, an essential step in endocytosis, in signal activation3, 

in cell polarity establishment4, and in cell adhesion5, will alter timescales to complex 

formation from an initially unbound population. By deriving characteristic timescales for 

this process, which could be directly mapped to an in vitro system, we can predict how 

transitions in environment and components could accelerate or decelerate key steps in 

assembly processes on membranes.  

 In complex biochemical reaction networks in chemistry and biology, bimolecular 

association represents a fundamental building block, and thus provides a well-studied 

theoretical foundation for our model. Kinetics of the well-mixed rate equations are 

analytical soluble. The kinetics of explicitly spatial models of reaction kinetics are slower 
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than rate-equations as equilibrium is approached6, 7, but in 3D, the time-dependence is 

otherwise accurately predicted by rate equations. In dimensions less than three, rate-

equations fail to fully capture the effects of diffusional dynamics on kinetics at all time-

scales8, but optimal macroscopic rates can be derived to approximate the bulk reaction 

kinetics9-11. Characterizing how bimolecular association depends on kinetic and 

geometric or spatial parameters is simplified by the definition of characteristic times, such 

as the first passage time (FPT)12 or mean first passage time (MFPT)13, 14. While FPTs 

describe the time for a stochastic process to reach some specified threshold, such as the 

time to reach a target in confinement15, 16, the MFPT represents a population average, 

and is thus descriptive of both deterministic and stochastic models. For example, the 

MFPT of a first order process with rate 𝑘 is simply given by 1/𝑘, which is ln	(2)!"~1.44 

times longer than the half-time (50% completion). For bimolecular association, the MFPT 

must also depend on initial concentration of species, but the reaction rate constants 

remain a primary determinant of characteristic times. Although the association rate for a 

pair of biomolecules fundamentally depends on electrostatics and molecular structure, for 

example17, we will assume this contribution to the rate is known. Using the Smoluchowski 

and Collins-Kimball model18, we will explicitly account for the additional dependence of 

the rate on diffusion and spatial dimension. This is important, because incorporating the 

effects of geometry and diffusion on reaction rate constants allows us to predict 

timescales from the coupled ordinary differential equations (ODE), which is significantly 

simpler than partial differential equations (PDE). Along with the concentrations, the 

reaction rates can effectively predict either the MFPT or half-time in two-component 

systems.  
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 	 In complex biochemical reaction networks, however, predicting kinetics and 

relaxation times when more than two species are coupled together nonlinearly becomes 

rapidly intractable, often necessitating numerical solutions or prior knowledge of the rate-

limiting steps19. In our model, we have added one additional component and 9 additional 

reaction channels, due to the additional ‘domain’ of the membrane, extending significantly 

beyond simple bimolecular association but with constraints on binding rates as they 

change from 3D to 2D. Diffusion can play a critical role via its reduction from 3D to 2D 

(~100 fold), and its impact on localization times to the surface.  We note that diffusion-

influenced bimolecular reactions have also been theoretically studied when additional 

complexity is added not via additional reactants, but via multiple sites per reactant20, 21, 

or via tethering between sites22, 23. For these more complex reaction networks, solutions 

can always be found numerically using non-spatial rate-equations or spatial reaction-

diffusion methods24, both of which we use here for validation. Stochastic single-particle 

reaction-diffusion methods in particular are ideal for quantifying the role of diffusion and 

density fluctuations in kinetics of bimolecular association9, multi-site phosphorylation25, or 

oscillators26, for example.  Although dramatic new behavior can emerge in spatial 

representations, for simpler networks like the one studied here, non-spatial solutions tend 

to be qualitatively (often quantitatively) similar27.  

 Bimolecular association with the possibility of dimensional reduction to a surface 

represents a more complicated but still fundamental building block of many cell-biology 

processes; understanding the origins of its characteristic timescales is important for 

assessing speeds in yet more complicated systems.  By allowing transitions between the 

surface, the bimolecular association rates and the protein concentrations of the two-
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component system can be thought of as effectively time-dependent. The role of 

dimensional reduction is of long-standing interest in biology; Adam and Delbruck 

quantified when a ligand can more efficiently locate its membrane-bound receptor target 

by adsorbing to the membrane and searching in 2D28. Berg and Purcell predicted how 

receptor density and affinity, along with diffusion, can determine activation times of 

receptors29.  More recently, the MFPT for a molecule to reach a surface target was shown 

to be sensitive to the switching time from solution to surface30. In the nucleus, dimensional 

reduction to the approximately 1D DNA was predicted to help proteins locate promoters31, 

which has been observed experimentally32. In all of these examples, one of the ‘reactants’ 

is already localized to the lower-dimensional domain, and thus the predicted time-scales 

do not describe how populations of interacting molecules can exploit dimensional 

reduction to control assembly speeds.  

Dimensional reduction impacts not only the kinetics of association reactions, but 

also the probability of proteins partitioning to bound versus unbound states (Fig 1a).  For 

receptor targeting, this means scaffold proteins that also are lipid bound are significantly 

more likely to be bound to their receptor33, as has also been observed experimentally34.  

The effective increase in concentration on the membrane can cause increases in 

formation of multi-protein oligomers35, and in signaling networks, it can promote 

bistability3. In a recent study36, we developed the model we use here to derive an effective 

equilibrium constant that predicts how concentrations, binding affinities in 3D and 2D, and 

volume to area ratios will alter the equilibrium. We found dimensional reduction triggered 

dramatic increases in complex formation for physiologic regimes. This framework also 

extends to proteins that do not bind directly to the membrane themselves, but can form a 
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scaffold on the surface via multi-valent interactions36, as has also been observed 

experimentally for clathrin assembly on in vitro membranes37. Using reaction-diffusion 

simulations, this work tested how dimensional reduction impacted the speed of assembly 

for physiologic binding pairs (Fig 1), and here we develop a predictive analytical theory. 

 We first provide relevant background on bimolecular kinetics for two-component 

systems in a single volume. We derive a new localization rate to capture the influence of 

geometry, diffusion, and affinity on binding of a molecule from solution to a membrane. 

We define our model, and our target MFPT, which describes the nonequilibrium relaxation 

from a well-mixed unbound ensemble to the final equilibrium ensemble. Our model is 

sufficiently complex to study how time-scales are controlled by  (i) dimensional reduction 

(ii) membrane ‘sticking rate’ (iii) protein-protein association rates (iv) protein 

concentrations, and (v) diffusion in 2D and 3D. Our derivation of an approximate MFPT 

is based on constructing linear systems that quantify kinetics of simplified sub-networks, 

with diffusion and dimension accounted for in the reaction rate constants. The theory is 

remarkably accurate, and produces the correct behavior in the variables (i)-(v).  For 

equivalent concentrations of proteins, we show that our theory more accurately describes 

the half-time rather than the MFPT. Lastly, we use numerical simulations of both non-

spatial and (stochastic) spatial reaction-diffusion implementations of the model to validate 

our results and our diffusion-influenced corrections to reaction rates. We discuss 

limitations and future extensions of this approach to variations of this model, including 

multi-valent self-assembly and liquid-liquid phase separations.  
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Figure 1. Localization to the membrane can accelerate association times for 

physiologic binding partners. a) For binding between the partners LDLRAP1 and AP2, 

both of which bind specific plasma membrane lipids, localization to the membrane 

accelerates the relaxation to equilibrium, in addition to dramatically shifting the equilibrium 

towards the complexed state. b) For some partners such as DAB2 and AP2, they have 

slow lipid binding and localization reduces equilibration time, but for others with moderate 

lipid binding rates, relaxation times are faster to the more stable equilibrium. For the 

AP2CAR protein, the lipid on rate is increased relative to AP2, due to binding to 

transmembrane cargo.  

 

II. THEORY 

II.A Background on bimolecular association in well-mixed systems 

Relaxation kinetics: We first provide relevant background on the kinetics of association 

for reversible bimolecular systems, as the functional forms inform the kinetics in the 
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coupled system. We consider two components 𝑃" and 𝑃# that are homogeneously 

distributed in the system volume and reversibly bind,  

𝑃" + 𝑃# ⇌ 𝑃"𝑃#					(1) 

The time dependence is determined from the rate equation  

$[&!&"]
$(

= 𝑘)*[𝑃"][𝑃#] − 𝑘)++[𝑃"𝑃#] (2) 

where, 𝑘)* and 𝑘)++ are the macroscopic on and off rates, respectively. With the initial 

condition that all proteins were unbound in the solution ([𝑃"𝑃#], = 0), the solution to this 

ordinary differential equation (ODE) is well-known: 

[𝑃"𝑃#](𝑡) =
-!-"
."
( /#!$!/#"$

-!/#"$!-"/#!$
) (3) 

where, 𝑟" =
.!01.!"!2.%."

#
, 𝑟# =

.!!1.!"!2.%."

#
, 𝑞, = 𝑘)*[𝑃"],[𝑃#],, 𝑞" = −(𝑘)*([𝑃"], +

[𝑃#],) + 𝑘)++), and 𝑞# = 𝑘)*.  This solution is independent of the dimension of the 

system.  

Characteristic timescales: A representative timescale for this relaxation process can be 

determined by solving for the half time 𝜏"/#, or a mean-first passage time (MFPT). These 

timescales characterize the non-equilibrium relaxation from a well-defined initial state to 

the final equilibrium state, where the half time	𝜏"/# is simply when the concentration of 

complex 𝑃1𝑃2 is half of the equilibrium concentration:  [𝑃"𝑃#](𝜏"/#) =
[&!&"]&'

#
.  The MFPT 

is defined by13: 

𝜏/.45&6 =
"

[&!&"]&'
∫ 𝑡7
,

$[&!&"]
$(

𝑑𝑡   (4) 
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where,	[𝑃"𝑃#]/. is the equilibrium concentration. The analytical solution for the MFPT for 

Eq. (3) is quite complicated. Both exponentials in Eq. 3 are decaying with time, 	𝑟#, 𝑟" < 0 

with 𝑟# < 𝑟" (when 𝑟# = 𝑟", an additional time-dependent solution is required). When initial 

concentrations of 𝑃" and 𝑃# are unequal, we find a good approximation to the MFPT is 

given by:  

𝜏/.45&6 ≈ − "
-"
= #

(9()([&!]%0[&"]%)09(**)01(9()([&!]%0[&"]%)09(**)"!29()
"[&!]%[&"]%

   (5) 

showing minor deviations with large values of  𝑘)*&&[𝑃"𝑃#]/.~10;. When [𝑃"], = [𝑃#],, Eq 

5 predicts the MFPT for weak to moderate binding, but for strong binding, the prediction 

is too fast and converges to the half-time, as we will see explicitly below.  

For pseudo-unimolecular binding, [𝑃"], << [𝑃#],, the reversible MFPT simplifies to 

𝜏/.45&6 =
"

9(**09()++[&"]%
				(6)	

Similar to Eq 5, when [𝑃"], = [𝑃#],, this timescale again predicts the MFPT for weak to 

moderate binding, but converges to the half-time for strong binding. This convergence is 

complete for irreversible binding, where when 𝑘)++ = 0 and [𝑃"], = [𝑃#],, Eq 6 is instead 

equivalent to 𝜏"/#, not the slower MFPT. Thus, we summarize that Eq. 6 is quite 

accurate in describing the MFPT of reversible association for unequal concentrations of 

partners, and for equal concentrations, the accuracy depends on the binding strength. 

We find the same trend below for our coupled system MFPT.  
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Figure 2. Model of bimolecular protein association with reversible membrane 

association: a) Two proteins 𝑃1 and 𝑃2 bind reversibly in 3𝐷 solution. b) Proteins are 

restricted to the membrane surface through binding a lipid 𝑀 using a separate binding 

interface, performing a reversible 2𝐷 interaction. c) Coupling between the 3𝐷 and 2𝐷 

domains, where the three left-hand interactions involve binding from 3𝐷 → 2𝐷 of either a 

single protein to a lipid, a single protein to a membrane bound protein, or a protein 

complex to a lipid. These are thus 3𝐷 searches. The final interaction on the right is purely 

2𝐷, where a membrane bound protein complex binds an additional lipid. For each of these 

4 interactions, the pink and blue proteins can be swapped, resulting in 8 distinct reactions.  

 

II.B Background on model of protein association with membrane localization 

Model description: Now, in addition to reversible binding between our two proteins, we 

give each protein an additional binding site that allows it to reversibly localize to the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.29.428888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428888
http://creativecommons.org/licenses/by-nc/4.0/


membrane via interaction with a specific type of lipid, 𝑀. Thus, it is a 1:1 Langmuir binding 

to a surface of diffusible binding sites, not an adsorption model, allowing each protein-

protein complex to potentially bind two lipids (Fig 2). We previously characterized the 

equilibrium behavior of this model36, so we briefly summarize the features here. Proteins 

diffuse and reversibly bind to one another both in solution (3D) and on the membrane 

(2D). The full set of 10 reversible interactions are illustrated in Fig 1 (see Methods Eq 18). 

There are nine distinct species possible: 𝑃", 𝑃#,	𝑀, 𝑀𝑃", 𝑃#𝑀, 𝑃"𝑃#, 𝑀𝑃"𝑃#, 𝑃"𝑃#𝑀, and 

𝑀𝑃"𝑃#𝑀. 

Macroscopic vs microscopic rates  In order to focus our theoretical analysis on the non-

spatial rate equations, we incorporate the influence of diffusion and geometry on 

reaction rate constants. The mathematical relationships between the macroscopic rates 

𝑘)* and 𝑘)++ and the microscopic rates 𝑘< and 𝑘= are summarized in Table 1 with 

references. The relationships derive from the Smoluchowski model38 and are discussed 

elsewhere (e.g. see ref27). For numerical simulations, we primarily solve the coupled 

rate equations which use macroscopic rates.  To accurately compare the kinetics of this 

non-spatial model with an explicit spatial representation using the single-particle 

reaction-diffusion model39, the macroscopic rates needed for the ODE simulations must 

be derived from the microscopic rates, or vice versa.  The final equilibrium state 

obtained from both numerical approaches will be identical because of their conserved 

equilibrium constant, 𝐾> =
9,
9-
= 9(**

9()
, in all dimensions.  

Table	1.	Macroscopic	rates	with	explicit	diffusion	dependence	
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Dimension	 Rate	

3D40	
𝑘!"#$ = #

1
𝑘%#$

+
1

4𝜋𝜎𝐷&!&#$
*
'(

	

2D9	

𝑘!")$ = +
1
𝑘%)$

+
1

8𝜋𝐷&!&)$
-

4log	(𝑏(𝜌)𝜎 )
(1 − 𝜎) 𝑏(𝜌))⁄ )) −

2
1 − 𝜎) 𝑏(𝜌))⁄ − 19:

'(

	

Localization	&	

adsorptionthis	paper	

𝑘!"*!+ =
1
𝑀,𝐿

#
𝐿

3𝐷&!&
+

1
𝑘!"-.𝑀,𝐿

*
'(

 

microscopic	rates	𝑘.,	binding	radius	𝜎,	diffusion	constant	𝐷/0/ = 𝐷1 +𝐷2,	density	𝜌 =
345(7!",7!#)

:
,	surface	

area	𝐴,	length	𝑏(𝜌) = 2, 1
;<
+ 𝜎2,	length	𝐿 = =

:
,	lipid	concentration	𝑀>,	3D	binding	rate	𝑘0?@A .	

2D binding rates from 3D rates: Given a 3D association rate for a binding pair, the 

corresponding 2D rate will differ both in magnitude and dimensions. The macroscopic 

rates will explicitly account for changes in diffusivity from 3D to 2D (Table 1), hence we 

must specify how the microscopic association rate will transform. Localization restricts 

the translational and the rotational movement, limiting the orientations the two surface-

bound species can sample.  While the exact scale of the change thus depends on the 

molecular properties of the two species41, 42, relative scales between equilibrium 

constants in 3D and 2D is on the molecular (~𝑛𝑚) lengthscale41. Here we approximate 

this change as fully captured by the relative microscopic association rates, such that 

9-BC

9-"C
= 2𝜎, where 𝜎 = 1𝑛𝑚.  We assume that the microscopic unbinding rate is 

unchanged, 9,
BC

9,
"C = 1. Because the relative macroscopic association rates may not be 
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altered by exactly 2𝜎  (see Table 1), the macroscopic off rates may not have the same 

value. This relation is applied to both the protein-protein association rates in 2D, and the 

protein-lipid association rates in 2D.  

Although species on the membrane have concentration in units of particles/µm2 and 

species in solution have concentration of particles/µm3, for the rate-equations, all 

species can be solved in volume units, or equivalently, in dimensionless copy numbers, 

by rescaling the 2D binding constants by solution volume (V) to membrane surface area 

(A) ratio (V/A). Thus, we can define a (dimensionless) dimensionality factor, 

 𝐷𝐹 = ?
@A

   (7) 

where ℎ	is of the order of 2𝜎 and is defined by ℎ = 9()BC

9()"C
. To differentiate 3D and 2D 

binding rates, we will now explicitly retain 2D superscripts (e.g. 𝑘)*#>) with no superscript 

for 3D rates. 

II.C Deriving rates of localization to a surface with geometry and diffusion 

correction 

The rate of proteins binding to lipids is dependent on the time to diffuse to the 

membrane surface, and the probability of sticking to the lipid-covered surface upon 

arrival. In a well-mixed approximation (i.e., ODEs), the rate of lipid binding does not 

account for this diffusional search to the surface, as the lipids are effectively accessible 

throughout the solution volume. However, we can approximately correct for the impact 

of the diffusional search to the surface on these 3D reaction rates using the 

Smoluchowski model38 with a partially absorbing surface, or radiation boundary18.  
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 We consider a density of proteins in solution 𝑃,, initially uniformly distributed in a 

rectangular volume of height 𝐿. The lipids are restricted to the bottom surface of the 

volume of area 𝐴, at a density of 𝜌4 (particles/𝜇m2). The rate of proteins binding to the 

lipid particles is 𝑘)*&4. When the copy numbers of lipids on the surface is sufficiently high 

(𝜌4𝐴 ≫ 𝑃,𝐴𝐿), binding of each protein to a lipid does not change 𝜌4 appreciably. The 

1:1 binding model can thus be replaced by a surface adsorption model, with the 

adsorption rate 𝜅 = 𝑘)*&4𝜌4 (𝜇m/s). In the limit of excess lipids, the kinetics of this 

effectively 1D model is a very good approximation to the full 3D model with 1:1 binding 

43. We are thus interested in the MFPT of a 1D diffusion model,  

BC(D,()
B(

= 𝐷 B"C(D,()
BD"

 (8a) 

where D is the diffusion constant of the protein in solution. The density 𝑝(𝑧, 𝑡) is subject 

to a radiation boundary at z=0 and a reflective boundary at z=L (particles do not exit the 

volume),  

𝐷 BC(D,()
BD

P
DF,

= 𝜅𝑝(0, 𝑡) (8b) 

BC(D,()
BD

P
DFG

= 0  (8c) 

with an initially uniform distribution of particles, 

𝑝(𝑧, 𝑡 = 0) = 𝑃,𝐴. (8d) 

The solution to this diffusion problem and the resulting MFPT is not trivial due to the 

imposed boundary conditions23. However, previous work derived relatively simple 
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results for this same model by solving a differential equation for the MFPT itself, 

giving14: 

〈𝜏〉 = G"

H>
+ G

I
 (9) 

From this average timescale, we then define a new, diffusion-corrected 3D localization 

rate (units M-1s-1) as: 

𝑘)*J)K =
"

4%G
S G
H>
+ "

9()+D4%G
T
!"

  (10) 

where we use the 3D concentration units for 𝑀, = 𝜌4/𝐿. This is one important result in 

our paper, because it will allow us to account for spatial contributions to relaxation times 

without having to solve systems of PDEs as in Eq 8. This result is also copied into Table 

1 for convenience. For other non-rectangular geometries, we specify 𝐿 = ?
@
 . We 

describe the rate 𝑘)*&4𝑀, as the membrane ‘sticking rate’, as it controls the speed of 

protein adhesion to the lipid membrane. Our new macroscopic rate in Eq 10 thus 

quantifies how system length-scales, membrane sticking rate, and diffusion will impact 

localization events, in a similar way to the purely 3D and 2D results (Table 1). We can 

see that in the limit of fast diffusion and smaller length-scales L, 𝑘)*J)K = 𝑘)*&4 , as 

expected. In other words, assuming lipids well-mixed in 3D is reasonable. However, this 

equation also shows that localization rates depend on the sticking rate, with higher 

values of either 𝑘)*&4 or 𝑀, both contributing to increased sensitivity to diffusion. Overall, 

𝑘)*J)K ≤ 𝑘)*&4. 

II.D Deriving characteristic timescales of protein association with membrane 

localization included 
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This is the primary focus of our paper, to derive an approximation to the MFPT when 

reversible membrane localization is included in the bimolecular association model.  Now 

we are tracking the formation of the fully bound protein complex on the membrane 

surface,  

τ/.45&6 =
"

[4&!&"4]&'
∫ 𝑡7
,

$[4&!&"4](()
$(

𝑑𝑡   (11) 

and we again assume initial conditions where both proteins and lipids are fully unbound.	

[𝑀𝑃"𝑃#𝑀]/. 	 is the equilibrium concentration of species 𝑀𝑃"𝑃#𝑀, and a solution for this 

equilibrium value was derived in earlier work36, although we see below it is not needed.  

																	

	

Figure 3. Major pathways carrying flux from initial to final equilibrium state. a) In 

one major pathway, reactants initially form a protein-protein complex in solution, that then 

localizes to the membrane. b) In the other major pathway, proteins localize to the 

membrane first, and then assemble a protein-protein complex in 2D. c) The solution 

pathway is slower, and rate-determining, when the membrane has a low sticking 

rate,	𝑘)*&4[𝑀],, or typically when 𝑘)*&4[𝑀], < 𝑘)*&&[𝑃#],. Here 𝑘)*&& = 10L𝑀!"𝑠!", DF=30, 

[𝑀], = 100𝜇𝑀, [𝑃"], = 1𝜇𝑀, and [𝑃#], = 10𝜇𝑀. The membrane pathway is rate-

a c

b

Membrane first

Solution first

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.29.428888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428888
http://creativecommons.org/licenses/by-nc/4.0/


determining for all increasing membrane sticking rates. The sticking rate alone has a 

strong influence on the MFPT, as the gray line shows 𝜏 = "
9()+D[4]%

, describing to a large 

extent the acceleration of the MFPT in the intermediate sticking rate regime.  

 

Division of flux in two major reaction pathways: There is no closed form solution for 

𝑀𝑃"𝑃#𝑀(𝑡), unlike simple bimolecular association above, due to the nonlinear couplings 

of now 9 species (Methods Eq 18). Even in the pseudo-first order limit where lipids and 

one of the proteins are in excess, the coupled linear equations are too numerous to 

solve for symbolic timescales.  In our model, there are multiple pathways that connect 

our initial set of species (𝑃", 𝑃#, 𝑀) to the membrane bound complex 𝑀𝑃"𝑃#𝑀,	which we 

treat as the final state. We thus identify two major reaction pathways that carry flux from 

the initially unbound states to this final equilibrium state (Fig 3), with mathematical 

details provided in the Methods section. In the solution pathway, proteins first associate 

with one another in solution, and then localize to the membrane. We account for the 2D 

recruitment of the second lipid using a steady-state approximation (Eq. 22). In the 

membrane pathway, proteins first localize to the membrane, and then form a protein 

complex in 2D.  In both pathways, protein-protein association is always reversible, but in 

the membrane pathway, the lipid binding is treated as irreversible due to subsequent 

stabilizing binding in 2D. We exclude from any reaction pathway the recruitment of a 

protein to a membrane bound protein, as it contributes negligibly to the overall reaction 

progression.  
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Approximate expression for the MFPT:  Based on our division of the relaxation kinetics 

into two independent pathways, we define the overall MFPT to be given by:	

                                     τ<CC-)M45&6 = max(𝑓"𝜏/.N/N, (1 − 𝑓")𝜏/.O)J), (12) 

where, 𝜏/.N/N and 𝜏/.O)J are the MFPTs we will define for the membrane and solution 

reaction pathways, respectively. The two pathways are treated independently, but in 

reality they are in competition, so we must quantify the flux of proteins passing through 

each reaction pathway; thus we define the ratio:  

𝑓" =
[&!]%[4]%9()+D

[&!]%[4]%9()+D0[&!]%[&"]%9()++
					(13)	

𝑓" quantifies the initial driving force of a protein to bind to a lipid, rather than another 

protein. The factor 𝑓" is important, as it effectively defines which pathway will be taken 

as shown in Fig 3c.  When [𝑀],𝑘)*&4 > [𝑃#],𝑘)*&&, the membrane pathway is dominant, 

and for high membrane sticking rate, 𝑓" → 1. Conversely, when [𝑀],𝑘)*&4 < [𝑃#],𝑘)*&&, 𝑓" 

drops approximately linearly with decreasing sticking rate. With the two simultaneous 

reaction pathways, Eq 12 chooses the slower reaction pathway as governing the 

system MFPT.  

Assumptions for explicit MFPT results: For all the explicit MFPT expressions we make 

the following assumption 1) Lipids are in excess, or [𝑀](𝑡) ≈ [𝑀],, where [𝑀],  is the 

initial concentration of lipid 𝑀. 2) Both proteins bind to the lipids with a similar 

association rate, 𝑘)*
&!4 = 𝑘)*

&"4 ≡ 𝑘)*P4. For a wide variety of physiological or in vitro 

systems, an excess of lipids relative to proteins is a good approximation, where even 
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when only 1% of lipids act as binding partners, they still have a significantly higher copy 

number than most cellular proteins36. 

MFPT of each pathway in the pseudo-first order limit: We will always assume that the lipid 

population is constant, and we further assume here one protein is in excess, [𝑃"], <<

[𝑃#],.	 Since now our binding interactions are pseudo-first order, the coupled rate 

equations become linear in both the solution and membrane pathways, and both the time-

evolution of [𝑀𝑃"𝑃#𝑀](𝑡) and the MFPT can be derived analytically (see Methods).  

For the membrane pathway, we derive: 

𝜏/.N/N = [ "
9()+D[4]%

+	 "
9(**
++ 0>59()++[&"4]&'

]		 		(14)	

where [𝑃"],, [𝑃#],, and [𝑀], are the initial concentration of proteins and lipids, [𝑃#𝑀]/. =

[&"]%[4]%9()+D

9(**
+D09()+D[4]%	

	is the equilibrium concentration of species 𝑃#𝑀 in isolation, and the 

dimensionality factor DF (Eq 7), is defined with the ratio of protein-protein binding rates, 

ℎ = 𝑘)*&&/𝑘)*
#>,&&. The DF controls how much the search space contracts on the surface, 

effectively concentrating the reactants, which is relative to the change in the rate from 3D 

to 2D, encoded in the length scale ℎ. This quite simple mathematical expression is the 

summation of two timescales in the Eq 6 form (1) time for a free protein to irreversibly 

bind a lipid, and (2) time for two proteins to bind reversibly in 2D. The membrane pathway 

MFPT is thus dominated by the slower of the two timescales, which for lower sticking rate 

is "
9()+D[4]%

, and for higher sticking rates, higher DF, and faster protein-protein association, 

transitions to the second term, "
9(**
++ 0>59()++[&"4]&'

. 
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In a similar manner, we derive the MFPT for the solution pathway to define: 

𝜏/.O)J = ^ 1

𝑘𝑜𝑛𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 +
"

2𝑘𝑜𝑛
𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓_ 𝑓#	 (15a)	

where		

𝑓# = `
R𝑘𝑜𝑛𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 ST2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓+2𝑘𝑜𝑛
𝑃𝑀[𝑀]0U−𝑘𝑜𝑛𝑃𝑀[𝑀]0𝑘𝑜𝑓𝑓𝑃𝑃

R𝑘𝑜𝑛𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 ST2𝑘𝑜𝑓𝑓
𝑃𝑀𝑒𝑓𝑓+2𝑘𝑜𝑛𝑃𝑀[𝑀]0U−2𝑘𝑜𝑛𝑃𝑀[𝑀]0𝑘𝑜𝑓𝑓𝑃𝑃 a ≥ 1  (15b) 

𝑘)++
&4/++ = 𝑘)++&4 9(**

+D

,.L>5K9()LD[4]%0#9(**
LD 	 	 	 	 (15c)	

where	𝐷𝐹′	is defined using the lengthscale between protein-lipid rates,	ℎ′ = 𝑘)*&4/𝑘)*
#>,&4. 

This solution pathway MFPT is essentially the summation of two times, (1) time for two 

free proteins to bind reversibly in solution, (2) time for a protein-protein complex to 

reversibly bind the membrane, via one or two lipids. The sum is scaled by a factor 𝑓# 

which is 1 in the limit of low membrane sticking rate, and ≥ 1 for larger sticking rates. This 

scalar is derived in the Methods and results from the coupling between the protein 

association in solution and binding of the complex to the membrane. The dissociation of 

the protein-protein complex from the membrane has an effective off rate, 𝑘)++
&4/++, which 

is the only place where a dependence on the DF occurs. When a protein-protein complex 

binds to the membrane via a single lipid, it can rapidly bind a second lipid in 2D, reducing 

the dissociation of the complex back into solution.  We made an empirical correction to 

this rate based on our derivation (Eq 24), so that we now see in Eq 15c that 𝑘)++
&4/++ ≤

𝑘)++P4 /2. That is, the ability to bind the second lipid can only make dissociation from the 

membrane slower (modulo 2).  
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Critically, our timescales are dependent only on the initial concentrations, rate 

constants, and dimensionality factors of the model, with no knowledge of the equilibrium 

state necessary. Despite the assumptions we have made to derive these timescales (see 

Methods), our single expression for the MFPT:   

τ<CC-)M45&6 = max d𝑓" e
"

9()+D[4]%
+ "

9(**
++ 0>59()++[&"4]&'

f , (1 − 𝑓")𝑓# ^
1

𝑘𝑜𝑛
𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 +

"
2𝑘𝑜𝑛
𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓_g								

(16)	

provides an excellent description of the numerical result, as shown in Fig 4. This is the 

primary result of our paper. As we explicitly test further below, the impact of diffusion is 

accounted for in the protein-protein rates (Table 1), and the impact of geometry and 

diffusion can be directly incorporated into the model by replacing the protein-lipid binding 

rate, 𝑘)*&4, with the localization-corrected rate 𝑘)*J)K 	in Table 1. 	

	

III: RESULTS  

III.A MFPT in pseudo first-order limit 
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Figure 4. Relaxation times accelerate with increasing sticking rate to the 

membrane, and with higher dimensionality factor (DF). In the pseudo first-order limit 

([𝑃#], = 10[𝑃"],), the approximate theoretical MFPT (circles) shows excellent agreement 

with the numerical results from solving the full system of ODEs (continuous curves). The 

MFPT of the fully coupled system is plotted against the membrane sticking rate for five 

different values of dimensionality factor (DF), as indicated in the legend. We keep the 

copy numbers of lipids constant at [𝑀], = 100𝜇𝑀, and vary 𝑘)*&4 on the x-axis.  The black 

dashed line is the MFPT for a purely solution reaction, showing that for low sticking rates, 

membrane localization does slow the equilibration. a) 𝑘)++ = 0.01s−1 in all reactions. b) 

𝑘)++ = 1𝑠!" in all reactions. For both panels, 𝑘)*&& = 10L𝑀!"𝑠!", [𝑃"], = 1𝜇𝑀, [𝑃#], =

10𝜇𝑀.  

	

In Fig 4 we observe excellent agreement between our theoretical predictions and the 

numerically calculated MFPT. Our results show how either by varying the binding rate 

between proteins to lipids (here from 𝑘)*&4 ∼ 10"-10W𝑀!"𝑠!"), or by increasing the DF, one 

a                                                                   b
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can accelerate the association times by orders-of-magnitude, from seconds to 

milliseconds. The MFPT is broadly divided into two regimes relative to the solution binding 

time-scale, with the boundaries of these two regimes essentially determined by the criteria 

that 𝑓" ≈ 0.5, or 𝑘)*&4[𝑀], ≈ 𝑘)*&&[𝑃#],. 

In the slow membrane binding regime, where 𝑘)*&4[𝑀], < 𝑘)*&&[𝑃#],, a larger fraction 

of proteins binds first in solution and then localize to the membrane surface, making the 

solution binding pathway (usually) the dominant reaction pathway (Eq. 15).  Simplifying 

the result in Eq 15 multiplied by the factor 1 − 𝑓", we see that for very slow binding (𝑘)*&4 ∼

10"-10H𝑀!"𝑠!") we get,  

𝜏 ≈ ^ "
2𝑘𝑜𝑛
𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓_,     (17) 

where the timescales are dominated by the time for a protein-protein complex to 

reversibly bind the membrane, via one or two lipids.  

       In the fast lipid binding regime, where 𝑘)*&4[𝑀], > 𝑘)*&&[𝑃#],, a larger fraction of 

proteins first localizes to the membrane and then bind one another in 2D, following the 

membrane pathway. In this regime, the timescales continue to accelerate, but at an 

increasing slower rate, until they reach a plateau. One can see this directly from Eq 14, 

where the prefactor 𝑓" approaches 1, and thus the MFPT is first dominated by "
9()+D[4]%

. 

With increasing membrane stickiness, however, we switch to fully 2D binding, which is 

controlled by the 2D binding rate of "
9(**
++ 0>5∗9()++[&"4]&'

. Thus the maximum time-scale is 

the purely 2D system relaxation time. 
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The membrane sticking rate has a dominant control over the MFPT in the transition 

regions, where 𝑓"~0.5 and both pathways will carry flux to the equilibrium state. While this 

is more obvious for the membrane pathway, for the solution pathway as well, this 

membrane sticking rate is a dominant contribution to the MFPT via the power law 𝜏 ≈

"
9()+D[4]%

. In Fig 4a for example, the slope is approximately linear on a log-log scale in the 

range from 𝑘)*&4 ∼ 10# − 102𝑀!"𝑠!".	While it is not exact (Fig 3c, grey line), we 

nonetheless see that the MFPT in this regime is primarily determined only by the initial 

concentration of lipids and the protein-lipid binding rate, and not on the DF, the protein-

protein binding rates, or the protein concentrations.  

Role of dimensionality factor, DF: An increase in DF can be achieved by keeping the 

volume fixed and reducing the size of the membrane area. By keeping the copy numbers 

of proteins and lipids constant, this results in a smaller search space on the membrane, 

with a higher density of lipids. For moderate values of 𝑘)*&4 , the DF has no impact on 

timescales (Fig 4). This is where localization to the membrane is rate-limiting, not the 2D 

binding events that can exploit reduced dimensionality. For fast sticking rates, larger DF 

drives faster timescales. This is because, as we note above, the 2D binding of proteins 

with one another becomes the rate-limiting step, and it is strongly influenced by the DF, 

(𝑘)++&& + 𝐷𝐹𝑘)*&&[𝑃#𝑀]/.)!", where [𝑃#𝑀]/. depends on the membrane sticking rate directly 

(see Eq 14). In contrast, for slow sticking rates, we see an inverse effect, where a higher 

DF drives slower timescales. This is because the timescales are dominated by 

dissociation rates,  and dissociation from the membrane is slower with higher DF due to 

the ease of binding more lipids in 2D.  
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Figure 5.  Localization to the membrane can accelerate relaxation even for 

moderately strong protein-protein interactions In the pseudo-first order limit, our 

theoretical MFPT (circles) shows good agreement with the ODE numerical solutions 

(continuous curve). For the purely 3D (red) and purely 2D (blue), the simulation and well-

known theory (Eq 6) are in very close agreement, as expected. For the coupled system, 

we show results for three values of membrane stickiness, 2, 200, and 2000s-1. Our theory 

slightly deviates from the numerical solutions in the transition regime from membrane 

pathway to solution pathway. The V/A ratio of this system is 0.70𝜇𝑚, and 𝐷𝐹 = 350, which 

is necessary to directly compare even a purely 3D vs 2D system. We use this value to 

convert a 2D rate to a 3D rate. Our macroscopic rates account for the change in diffusion 

from 3D to 2D, where we assume the intrinsic rates are conserved (see Table 1). 𝐷H> =

50𝜇𝑚#/𝑠, 𝐷#> = 0.5𝜇𝑚#/𝑠. [𝑃"], = 1𝜇𝑀, [𝑃#], = 10𝜇𝑀, [𝑀], = 100𝜇𝑀.  

Membrane Stickiness

2.0 (s-1)
 
2.0 X 102 (s-1)
 
2.0 X 103 (s-1)

Membrane Only

Solution Only
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Dependence of MFPT on the protein-protein binding rate 𝑘)*&&: The effect of protein-protein 

binding strength on timescales strongly depends on whether the proteins are free in 

solution, or on the membrane. This is most easily seen by comparing the timescales of a 

purely 3D system and a purely 2D system (Fig. 5). As long as 𝐷𝐹 > 1, proteins in 2D 

exploit dimensional reduction36, meaning their concentration has increased relative to 3D; 

association kinetics in any dimension are strongly dependent on concentration. Hence, 

we see that despite the fact that diffusion on the membrane surface is 100 times slower 

than diffusion in solution, the 2D system is usually faster than the 3D system. Only when 

the binding rate becomes strongly diffusion-influenced (in this system at 𝑘)*&& =

6 × 10X𝑀!"𝑠!") does the 2D system become slower. 

 In the coupled system, we again see very good agreement (Fig 5) and observe 

that localization can again accelerate time-scales by up to ~1000 fold. The major 

difference in the coupled solution is that any speed-ups relative to the purely 3D system 

depend on the membrane sticking rate. For high sticking rates (200-2000 s-1), the coupled 

system is almost as fast as the purely 2D system, particularly for weaker protein 

association, and shows significant speed-ups relative to the 3D system, due to the rapid 

transition to the membrane surface. Similar to the purely 2D system, we again see a 

cross-over at high  𝑘)*&& values, where it is faster to associate in purely 3D. At high values 

of  𝑘)*&&, the MFPT switches to the solution pathway and essentially plateaus because the 

relaxation time is dominated by the time to localize to the membrane. Hence this plateau 

value is shifted up as the membrane sticking rate slows. In summary, for weak to 

moderate 𝑘)*&&, the MFPT follows the membrane pathway, and is thus rate-limited by 
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localization and 2D protein-protein association times, whereas at higher 𝑘)*&&, the 

membrane localization time becomes rate limiting.  

III.B Characteristic times for equal reactant populations [𝑃"], ≈ [𝑃#],	

Here, we will relax the assumption from section III.A where one protein had to be in 

significant excess of the other, such that now [𝑃"], = [𝑃#],.	The lipids are still in excess 

of either protein. In this case, the bimolecular association of proteins cannot be 

approximated as a pseudo-first order, linear set of ODEs. The rate equations are thus 

nonlinear in several of the unknowns. Here, we will therefore simply test our approximate 

MFPT derived in the pseudo-first order limit, Eq. 16. This is motivated by the relatively 

good agreement in the simpler two-component system (Eq. 6) between the pseudo-first 

order results and the equal reactant case, and the expected switch to the half-time.  	

 In Figure 6a we compare our prediction against the numerical MFPT, finding good 

agreement for weak protein-protein binding, but an overly fast predicted relaxation time 

at stronger binding. However, this is visibly true even for the purely 3D and 2D system, 

where we used as the theory the approximate result in Eq 5. Thus in Fig 6b, and motivated 

by the behavior in the two-component system, we compare the same theoretical 

prediction with the numerically calculated half-time. Now we see the opposite trend, 

where for weak 𝑘)*&&, the agreement is worse, but for fast 𝑘)*&&, the theory does a good job 

of predicting the half-time.   Thus the trend is the same as what happens in the two-

component system, as anticipated. For strong binding, it makes sense that our prediction 

agrees with the half-time, because this regime is most similar to irreversible association, 

where the formula for the MFPT in Eq 6 becomes instead equivalent to the half-time for 
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equal reactants. In summary, when reactants are in equal concentrations and protein-

protein binding is moderate to strong, as we test further below, our predicted time-scale 

should be compared with the half-time, which is typically 1.5-2.5 times faster than the 

MFPT.  

 

Figure 6. With equal protein populations, the theory is a better predictor of the 

half-time rather than the MFPT for moderate to strong binding. a) The MFPT of the 

fully coupled system is plotted against the protein-protein binding rate, for three values 

of membrane sticking rate. Theory in dots is in close agreement with numerical results 

(solid curves) for weak binding, but shows deviations at stronger binding even for pure 

3D (red) or pure 2D (blue) binding. b) The theory here is the same, but the numerical 

results (solid curves) now report the half-time to reach equilibrium. The agreement is 

closer as binding strength increases.  𝐷H> = 50𝜇𝑚#/𝑠, 𝐷#> = 0.5𝜇𝑚#/𝑠. [𝑃"], = [𝑃#], =

10𝜇𝑀, [𝑀], = 100𝜇𝑀. 	
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Figure 7.  Our model predictions are in good agreement with reaction-diffusion 

simulations that quantify the impact of explicit spatial dynamics on time-scales. 

a) For a more rate-limited reaction, diffusion has quite modest impact on the half-time. 

In all panels, diffusion slows from [𝐷H>,	𝐷#>] of [50,0.5] to [5,0.05] 𝜇m2/s. The height of 

the small box is 0.75	𝜇m. The RD simulations (blue bars) slow the most, due to the time 

required to localize to the membrane, and we see the ODEs solved with localization-

corrected rates, where we replace 	𝑘)*&4 	→ 𝑘)*J)K (orange bars) provides very good 

agreement with the explicit spatial simulations. ODEs without localization correction in 

yellow bars. Theoretical predictions for both sets of rates in black circles.   b) With the 

same rates but a taller box height of 5	𝜇m, simulation times are slower and the RD 

simulations are more sensitive to diffusion, as expected, with again very good 

agreement using	𝑘)*J)K . c) For a diffusion-limited reaction, even in the small box the half-
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time is more sensitive to diffusion, for all three models. d) Diffusion-limited reaction in 

the tall box is most sensitive to diffusional slow-downs.  Here, changing diffusion by a 

factor of 10 does change the half-time by about a factor of 10 as well, which is a 

significant change from panel (a). In all systems, [𝑃"], = [𝑃#], = 1𝜇𝑀. The lipid copy 

numbers are fixed at 17000/𝜇m2, and the membrane surface area is 0.2209	𝜇m2. In the 

small box, [𝑀], = 37.55𝜇𝑀, and in the tall box [𝑀], = 5.64𝜇𝑀.	

 

III.C Effect of diffusion and spatial geometry can be captured in rate-constants to 

predict the MFPT 

Accounting for diffusion in non-spatial rate equations Our results above are based on 

deriving approximate MFPTs for the system of coupled rate equations, with comparison 

against numerical solutions solved using non-spatial ODEs. The effect of explicit spatial 

representations and diffusion on the system dynamics is two-fold. First, even for a well-

mixed system purely in 3D or 2D, partners must diffuse to contact with one another, which 

directly impacts the bulk or macroscopic rates of association, 𝑘on. Second, we have two 

domains in our system, and the membrane domain has to be arrived at before any protein-

lipid interactions can occur. In other words, the lipids are not well-mixed in a real system, 

as is assumed in the ODEs. For the first point, we use the rates in the first two rows of 

Table 1, which in 3D are accurate and in 2D are very good estimators for the kinetics. For 

the second point, we use our localization corrected rate derived in Section II.D, 𝑘)*J)K (Table 

1), which adjusts the protein-lipid binding rate, 𝑘)*&4 based on the height of the system, the 

sticking rate to the membrane, and the diffusion constant. In Fig 7, we see that this 
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correction does a remarkably good job in improving agreement between the ODE solution 

and the explicit RD solution.  

Rate-limited reaction regime: In the more rate-limited regime, where  	𝑘)*&& =5	×104𝑀-1s-1 

and, 𝑘)*&4 =2	×106𝑀-1𝑠-1, we see that the impact of diffusion on the well-mixed kinetics is 

negligible, as despite dropping from 𝐷3D/𝐷2D= 	50/0.5	𝑡𝑜	5/0.05	𝜇𝑚2/𝑠, the ODE solution 

shows minimal slow-downs (yellow bars in Fig 7a-b). We note that we do account for 

diffusion in the ODEs here—all systems have the same microscopic rates, but the 

macroscopic rates become slightly smaller with slower diffusion. The RD timescales slow 

a bit with slower diffusion. This is due to the time to reach the membrane before binding 

lipids, and is thus significantly more dramatic going from a system height of 0.75𝜇m (Fig 

7a) to 5𝜇m (Fig 7b).  By correcting for this rate of lipid binding from solution (orange bars 

in Fig 7), we see excellent improvement in describing the RD MFPT in both system sizes 

for this more rate-limited reaction. We note that with the taller box, the protein 

concentrations are the same, and thus the lipids are not in as significant excess of the 

proteins.  For all systems, the theoretical time-scale is determined by following the 

membrane pathway.  

Diffusion-limited reaction regime In the more diffusion-limited regime, with microscopic 

rates of 𝑘<&&=9 ×107M-1s-1 and 𝑘<&4=8.4 ×106M-1s-1, even the non-spatial ODE results 

show slow-downs with diffusion (Fig 7c-d). For the small box (Fig 7c) the timescales are 

more sensitive in the RD simulations, as expected, with a decrease of about 6x from the 

fast to slow diffusion regime. In this diffusion-limited system, the localization corrected 

ODE solution (orange bars) is not as accurate at reproducing the RD results. When 

comparing the time-dependent kinetics, we see that the ODE does accurately describe 
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short time kinetics, but at longer times, the RD systems decay more slowly to equilibrium, 

causing a deviation in the half-times. This is perhaps not surprising, as when distinct 

proteins have equivalent starting concentrations, as we use here, even irreversible 

association is known to decay more slowly than rate equations predict44, 45. This is 

because as the reaction proceeds, regions of isolated A and B molecules develop46, 

which will cause a slow-down in the relaxation.  These deviations are detectable only in 

the more strongly diffusion-influenced regime. For the taller box, the system is even more 

sensitive to diffusion, as expected, decreasing		~10 × from fast to slow diffusion, and 

showing the largest mismatch with the well-mixed ODEs. For this system, the predicted 

half-time is in the transition region between being dominated by the solution vs membrane 

pathway. For the localization-corrected rates, the theory always follows the solution 

pathway, and although the predicted timescales are a bit too fast as diffusion slows, they 

capture the order-of-magnitude slow down relative to the well-mixed model.   

IV. Discussion and Conclusions 

We have shown here how the time-scales of bimolecular association between protein 

populations can be dramatically shifted by localization to the membrane surface. The 

degree to which this assembly speed is accelerated or slowed is strongly dependent on 

the relative sticking rate to the membrane. For fast sticking rate, proteins will exploit the 

lower dimension of the surface to assemble more quickly. For slower sticking rate, protein 

assembly is rate-limited by localization to the surface, which often reduces speeds relative 

to pure 3D assembly. Critically, we address here how the geometry of the system and 

diffusion will potentially slow this sticking rate. By accounting for these spatial effects 

directly in our rate constants, we can retain a relatively simple functional form for our 
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predicted MFPT, as we derived from the non-spatial rate equations. One can then directly 

assess whether diffusion or geometric changes to the system will impact the overall 

MFPT, as illustrated in our Fig 7 examples. Due to the importance of reaching the 

membrane, we find that the height of the volume typically has a bigger impact on the 

MFPT than the diffusion constant does. Perhaps counterintuitively, the speed of diffusion 

on the membrane surface is rarely a rate-limiting factor, where as long as the DF is >1, 

the increased concentration on the surface accelerates 2D assembly.  

  We derive the MFPT for our multi-component model based on assuming lipids and 

one binding partner are in excess, and that both proteins bind the lipids with similar 

affinities. Thus, although we see excellent agreement for variations in all model 

parameters, including population, kinetic, and spatial factors, the main MFPT result (Eq 

16) would have to be adapted if one protein bound lipids significantly weaker than the 

other, or if lipids were in short supply. In many physiologic membranes, lipid abundance 

will exceed most proteins36, but for proteins that target a small patch of membrane for 

assembly, for example, the lipids might be in limited supply. Further, although we are able 

to account for the lengthscale of a cell system via our localization rate, this assumes a 

simple geometry such as a box or sphere. For more complex cell geometries of either the 

membrane or the volume, a more explicit treatment of the diffusional search may be 

necessary. Last, for equivalent protein concentrations, [𝑃"], = [𝑃#],, we find that our 

theory still applies quite well, but only when the time-scale is interpreted as the half-time, 

rather than the slower MFPT. This is not particularly surprising given this same behavior 

for the two-component system in a single volume domain. Perhaps the biggest room for 

improvement is more precisely capturing the behavior of the explicit reaction-diffusion 
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simulations24, which tend to be slower for the strongly diffusion limited regime than our 

prediction, although in good agreement for more rate-limited reactions (Fig 7). This would 

likely require adding the spatial components more explicitly into the model. 

By allowing us to predict how protein association times are controlled by both 

solution and membrane properties of a system, our model provides a useful foundation 

to anticipate assembly speeds in more complex systems. Our model lacks the multi-valent 

interactions that stabilize higher-order cluster formation and self-assembly, but it has key 

parallels with phase separated systems which are prevalent in cell biology47, 48. Our model 

contains two domains which create a dilute (solution) and a dense (membrane-bound) 

phase of identical components, and there is no barrier to transitioning between these 

phases. Within each phase, both the stability and the kinetics of the protein-protein 

interactions are altered. Hence our model creates a steady-state solution where the 

densities have changed due to the capacity of all components to stick to the surface. The 

relative sticking rate to the surface and the DF are thus key in controlling both the speed 

of formation and ultimately the steady state populations of both phases. In biology, some 

liquid-like droplets do seem to exploit membrane localization to drive dense phase 

assembly49,	 50 and the theory developed here, while simpler, provides insight into the 

kinetics of these processes.  

The kinetics of bimolecular association is also a key step in structured self-

assembly51, where nucleation times must generally be slower than growth speeds to 

ensure productive assemblies52. Theoretical models have predicted how binding rates 

and concentration can control self-assembly in solution53, 54, as well as the origins of the 

lag-time55. Our model provides independent variables—including the membrane sticking 
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rate and DF—that can help tune the kinetics of the protein association by creating a dense 

and a dilute phase at a particular spatial location. While modeling self-assembly in and 

out of equilibrium ultimately depends on inherently spatial and structural details24, 56, 

kinetic models can be effective tools for studying assembly kinetics57 even without spatial 

resolution58. Exploiting the membrane surface as we show here represents a powerful 

dimension for improving and understanding control of association and higher-order 

assembly processes. 	

V. Methods 

V.A Coupled rate equations for the full system 

The time-dependence of bimolecular association between protein partners P1	 and	 P2,	

when	they	can additionally localize to membrane lipids M is given by the following coupled 

differential equations in the well-mixed limit:  

N[@"]
N/

= −𝑘0?@@[𝑃1][𝑃2] + 𝑘0QQ@@ [𝑃1𝑃2] − 𝑘0?
@"A[𝑃1][𝑀] + 𝑘0QQ
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In general, the protein-lipid binding rate depends on individual binding partners and 

changes from one binding pair to other. However, for simplicity, we assume a similar 

association rate for both 𝑃" and 𝑃#, 𝑘)*
&!4 = 𝑘)*

&"4 ≡ 𝑘)*P4.  

V.B Division of flux into dominant reaction pathways: 

Instead of solving the rate equations for the full system above, we simplify by identifying 

two major reaction pathways. The MFPT are nonetheless mechanistic, although we make 

minor empirical corrections to the solution pathway to improve agreement.  

Membrane first reaction pathway: In the membrane first reaction pathway, we solve the 

following set of differential equations,  
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using pseudo first-order approximations, such that [𝑀](𝑡) = [𝑀], and from the original 

model, we assumed [𝑃"𝑃#𝑀] = [𝑀𝑃"𝑃#] = [𝑃"𝑃#] = 0. Also, [𝑃#𝑀](t) = [𝑃#𝑀]/. =

[&"]%[4]%9()LD

9(**
LD0[4]%9()LD

, where this definition of proteins 𝑃# on the membrane is derived assuming an 

isolated pairwise equilibrium between protein and lipids. We further assume irreversible 

lipid binding, 𝑘)++
&!4 = 0, because the formation of 𝑃1𝑀 results in its participation in additional 

binding reactions on the surface, which largely prevents dissociation back to solution.	We 

thus have a linear system of our unknowns, which can be solved exactly via the 

eigenvalues and eigenvectors. The system has two non-zero eigenvalues −𝑘𝑜𝑛𝑃𝑀[𝑀]0 and 

−(𝑘𝑜𝑓𝑓𝑃𝑃 + 𝐷𝐹𝑘𝑜𝑛𝑃𝑃[𝑃2𝑀]), resulting in the time-dependent solution: 

𝑀𝑃1𝑃2𝑀(𝑡) = [𝑀𝑃1𝑃2𝑀]XY 61− 1
1Z1/𝛼exp(−𝑘0?

@A[𝑀]>𝑡)− 1
(1Z𝛼)exp7−(𝑘0QQ

@@ +𝐷𝐹𝑘0?@@[𝑃2𝑀])𝑡89	 (20)	

where		𝛼 = 𝑘𝑜𝑓𝑓
𝑃𝑃 +𝐷𝐹𝑘𝑜𝑛

𝑃𝑃[𝑃2𝑀]

𝑘𝑜𝑛𝑃𝑀[𝑀]0
.	The	MFPT	of	this	membrane	pathway	is	the	negative	sum	of	the	

inverse	eigenvalues,	or	Eq	14	of	the	main	text.		

Solution first reaction pathway: In the solution first reaction pathway, we will solve the 

following set of differential equations:  

N[@"]
N/

= −𝑘𝑜𝑛
𝑃𝑃[𝑃1][𝑃2]+𝑘𝑜𝑓𝑓𝑃𝑃 [𝑃1𝑃2]	 	 (21a)	

N[@"𝑃2]
N/

= 𝑘𝑜𝑛
𝑃𝑃[𝑃1][𝑃2] − 𝑘0QQ@@ [𝑃1𝑃2] − 2𝑘0?RA[𝑃1𝑃2][𝑀] + 2𝑘0QQ

@AXQQ[𝑀𝑃1𝑃2𝑀]	 	 (21b)	

N[A@"𝑃2𝑀]
N/

= +2𝑘0?RA[𝑃1𝑃2][𝑀] − 2𝑘0QQ
@AXQQ[𝑀𝑃1𝑃2𝑀]	 	 (21c)	

using similar assumptions as before, where [𝑀](𝑡) = [𝑀],, and from the original model, 

we assumed [𝑃#𝑀] = [𝑀𝑃"] = 0. We further assume a rapid equilibrium between a 
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protein complex on the membrane with one (𝑃1𝑃2𝑀 ) versus two lipids (𝑀𝑃1𝑃2𝑀 ) bound, 

because the second lipid binding reaction takes place in 2D with an abundant lipid 

population. We use this assumption to derive an expression for the effective off rate of 

the protein-protein complex to dissociate from the membrane. In particular, at 

equilibrium we have that,  

𝑘0QQRA [𝑀𝑃1𝑃2] = 2𝑘0?RA[𝑃1𝑃2][𝑀]		(22a)	

𝐷𝐹′𝑘0?RA[𝑀𝑃1𝑃2][𝑀] = 2𝑘0QQ@A [𝑀𝑃1𝑃2𝑀]	 (22b)	

where	factors of 2 emerge due to having two sites on a protein-protein complex to bind 

a lipid (𝑃" and 𝑃#).  DF is the dimensionless dimensionality factor (𝐷𝐹′ = 𝑉/𝐴ℎ′). We are 

looking for the effective rate that will give us: 

2𝑘)*P4[𝑃"𝑃#][𝑀] = 2𝑘)++
&4/++[𝑀𝑃"𝑃#𝑀]  (23) 

which is 𝑘)++
&4/++ =

9(**
+D"

>5∗9()LD[4]%
. We now make an empirical correction, and will instead 

use: 

𝑘)++
&4/++ =

9(**
+D"

,.L>5∗9()LD[4]%0#9(**
LD   (24) 

This correction is used because for low sticking rate, the dissociation rate should not 

exceed the rate for unbinding a single lipid. Overall, this expression states that the 

dissociation rate for a protein-protein complex from the membrane is typically much 

slower than for unbinding a single lipid, because we are effectively accounting for the 

dissociation of up to two lipids.  
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With this linear system, we again have two non-zero eigenvalues, 𝜆#,H =
!"
#
t𝑏 ±

√𝑏# − 4𝑎𝑐z, where 𝑎 = 1, 𝑏 = 𝑘0?@@[𝑃2]> + 2𝑘0?@A[𝑀]> + 𝑘0QQ@@ + 2𝑘0QQ
@AXQQand 𝑐 = 𝑘0?@@[𝑃2]>2𝑘0QQ

@AXQQ +

𝑘0?@@[𝑃2]>2𝑘0?@A[𝑀]> + 2𝑘0QQ
@AXQQ𝑘0QQ@@ . The MFPT is the sum of their inverses, which simplifies to: 	

𝜏O)J = ^
𝑘𝑜𝑛
𝑃𝑃[𝑃2]0+2𝑘𝑜𝑛𝑃𝑀[𝑀]0+𝑘𝑜𝑓𝑓𝑃𝑃 +2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓

𝑘𝑜𝑛
𝑃𝑃[𝑃2]02𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓+𝑘𝑜𝑛
𝑃𝑃[𝑃2]02𝑘𝑜𝑛𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓𝑘𝑜𝑓𝑓
𝑃𝑃 _=`

(𝑘𝑜𝑛
𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 )+(2𝑘

𝑜𝑛

𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓
𝑃𝑀𝑒𝑓𝑓)

(𝑘𝑜𝑛
𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 )(2𝑘𝑜𝑛

𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓
𝑃𝑀𝑒𝑓𝑓)−2𝑘𝑜𝑛

𝑃𝑀[𝑀]0𝑘𝑜𝑓𝑓𝑃𝑃 a.	 (25)	

This expression is dominated by two timescales (𝑘)*&&[𝑃#], + 𝑘)++&& ) for protein-protein 

binding in solution, and (2𝑘)*&4[𝑀], + 2𝑘)++
&4/++) for binding and unbinding of the protein-

protein complex from the membrane. In the limit of low membrane sticking rate (small 

𝑘0?@A[𝑀]>), this expression simplifies to  

𝜏O)J ≈ ^ 1

𝑘𝑜𝑛𝑃𝑃[𝑃2]0+𝑘𝑜𝑓𝑓𝑃𝑃 +
"

2𝑘𝑜𝑛
𝑃𝑀[𝑀]0+2𝑘𝑜𝑓𝑓

𝑃𝑀𝑒𝑓𝑓_.  (26) 

Empirically, this timescale is a bit too fast for larger sticking rates, whereas the previous 

prediction is a bit too slow. If we take the average, we finally arrive at Eq. 15 of the main 

text. The Eq. 15 result overall has the same limits as Eq 25 (𝑓# → 1 with 𝑘)*&4[𝑀], small) 

but with better agreement in the transition region where the solution and membrane 

pathways have comparable time-scales.	 

V.C Simulation details 

We solve the non-spatial coupled ODEs numerically in Fortran by the standard Runge-

Kutta integration scheme until the steady state was attained with an initial condition that 

all the proteins and lipids were unbound, and all proteins were in solution. First, we derive 

the time dependent concentration of the fully bounded complex 𝑀𝑃"𝑃#𝑀(𝑡).	 Next, we 
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derive the derivative of 𝑀𝑃"𝑃#𝑀(𝑡) using the finite difference method and multiply the 

derivative with time. Then for the MFPT, we integrate the product using numerical 

integration with the midpoint rule. For ODE simulations the default value of 𝑘=H> = 1𝑠!", 

unless it is specifically stated. For numerical derivations, we first derive 𝑘)*H> from the first 

equation of Table 1, then 𝑘<#> from 𝑘<H>/𝑘<#> = 2𝜎, and then we derive 𝑘)*#> from the second 

equation of Table 1. For all models, we used 𝜎 = 1 nm.   

For the single particle reaction-diffusion (RD) spatial simulations, all parameters 

are provided in Supplemental Table 1. To summarize, simulations were performed using 

the NERDSS software24, in a rectangular volume with the membrane defined as the 

bottom surface, and reflecting boundaries on the other ‘walls’. Simulations were 

performed with an implicit lipid model43, after verifying the kinetics were identical to the 

explicit lipid model. Kinetics were collected from 30-48 trajectories. The MFPT was 

calculated in MATLAB using numerical integration with the midpoint rule. Diffusion 

coefficients in 2D were 100 times slower than the specified 3D value.  
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