Abstract
Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in one of three genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we report that proliferative astrocytes play a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2 and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilizes HIF-1α in astrocytes, resulting in increased VEGF production and expression of a “hypoxic” program under normoxic conditions. We show that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributes to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevents progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Conflict of interest statement: The authors have declared that no conflict of interest exists