Smoothened and ARL13B are critical in mouse for
superior cerebellar peduncle targeting

Sarah K. Suciu*,†‡ Alyssa B. Long†‡ and Tamara Caspary†
*Genetics and Molecular Biology Graduate Program, †Department of Human Genetics,
Emory University, Atlanta, GA 30322, ‡These authors contributed equally

ORCID ID:
Suciu: 0000-0002-2416-9519
Long: 0000-0002-4467-4213
Caspary: 0000-0002-6579-7589

Summary statement
Joubert syndrome is diagnosed by the hindbrain “molar tooth sign” malformation. Using mouse models, we show loss of the ciliary GTPase ARL13B, mutations in which lead to Joubert syndrome, result in two features of the molar tooth sign: hypoplasia of the cerebellar vermis and inappropriate targeting of the superior cerebellar peduncles. Furthermore, we demonstrate that loss of vertebrate Hedgehog signaling may be the underlying disrupted mechanism as we extend its role in axon guidance to the superior cerebellar peduncles.
Running title (~35 characters, including spaces):
SMO and ARL13B in SCP targeting

Key words/phrases (up to ten):
molar tooth sign, Joubert syndrome, Smo, ARL13B, SCP targeting, cerebellar vermis

Corresponding author:
Tamara Caspary
Department of Human Genetics
615 Michael Street, Suite 301
Atlanta, GA 30322
404-727-9862
tcaspar@emory.edu
Abstract

Patients with the ciliopathy Joubert syndrome present with physical anomalies, intellectual disability, and are diagnosed by the hindbrain “molar tooth sign” malformation. This radiological abnormality results from a combination of hypoplasia of the cerebellar vermis and inappropriate targeting of the white matter tracts of the superior cerebellar peduncles, which create a deepened interpeduncular fossa. ARL13B is a cilia-enriched regulatory GTPase established to regulate cell fate, cell proliferation and axon guidance through vertebrate Hedgehog signaling. In patients, point mutations in ARL13B cause Joubert syndrome. In order to understand the etiology of the molar tooth sign, we used mouse models to investigate the role of ARL13B during cerebellar development. We found ARL13B regulates superior cerebellar peduncle targeting and these fiber tracts require Hedgehog signaling for proper guidance. However, in mouse the Joubert-causing R79Q mutation in ARL13B does not disrupt Hedgehog signaling nor does it impact tract targeting. We found a small cerebellar vermis in mice lacking ARL13B function but no cerebellar vermis hypoplasia in mice expressing the Joubert-causing R79Q mutation. Additionally, mice expressing a cilia-excluded variant of ARL13B that transduces Hedgehog normally, showed normal tract targeting and vermis size. Taken together, our data indicate that ARL13B is critical for superior cerebellar peduncle targeting, likely via Hedgehog signaling, as well as control of cerebellar vermis size. Thus, our work highlights the complexity of ARL13B in molar tooth sign etiology.
INTRODUCTION

Joubert Syndrome and Related Disorders (JSRD) are autosomal recessive congenital disorders with a variety of symptoms including developmental delay, intellectual disability, abnormal respiratory rhythms, ataxia, oculomotor apraxia, polydactyly, craniofacial defects, retinal dystrophy, nephronophthisis, and hepatic fibrosis (Parisi et al. 2007). While the exact prevalence of JSRD is not known, published statistics range from 1:80,000 to 1:100,000, but these may be underestimates (Brancati et al. 2010). The characteristic neuroanatomical feature of JSRD is the molar tooth sign (MTS), which is caused by hypoplasia of the cerebellar vermis and thickened, elongated superior cerebellar peduncles (SCPs) that fail to decussate (Yachnis and Rorke 1999; Poretti et al. 2007). However, little is known about the etiology of this hindbrain malformation. This is especially significant in light of the fact that many severe symptoms of JSRD arise from defects in the hindbrain: cerebellar dysfunction commonly causes ataxia, while life-threatening breathing problems are linked to hindbrain nuclei such as the parafacial respiratory group and pre-Bötzinger complex (Onimaru et al. 2006).

To date, mutations in any of 35 genes cause JSRD, and their associated proteins almost always localize to the primary cilium or the centrosome (Parisi 2019). Thus, JSRD is classified as a ciliopathy, a category of human disease stemming from ciliary dysfunction. One of the genes implicated in JSRD is ARL13B, which encodes a regulatory GTPase highly enriched in cilia (Cantagrel et al. 2008; Bachmann-Gagescu et al. 2015; Thomas et al. 2015; Shaheen et al. 2016; Rafiullah et al. 2017). As a GTPase, ARL13B is expected to have multiple effector proteins which interact with
specific ARL13B residues. ARL13B can function as guanine exchange factor (GEF) for ARL3, mutations in which also lead to JSRD (Gotthardt et al. 2015; Ivanova et al. 2017). JSRD-causing mutations in either ARL3 or ARL13B can disrupt their interaction or ARL13B’s GEF activity, consistent with the notion that specific ARL13B function is affected by JS-causing point mutations (Gotthardt et al. 2015; Ivanova et al. 2017; Alkanderi et al. 2018). Most JSRD-causing ARL13B mutations cluster within the protein’s GTPase domain, although two are located in the coiled coil domains in the C terminal half of the protein (Cantagrel et al. 2008; Bachmann-Gagescu et al. 2015; Thomas et al. 2015; Shaheen et al. 2016; Rafiullah et al. 2017). ARL13B complexes with the inositol phosphatase INPP5E, which is also implicated in causing JSRD (Bielas et al. 2009; Humbert et al. 2012). ARL13B is critical for targeting INPP5E to cilia and JSRD-causing ARL13B mutations disrupt INPP5E ciliary targeting (Humbert et al. 2012). INPP5E controls ciliary lipid composition through its phosphatase activity and most JSRD-causing mutations are within its phosphatase domain (Bielas et al. 2009; Chavez et al. 2015; Garcia-Gonzalo et al. 2015). Other proteins implicated in JSRD also affect ciliary targeting with many functioning at the transition zone, supporting the notion that abnormal ciliary traffic leading to defective signaling underlies JSRD (Arts et al. 2007; Delous et al. 2007; Garcia-Gonzalo et al. 2011; Hopp et al. 2011; Srour et al. 2012; Roberson et al. 2015).

The mechanistic connection between the cilia-related proteins implicated in JSRD and the MTS are elusive. The hypoplastic cerebellar vermis and the abnormal SCP tracts disrupt the distinct biological processes of proliferation and axonal targeting. One signaling pathway potentially linked to both processes is vertebrate Hedgehog (Hh)
which relies on cilia (Huangfu et al. 2003). Sonic hedgehog (Shh) is a mitogenic cue that controls proliferation in the developing cerebellum so its misregulation could underlie the cerebellar hypoplasia (Dahmane and Ruiz i Altaba 1999; Wechsler-Reya and Scott 1999; Kenney and Rowitch 2000). While the SCP tracts that normally project from the deep cerebellar nuclei to the contralateral thalamus are guided by unknown signals, Shh is a known commissural axon guidance cue (Charron et al. 2003). JSRD patients also display axon guidance defects in decussation of pyramidal tracts and in crossing of the tracts in the optic chiasm, the latter of which is a Shh-dependent process (Fabre et al. 2010; Sanchez-Arrones et al. 2013).

The JSRD-causing genes ARL13B and INPP5E are known to regulate vertebrate Hh signaling. In mouse models, ARL13B loss disrupts cell fate specification in the neural tube, proliferation of the cerebellar granule precursor cells in the cerebellum and Shh-directed guidance of commissural axons in the spinal cord (Caspari et al. 2007; Bay et al. 2018; Ferent et al. 2019). These data support a model whereby disruption of Shh signaling by ARL13B mutation could provide a single mechanism underlying the MTS. This model is bolstered by the fact that additional phenotypes exhibited by JSRD patients, such as craniofacial defects or polydactyly, can arise from aberrant Hh signaling (Valente et al. 2008; Lan and Jiang 2009; Lipinski et al. 2010).

As attractive as a Hh-based model for JSRD may be, not all the data support that JSRD phenotypes result from misregulation of Hh signaling. Some features of JSRD, such as the renal and liver anomalies, are not clearly due to misregulation of Hh signaling (Doherty 2009; Breslow et al. 2018). Additionally, of the 35 genes implicated in JSRD, 22 have some role in Hh pathway regulation, even if indirectly (Hata et al. 2000;

Arl3 mouse mutants do not exhibit any of the phenotypes exhibited by mutants in the Hh pathway, suggesting that it may regulate Hh-independent pathways (Schrick et al. 2006). Indeed, additional signaling pathways are linked to cilia including others known to be important in cell proliferation and axon guidance. Loss of either of the JSRD-linked genes Ahi1 or Cep290 in mouse leads to a small cerebellar vermis due to aberrant Wnt signaling (Lancaster et al. 2011; Ramsbottom et al. 2020). JSRD-causing mutations in Znf423 are linked to defects in Wnt, BMP and retinoic acid signaling (Hata et al. 2000, Huang et al. 2009, Casoni et al. 2020, Deshpande et al. 2020). Conditional Arl13b or Inpp5e deletion in the SCPs results in their disorganization and thickening through misregulation of ciliary PI3 kinase and AKT (Guo et al. 2019).

Ciliopathies are well established to be genetically complex. JSRD patients with different ARL13B mutations can display distinct phenotypes, such as ataxia in an individual expressing ARL13B^{Y86C} and occipital encephalocele in a patient expressing ARL13B^{R79Q} (Cantagrel et al. 2008; Thomas et al. 2015). This is further exemplified in cases of related individuals carrying the same mutation but exhibiting different phenotypes and even diagnoses. For example, JSRD-causing mutations in TMEM67 (R208X) and TMEM216 (R73H) can also cause the more severe disease Meckel-
Gruber syndrome (Consugar et al. 2007; Otto et al. 2009; Valente et al. 2010).

Understanding the genetic modifiers underlying the phenotypic variation will be key to understanding disease etiology as will understanding when and how relevant pathways interact. In mouse models of the JSRD- and Meckel-Gruber Syndrome-linked gene Tmem67, two phenotypic categories emerged: one with cerebellar malformations resembling JSRD and another with more severe CNS defects reminiscent of Meckel-Gruber syndrome (Abdelhamed et al. 2013). The two categories correlated with whether cilia were retained, with the severe Meckel-Gruber-like phenotype observed in animals lacking cilia. Furthermore, the two phenotypic groups impacted Hh and Wnt signaling differently, pointing to both pathways being critical (Abdelhamed et al. 2019). Importantly, it is not simply whether cilia are present, as another JSRD mouse model, Talpid3, lacks cilia yet displays a JSRD-like small cerebellar vermis (Bashford and Subramanian 2019). Thus, mouse models are incredibly informative yet point to the enormous complexity underlying the MTS.

Here we investigate the role of ARL13B in relation to Hh signaling in two major features of the MTS: targeting of the SCPs to the thalamus and hypoplasia of the cerebellar vermis. We explore these processes using a series of mouse alleles through which we first define the roles of Hh signaling and ARL13B in SCP projections. Subsequently, we untangle the role of ARL13B from within and outside of the cilium and investigate a JS-causing patient allele. Taken together, our data illuminate the roles of ARL13B in MTS etiology and the complexity in modeling aspects of the MTS in mouse.

MATERIALS & METHODS
All mice were cared for in accordance with NIH guidelines and Emory University’s Institutional Animal Care and Use Committee (IACUC). Lines used were Nex-Cre *(Neurod6tm1(cre)Kan)*-C3H/HeJ [MGI:2668659], Brn4-Cre *(Tg(Pou3f4-cre)32Cren)*-C3H/HeJ [MGI:2158470], Smo^{flox} *(Smo^{tm2AMC})*-C3H/HeJ [MGI:2176256], Arl13b^{flox} *(Arl13b^{tm1Tc})*-C3H/HeJ [MGI:6256969], and Arl13b^{R79Q}-C57Bl/6J *(Arl13b^{em1Tc})* [MGI:6279301]. Note that Arl13b^d is the deletion allele resulting from germline deletion of the conditional Arl13b^{flox} allele. Genotyping was as previously described (Heydemann et al. 2001; Goebbels et al. 2006; Nolan-Stevaux et al. 2009; Su et al. 2012; Gigante et al. 2020).

To generate the R79Q mutation in Arl13b, a CRISPR gRNA (ATTATTATGCTGAATCCTATGG) targeting exon 3 of the Arl13b locus along with a donor oligo (5’- GTTCCAAGTTACCATCTTTGACTTAGGAGGTTGGGAAAAAGAATTCAGGGCATATGGA -3’; underlined bases are engineered) were designed to generate a G-to-A change creating the R79Q point mutation as well as A-to-C and T-to-A silent changes to create a NdeI restriction site that could be used for genotyping (Millipore Sigma). The gRNA (50 ng/ul), oligo donor (50 ng/ul) and CRISPR protein (100 ng/ul) were injected into 1-cell C57Bl/6J zygotes and subsequently transplanted at the 2-cell stage into C57Bl/6J pseudopregnant females by the Emory Transgenic and Gene Targeting Core. Genomic DNA from toes was amplified via PCR using primers (5’- TCACTTGCAACAGACATCC-3’) and (5’-ACAGCTCTGGCGGTAGAGGACAGGAGGATGGG-3’) located...
upstream and downstream of the donor oligo breakpoints; products were sequenced
with the forward (first) primer. A single founder animal heterozygous for both the R79Q
mutation and NdeI restriction site was identified with no additional editing. Subsequent
allele-specific genotyping of progeny was performed on ear punch or yolk sac using the
following primers: Fwd-wt primer: 5'- GGAGGTGGAAAAAGAATaCg-3'; Fwd-mut
primer: 5'-gctctatggctgGGAGGTGGAAAAAGAATTga-3'; Rev primer: 5'-
AGTGCTAAGACACCCGAGGA-3'. PCR bands at 142bp (wild type) and/or 154bp
(mutant) were produced, due to the addition of 12 non-templated bases to the 5' end of
the Fwd-mut primer (lowercase). Note the 3' ends of the two forward primers differed in
the base that codes for the R to Q change (final nucleotide of the primer) and includes a
“wobble” base (lowercase) to provide allele-specific amplification after the first round of
PCR (Gaudet et al. 2009).

Tract tracing injections and analysis

Tract tracing experiments were performed according to a protocol approved by
Emory University’s Institutional Animal Care and Use Committee (IACUC). Male and
female mice at postnatal day 90 or older were used for tract tracing experiments. At
least 3 mice of each genotypic group were analyzed in experiments (exact N included in
Figures 1-3). Mice were anesthetized with inhaled isoflurane and maintained under
anesthesia throughout the procedure. Animals were secured in the stereotax, and the
scalp was opened with bregma and lambda aligned to flatskull position. Dorsal thalamus
injections were targeted to the bregma (AP:-0.70, ML:+1.13, DV:-3.28, Angle:0°) and
ventral thalamus injections were targeted using coordinates to the bregma (AP:-0.70,
ML:-3.11, DV:-4.69, Angle:25°). Ventral injection targeting includes a 25° angle to avoid pulling dye through the dorsal thalamus upon needle removal. Then, a 5 ul Hamilton microsyringe was lowered to target and target was injected with lysine fixable dextran tetramethylrhodamine neuroanatomical tracer (fluoro-Ruby, 10,000 MW, ThermoFisher Scientific D1817). Animals received 0.05 - 0.5 ul injections of 10% dextran tetramethylrhodamine in sterile phosphate buffered saline (PBS, pH = 7.25) unilaterally at a rate of 0.1 ul/minute.

Seven days post-procedure, mice were perfused with 50mls of PBS followed by 30mls of 4% paraformaldehyde (PFA). Brains were kept in PFA overnight and subsequently placed in 30% sucrose in 0.1M phosphate buffer (pH 7.3) for cryoprotection for at least 48 hours. Brains were embedded in Tissue-Tek OCT compound (Sakura) for coronal cryostat sectioning. Sections were 60 microns thick and processed through 70% ethanol dehydration and 0.1% sudan black autofluorescence quencher, rehydrated in PBS and treated with DAPI to stain nuclei prior to fluorescence imaging. Images were taken on a Lionheart FX automated microscope (Biotek) or at 5x magnification on a Leica DM6000B microscope (Leica) using SimplePCI imaging software (Hamamatsu). The Leica images were subsequently stitched together to reveal the entirety of the brain section in Fiji (Schindelin et al. 2012) or Photoshop (Adobe).

Surgical injection sites were assessed to ensure dye was present at the desired injection site. If the injection was off-target or dye at the injection site was not seen, samples were removed from analysis. Cerebellar images from injections were evaluated for DCN staining with assessor blinded to genotype. The number of injections that resulted in fluorescent DCN for each injection site (dorsal and ventral thalamus) were
compared between mutant and control genotypes using a two-sided Fisher's exact test (PRISM 8.2.0).

Phenotypic analysis of embryos

Timed matings of mice were performed to generate somite-matched embryos at embryonic day 10.5 (E10.5). Embryos were dissected in cold PBS and processed for immunofluorescence staining as previously described (Constable et al. 2020). Primary antibodies used were: mouse anti-Shh (5E1, 1:10), mouse anti-Pax6 (PAX6, 1:100) (Developmental Studies Hybridoma Bank), and rabbit anti-Olig2 (AB9610, 1:500, Millipore Sigma). Multiple sections from three embryos of each genotype were examined.

Analysis of cerebellar vermis width

Weanling age (P20-P24) male and female mice were sacrificed and brains were harvested and fixed in 4% PFA overnight at 4°C. Ten sex-matched pairs of mouse brains were collected for each genotype, which is sufficiently powered to detect differences as small as 3% (Deshpande et al. 2020). Brains were imaged on a tilted stage to present a surface view of the cerebellum, with a standard ruler in frame to confirm scale, using a dissecting microscope (Leica MZFLIII). Measurements were made in FIJI (Schindelin et al. 2012) with the investigator blind to genotype. Whole cerebellar width was measured at the widest part of the cerebellum, coinciding with lobule CI or CII. Vermis width was calculated by measuring the widest part of lobule VII (Deshpande et al. 2020). For each sex- and age-matched pair, the ratio of mutant to control width was calculated and a
one-sample t-test was performed and compared to a hypothetical value of 1 (PRISM 8.2.0). All of our sample groups passed the Shapiro-Wilk test for normality.

Data availability

Mouse lines are available upon request. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article and figures.

RESULTS

SMO is required for normal SCP projection to the dorsal thalamus

In order to test whether proper projection of SCPs requires Hh signaling, we compared the SCP tracts in mice in which we deleted the gene encoding the obligate Hh transducer, Smoothened (Smo), to control animals. As Smo null embryos die during embryogenesis, we deleted Smo specifically in the projection neurons by generating Nex-Cre;Smofl/fl mice, which we refer to as SmoNex-Cre (Zhang et al. 2001; Caspary et al. 2002). Nex-Cre initiates CRE recombinase expression at E11.5, as the precursor cells of the deep cerebellar nuclei (DCN) begin to migrate and become specified (Fink et al. 2006; Goebbels et al. 2006). In the mature cerebellum, the SCPs project rostrally from the DCN (illustrated in Figure 1A). After entering the midbrain, the SCPs cross the midline and again turn rostrally to project to two positions in the rostral thalamus: one tract takes a slight dorsal path and the other tract remains in the same plane; for simplicity here, we term these projection sites the dorsal and ventral thalamus, respectively (Bohne et al. 2019). To examine the SCP tracts, we used retrograde tract
tracing in which we performed stereotaxic injections of a lipophilic dextran dye into either the dorsal or ventral thalamus and allowed the dye to diffuse through the axons to the associated neuron’s cell body (~7 days); we then sacrificed the animal and examined the cerebellum for evidence of the lipophilic dye indicating tracing.

We found that both dorsal and ventral thalamus injections resulted in visible clusters of dye-stained cells in the contralateral DCN, and not the ipsilateral DCN, in control animals indicating the retrograde tract tracing reliably labelled the SCPs in our hands (Figure 1D-E, dorsal: 6/8; ventral: 8/11). In the Smo$^{Nex-Cre}$ mice, the results differed depending on whether we injected in the dorsal or ventral thalamus (Figure 1F-G). In the ventral thalamus injections, we detected dye-stained clusters of cells in the contralateral DCN but not the ipsilateral DCN, indicating normal SCP projection to the ventral thalamus (Figure 1G, 4/4 injections). This indicates that at least some SCPs cross the midline. In the dorsal thalamus injections, we could not detect dye-stained clusters of cells in either the contralateral or ipsilateral DCN (Figure 1F, 0/6 injections) suggesting that SCPs lacking SMO do not project to the dorsal thalamus. These data implicate SMO as critical for proper projection of the SCPs to the dorsal thalamus.

ARL13B is required for normal SCP projection to the dorsal thalamus

Given that ARL13B regulates vertebrate Hh signaling in a variety of contexts, we next assessed ARL13B’s role in proper SCP projection. In order to delete ARL13B specifically in projection neurons, we generated Nex-Cre;Arl13b$^{fl/fl}$ mice, which we refer to as Arl13b$^{Nex-Cre}$. We performed dorsal and ventral thalamus injections for retrograde tract tracing to examine the SCPs (Figure 1H-I). In the ventral thalamus injections of
Arl13bNex-Cre mice, we found dye-stained clusters of cells in the contralateral DCN consistent with normal SCP projections crossing the midline and projecting to the ventral thalamus (Figure 1I, 4/4 injections). In contrast, in the dorsal thalamus injections of Arl13bNex-Cre mice, we generally did not detect dye-stained clusters of cells in either the contralateral or ipsilateral DCN, suggesting that the SCPs lacking ARL13B do not project to the dorsal thalamus (Figure 1H, 1/7 injections). These data link ARL13B function to normal SCP projection. Furthermore, they reveal the same phenotype in SmoNex-Cre and Arl13bNex-Cre mice.

ARL13B does not function from within cilia to mediate SCP guidance

ARL13B and the other 35 genes implicated in Joubert syndrome associate with the cilium or centrosome leading to the assumption that protein dysfunction from these locales underlies JSRD phenotypes (Parisi 2019). To directly ask whether ARL13B mediates SCP guidance to the dorsal thalamus from within cilia, we examined a mouse expressing a cilia-excluded variant of ARL13B, ARL13BV358A (Figure 2) (Gigante et al. 2020). We previously demonstrated that ARL13BV358A retains all known ARL13B biochemical activity, is undetectable in cilia yet transduces vertebrate Hh signaling normally (Mariani et al. 2016; Gigante et al. 2020). We found that either dorsal or ventral thalamus injections resulted in visible clusters of dye-stained cells in the contralateral DCN in control (Figure 2A-B, dorsal: 3/3; ventral: 5/5) and Arl13bV358A/V358A (Figure 2C-D, dorsal: 3/3; ventral: 3/3) animals. In the context of the previous result showing that Arl13bNex-Cre mice display abnormal SCP projections to the dorsal thalamus, these data
demonstrate that ARL13B does not function from within cilia to regulate SCP
projections.

SCP projection in mice expressing a Joubert-causing allele, Arl13bR79Q

In order to understand the relationship between ARL13B and MTS formation in
Joubert syndrome, we generated a mouse expressing the JSRD-causing R79Q
mutation. We used CRISPR/Cas9 editing to change the conserved residue in the
mouse genome. This amino acid change disrupts ARL13B’s GEF activity for ARL3
(Gotthardt \textit{et al.} 2015; Ivanova \textit{et al.} 2017). We found Arl13bR79Q/R79Q mice were viable
and fertile. We bred the \textit{Arl13bR79Q} allele to the null \textit{Arl13bD} allele to make \textit{Arl13bR79Q/D}
animals, which we found survived to adulthood. As \textit{Arl13bD/V} are embryonic lethal, this
genetically demonstrates that \textit{Arl13bR79Q} is a hypomorphic allele of \textit{ARL13B} (Su \textit{et al.}
2012).

To assess the role of ARL13BR79Q in SCP guidance, we performed dorsal and
ventral thalamus dye injections in control and \textit{Arl13bR79Q/R79Q} mice (Figure 3). We
identified visible clusters of dye-stained cells in the contralateral DCN in control (Figure
3A-B, dorsal: 4/4; ventral: 3/3) and \textit{Arl13bR79Q/R79Q} (Figure 3C-D, dorsal: 3/3; ventral:
3/4) animals. Thus, despite the constitutive expression of the JSRD-causing allele
throughout development, we did not detect a SCP projection defect in the
\textit{Arl13bR79Q/R79Q} mouse model. In the context of the abnormal SCP projections to the
dorsal thalamus that we identified in the \textit{SmoNex-Cre} and \textit{Arl13bNex-Cre} mice, this result
indicates that the \textit{Arl13bR79Q} allele does not disrupt SMO function or any ARL13B
function that regulates SMO.
Arl13b^{R79Q/R79Q} mice display normal Shh signal transduction in neural tube patterning

To further investigate the role of the Arl13b^{R79Q} allele in Hh signaling, we examined embryonic neural patterning as it is exquisitely sensitive to alterations in Shh activity (Chiang et al. 1996; Briscoe and Ericson 1999). We generated E10.5 embryos and stained neural tube sections with antibodies against Shh, Olig2 and Pax6 (Figure 4). As expected in wild type embryos, we observed Shh expression in the ventral-most cells (the floorplate), Olig2 expression in lateral cells and Pax6 expression more dorsally. We also saw the established abnormal cell fates in null Arl13b^{V/Δ} embryos: loss of Shh staining in the floorplate (Figure 4D), dorsal and ventral expansion of Olig2 expression (Figure 4H), and a dorsal shift in Pax6 expression (Figure 4L). We found both Arl13b^{R79Q/R79Q} (Figure 4B, F, J) and Arl13b^{R79Q/Δ} (Figure 4C, G, K) embryos displayed neural patterning indistinguishable from wild type embryos, indicating the Arl13b^{R79Q} allele is not dosage-sensitive and does not disrupt Shh signaling in determining neural cell fate.

Arl13b^{R79Q/R79Q} mice display normal cerebellar size

The lack of a SCP projection phenotype in the Arl13b^{R79Q/R79Q} mice surprised us since JS patients display the MTS. In addition to defects in the SCPs, the MTS is due to an underdeveloped cerebellar vermis, so we examined the size of the cerebellum and the cerebellar vermis (Figure 5) (Aguilar et al. 2012). To quantify cerebellar size, we performed analysis of surface-facing anatomical measurements validated to be sufficiently sensitive to detect small differences in cerebellar vermis size (Deshpande et
al. 2020). Briefly, we measured cerebellar width as well as cerebellar vermis width (widest part of lobule VII) of fixed whole mount dissected brains. For each sex- and age-matched pair, we calculated the ratio of the width measurements from mutant to control, which we compared to a hypothetical value of 1 (indicating no difference between groups). We detected no differences in the overall cerebellar width or the cerebellar vermis width between control and Arl13b^{R79Q/R79Q} mice of either sex (Figure 5B, C). Thus, unlike patients carrying ARL13B^{R79Q/R79Q}, Arl13b^{R79Q/R79Q} mice do not display a detectable growth deficit in the cerebellar vermis.

Global cerebellar hypoplasia is observed in mice lacking Ar13b in all neurons

Cerebellar size is well established to be regulated, in part, via Shh signaling which controls proliferation of the cerebellar granule precursor cells (Kenney and Rowitch 2000; Chizhikov et al. 2007). In order to better understand the cerebellar size phenotype seen in JBTS patients in relation to ARL13B, we wanted to investigate how ARL13B regulates cerebellar size. To do so, we crossed the Brn4-Cre allele into the conditional null Arl13b^{fl/fl} background, called Arl13b^{Brn4-Cre} (Figure 6). Brn4-Cre initiates expression at E8.5 throughout the neuroectoderm so the cerebellum develops in the absence of ARL13B (Heydemann et al. 2001; Hazen et al. 2012). Arl13b^{Brn4-Cre} mice develop hydrocephaly just after weaning which often leads to death. We again calculated width ratios using surface-facing anatomical measurements and found the overall width of the cerebellum was 6% reduced in both females and males lacking ARL13B compared to control littermates at weaning (Figure 6B, p<0.05). More striking, in the cerebellar vermis we detected a 27% reduction in width in female and a 33%
reduction in male mutants compared to controls (Figure 6C, p<0.0001). From these
data, we conclude that loss of ARL13B leads to a modest global cerebellar size deficit
and a more pronounced cerebellar vermis size reduction.

Arl13b^{V358A/V358A} mice display normal cerebellar size

JS is classified as a ciliopathy due to the majority of causative genes encoding
proteins that, like ARL13B, are associated with cilia. In order to better understand the
role of ciliary ARL13B in cerebellar size, we examined cerebellar width in the mice
expressing the cilia-excluded variant ARL13B^{V358A} (Figure 7) (Gigante et al. 2020). We
detected no difference in the overall cerebellar width or that of the cerebellar vermis
between control and Arl13b^{V358A/V358A} mice (Figure 7B, C). Thus, ARL13B does not
control cerebellar size from within cilia.

DISCUSSION

Here we demonstrate that complete loss of Arl13b function in mouse can account
for two aspects of the MTS: aberrant SCP thalamic targeting and cerebellar vermis
hypoplasia. We expand the role of Hh signaling as a critical guidance cue by showing it
is required for proper SCP projection to the dorsal thalamus. Our finding that the SCP
phenotype is identical in Smo_{Nex-Cre} and Arl13b_{Nex-Cre} mice is consistent with a model
whereby ARL13B regulates SCP projections to the dorsal thalamus via a SMO-
dependent mechanism. In line with previous work showing that ARL13B does not
function from within cilia to regulate Shh-guided axon guidance, we found normal SCP
thalamic targeting in mice expressing only a cilia-excluded ARL13B variant (Ferent et al.
By mutating a conserved arginine to glutamine, we generated a mouse expressing a mutation linked to JSRD in humans and observed no change in vertebrate Hh signaling (Cantagrel et al. 2008). Additionally, we identified no defects in Arl13b^{R79Q/R79Q} SCP projections. Whereas complete ARL13B deletion (Arl13b^{Bm4-Cre}) in the cerebellum led to global hypoplasia, we show the cerebellum of Arl13b^{R79Q/R79Q} mice is not significantly different in size compared to controls.

Overall, our data indicate ARL13B function is critical for both SCP targeting and controlling cerebellar vermis size. At one level, our data implicate Hh signaling in the etiology of the MTS since we show that SCP targeting requires SMO. However, at another level, our data indicate that Hh-independent pathways are at play as we don’t observe Hh-dependent neural tube patterning defects in the presence of the JSRD-causing Arl13b^{R79Q} allele. In other mouse models of JSRD where the hypoplasia is specific to the cerebellar vermis, Wnt signaling is affected (Lancaster et al. 2011). Thus, the MTS could be due to disruption of different pathways in the SCPs and the vermis. This would imply that the 35 JSRD implicated genes all affect the distinct pathways in a similar manner (Parisi 2019). Alternatively, the MTS may form due to alterations in any of a few pathways - and it is even possible that alterations in one pathway could impact other pathways - or the ability of cells to respond to those other pathways. Such a model is hinted at by previous work showing interplay between the Hh and Wnt pathways underlying the severity of hindbrain phenotypes (Hagemann and Scholpp 2012; Bashford and Subramanian 2019). While we haven’t detected any changes in Wnt response in the absence of ARL13B function, we may have not examined the relevant biological process or used a sensitive enough readout (Horner and Caspary 2019).
Parallel reasoning would thus suggest that while Arl13b\(^{R79Q/R79Q}\) mice clearly transduce Hh reasonably well, there may be subtle changes in Shh signaling or changes that influence Wnt signaling. Our data are consistent with the complexity exhibited by other JSRD mouse models examined to date (Delous et al. 2007; Garcia-Gonzalo et al. 2011; Roberson et al. 2015; Bashford and Subramanian 2019).

In patients, the SCP targeting deficit is more severe than what we observed in the mice. The SCPs in patients do not cross the midline, appearing thickened on the ipsilateral side relative to their DCN (Yachnis and Rorke 1999; Poretti et al. 2007). However, in the mouse we infer midline crossing of the SCPs. In the case of the Smo\(^{Nex-Cre}\) conditional mice, it is formally possible that the SCPs do not rely on SMO for midline crossing but only for subsequent targeting to the dorsal thalamus. The fact that the Arl13b\(^{Nex-Cre}\) conditional mice phenocopied the Smo\(^{Nex-Cre}\) phenotype makes this less likely, since ARL13B is directly implicated in JSRD and regulates SMO-dependent axon guidance in other contexts (Cantagrel et al. 2008; Ferent et al. 2019). It is also plausible that the protein turnover driven by Nex-Cre completed after midline crossing occurred. Nex-Cre expression initiates at E11.5 in the cells on the rhombic lip of the cerebellar anlage as they start to migrate and be specified before occupying the deep cerebellar nuclei (Fink et al. 2006; Goebbels et al. 2006). We expect deletion would occur in the precursors and therefore the neurons of the DCN would not express protein. Finally, it is possible that the mouse is not a valid system in which to model the SCP midline crossing defect. This might explain why we saw no defects in the SCP targeting of the Arl13b\(^{R79Q/R79Q}\) mice, as this is a constitutive mutation that requires no protein turnover, yet homozygous expression of ARL13B\(^{R79Q}\) in patients results in the
molar tooth sign, which has been associated with failed decussation of white matter tracts (Quisling et al. 1999). Indeed, other mouse mutants such as Cep290 and Ahi1 which recapitulate the cerebellar vermis hypoplasia, also do not display midline crossing defects in the SCPs (Lancaster et al. 2011). Whether this is due to anatomical distinctions between the cerebellum in mouse and human or the genetic background on which these models were examined are open questions. Recent work highlights clear molecular and temporal differences between mouse and human cerebellar development (Haldipur et al. 2019; Behesti et al. 2021).

Examining SCP projections is labor intensive and it has not been done systematically among the JSRD mouse models (Bashford and Subramanian 2019; Guo et al. 2019). While previous work showed that Arl13bNex-Cre and Inpp5eNex-Cre mice exhibit SCP targeting deficits, here we pinpoint the Arl13bNex-Cre defect as specific to the projection to the dorsal thalamus (Guo et al. 2019). The projection to the ventral thalamus remains intact, suggesting there is not a generalized deficit in axon outgrowth within the tract. The work on the Arl13bNex-Cre and Inpp5eNex-Cre SCP targeting deficits argue that PI3K/Akt signaling from within cilia led to the tract defects (Guo et al. 2019). However, we found that cilia-excluded ARL13B mediated SCP targeting normally.

These conflicting results could be explained by differences in the experimental details as the data supporting ciliary ARL13B function used viral rescue whereas we used genetic mutations engineered at the endogenous locus in this study. Alternatively, these data could indicate that ARL13B plays an important cellular role in the ciliary trafficking of key components needed for the PI3K/Akt pathways.
JSRD-causing mutations in ARL13B are generally restricted to the GTPase domain of the protein, although two residues outside that domain are implicated in disease (Cantagrel et al. 2008; Bachmann-Gagescu et al. 2015; Thomas et al. 2015; Shaheen et al. 2016; Rafiullah et al. 2017). Based on other ARL proteins, ARL13B likely assumes distinct conformations upon the binding either GDP or GTP, permitting different binding partners or altering affinities for binding partners (Pasqualato et al. 2002; Miertzschke et al. 2014). None of the tested JSRD-causing mutations (R79Q, Y86C or R200C) disrupt GTP binding or hydrolysis, however, all three mutations disrupt ARL13B function as an ARL3 GEF (Ivanova et al. 2017). Given that complete deletion of ARL13B impacts broader biological processes in the cerebellum than the R79Q mutation and that the null mutant misregulates Hh signaling whereas R79Q does not, we conclude that a subset of ARL13B function is disrupted in JSRD.

Acknowledgements

We are grateful to L. Mariani for her initial work on this project as well as R.E. Van Sciver and E. Gigante for critical comments on the manuscript.

Funding

This work was supported by funding from National Institutes of Health grants R01NS090029, R01GM110663 and R35GM122549 to T.C. and T32GM008490 and F31NS101806 to S.K.S. with additional support from the Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience NINDS Core Facilities grant, P30NS055077. This study was supported in part by the Mouse Transgenic and
Gene Targeting Core (TMF), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities. Additional support was provided by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000454. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.

Conflicts of Interest

The authors have no competing interests to declare.

Author contributions statement

References

Variable expressivity of ciliopathy neurological phenotypes that encompass
Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-
regulated ciliogenesis, Shh and Wnt signalling defects. *Hum Mol Genet. 22:*
1358-1372. doi:10.1093/hmg/dds546

Aguilar, A., A. Meunier, L. Strehl, J. Martinovic, M. Bonniere et al., 2012 Analysis of
human samples reveals impaired SHH-dependent cerebellar development in
Joubert syndrome/Meckel syndrome. *Proc Natl Acad Sci U S A. 109:*
16951-16956. doi:10.1073/pnas.1201408109

Alkanderi, S., E. Molinari, R. Shaheen, Y. Elmaghloob, L. A. Stephen et al., 2018 ARL3
mutations cause Joubert syndrome by disrupting ciliary protein composition. *Am
J Hum Genet. 103:*
612-620. doi:10.1016/j.ajhg.2018.08.015

Arts, H. H., D. Doherty, S. E. C van Beersum, M. A. Parisi, S. J. F. Letteboer et al., 2007
Mutations in the gene encoding the basal body protein RPGRIP1L, a
nephrocystin-4 interactor, cause Joubert syndrome. *Nat Genet. 39:*
882-888. doi:10.1038/ng2069

Asadollahi, R., J. E. Strauss, M. Zenker, O. Beuing, S. Edvardson et al., 2018 Clinical
and experimental evidence suggest a link between KIF7 and C5orf42-related
ciliopathies through Sonic Hedgehog signaling. *Eur J Hum Genet. 26:*
197-209. doi:10.1038/s41431-017-0019-9

Bachmann-Gagescu, R., J. C. Dempsey, I. G. Phelps, B. J. O’Roak, D. M. Knutzen et
al., 2015 Joubert syndrome: A model for untangling recessive disorders with

doi:10.1136/jmedgenet-2015-103087

doi:10.1002/path.5271

doi:10.1073/pnas.1706977115

Bielas, S. L., J. L. Silhavy, F. Brancati, M. V. Kisseleva, L. Al-Gazali et al., 2009 Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. *Nat Genet.* **41**: 1032-1036.

doi:10.1038/ng.423

Charron, F., E. Stein, J. Jeong, A. P. McMahon, and M. Tessier-Lavigne, 2003 The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with

Chavez, M., S. Ena, J. Van Sande, A. de Kerchove d'Exaerde, S. Schurmans et al., 2015 Modulation of ciliary phosphoinositide content regulates trafficking and Sonic hedgehog signaling output. *Dev Cell.* **34:** 338-350. doi:10.1016/j.devcel.2015.06.016

Chiang, C., Y. Litingtung, E. Lee, K. E. Young, J. L. Corden et al., 1996 Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. *Nature.* **383:** 407-413. Doi:10.1038/383407a0

Chih, B., P. Liu, Y. Chinn, C. Chalouni, L. G. Komuves et al., 2011 A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. *Nat Cell Biol.* **14:** 61-72. doi:10.1038/ncb2410

Chizhikov, V. V., J. Davenport, Q. Zhang, E. K. Shih, O. A. Cabello et al., 2007 Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. *J Neurosci.* **27:** 9780-9789. doi:10.1523/JNEUROSCI.5586-06.2007

Consugar, M. B., V. J. Kubly, D. J. Lager, C. J. Hommerding, W. C. Wong et al., 2007

Molecular diagnostics of Meckel–Gruber syndrome highlights phenotypic differences between MKS1 and MKS3. *Hum Genet.* **121**: 591-599.
doi:10.1007/s00439-007-0341-3

Delous, M., L. Baala, R. Salomon, C. Laclef, J. Vierkotten et al., 2007 The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. *Nat Genet.* **39**: 875-881. doi:10.1038/ng2039

doi:10.1016/j.spen.2009.06.002

Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc. *J Neurosci.* **30**: 266-275. doi:10.1523/JNEUROSCI.2778-09.2010

Development of the deep cerebellar nuclei: Transcription factors and cell migration from the rhombic lip. *J Neurosci.* **26**: 3066-3076. doi:10.1523/JNEUROSCI.5203-05.2006

A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. *Nat Genet.* **43**: 776-784. doi:10.1038/ng.891

Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. *Dev Cell.* **34**: 400-409. doi:10.1016/j.devcel.2015.08.001

Hazen, V. M., M. G. Andrews, L. Umans, E. B. Crenshaw 3rd, A. Zwijsen et al., 2012 BMP receptor-activated Smads confer diverse functions during the development

doi:10.1016/j.ydbio.2012.05.014

Heydemann, A., L. C. Nguyen, and E. B. Crenshaw 3rd, 2001 Regulatory regions from
the Brn4 promoter direct LACZ expression to the developing forebrain and neural

Hopp, K., C. M. Heyer, C. J. Hommerding, S. A. Henke, J. L. Sundsbak et al., 2011
B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-
enriched next-generation sequencing and deletion analysis. Hum Mol Genet. 20:
2524-2534. doi:10.1093/hmg/ddr151

Horner, V. L., and T. Caspary, 2011 Disrupted dorsal neural tube BMP signaling in the
cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev Biol. 355: 43-
54. doi:10.1016/j.ydbio.2011.04.019

Huang, S., J. Laoukili, M. T. Epping, J. Koster, M. Hözel et al., 2009 ZNF423 is
critically required for retinoic acid-induced differentiation and is a marker of
doii:10.1016/j.ccr.2009.02.023

Huangfu, D., A. Liu, A. S. Rakeman, N. S. Murcia, L. Niswander et al., 2003 Hedgehog
signalling in the mouse requires intraflagellar transport proteins. Nature. 426: 83-
87. doi:10.1038/nature02061

Humbert, M. C., K. Weihbrecht, C. C. Searby, Y. Li, R. M. Pope et al., 2012 ARL13B,
PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc
Hynes, A. M., R. H. Giles, S. Srivastava, L. Eley, J. Whitehead et al., 2014 Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therape

Munoz-Estrada, J., and R. J. Ferland, 2019 Ahi1 promotes Arl13b ciliary recruitment, regulates Arl13b stability and is required for normal cell migration. *J Cell Sci.* **132:** jcs230680. doi:10.1242/jcs.230680

TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the
ciliary transition zone. *J Cell Biol.* **209**: 129-142. doi:10.1083/jcb.201411087

Thomas, S., V. Cantagrel, L. Mariani, V. Serre, J-E. Lee et al., 2015 Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. *Eur J Hum Genet.* **23:** 621-627. doi:10.1038/ejhg.2014.156

Tran, P. V., C. J. Haycraft, T. Y Besschetnova, A. Turbe-Doan, R. W. Stottmann et al., 2008 THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. *Nat Genet.* **40:** 403-410. doi:10.1038/ng.105

Wechsler-Reya, R. J., and M. P. Scott, 1999 Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. *Neuron.* 22: 103-114. doi:10.1016/s0896-6273(00)80682-0

Figure legends

Figure 1: SCPs lacking Arl13b or Smo fail to project to the dorsal thalamus. (A-C)

Schematics of injections and fluorescent tracer diffusion shown horizontally (A) or sagittally (B-C). (A) Red dashed arrow depicts dye path in a successful injection from injection site (red X) caudal through the brain and across the midline and into the contralateral cerebellar DCN (red arrowhead). Grey background boxes indicate area of subsequent images: the injection site (INJ) and cerebellum (DCN). (D-I) Representative images of dorsal (D, F, H) or ventral (E, G, I) thalamus injection site (top panel) and
cerebellum (middle panel) with the DCN in hatched white circle and magnified (bottom panel) with recoloring to black and white to aid visualization. The retrograde fluorescent tracer is pink-red and sections are stained with DAPI (blue). Numbers indicate the number of positively stained DCN clusters (DCN traced) out of the total number of injected animals. Note that no tracing was observed on ipsilateral side to injection. (D, E) Fluorescent tracer injection in Smo$^{fl/+}$; Arl13b$^{fl/+}$; Nex-Cre control animals resulted in contralateral DCN staining in (D) 6/8 dorsal thalamus injections and (E) 8/11 ventral thalamus injections. (F, G) Fluorescent tracer injection in Smo$^{Nex-Cre}$ animals resulted in contralateral DCN staining in (F) 0/6 dorsal thalamus injections (Fisher’s exact test, two-tailed, significant difference, P=0.0097) and (G) 4/4 ventral thalamus injections (not significant (ns), P=0.5165). (H, I) Fluorescent tracer injection in Arl13b$^{Nex-Cre}$ animals resulted in contralateral DCN staining in (H) 1/7 dorsal thalamus injections (significant difference, P=0.0406) and (I) 4/4 ventral thalamus injections (ns, P=0.5165).

Figure 2: SCPs expressing cilia-excluded ARL13BV358A project normally to both the dorsal and ventral thalamus. (A-D) Representative images of dorsal (A, C) or ventral (B, D) thalamus injection site (top panel) and cerebellum (middle panel) with the DCN in hatched white circle and magnified (bottom panel) with recoloring to black and white to aid visualization. Numbers indicate the number of positively stained DCN clusters out of the total number of injected animals. Note that no tracing was observed on the injection's ipsilateral side. (A, B) Fluorescent tracer injection in Arl13b$^{V358A/+}$ control animals resulted in contralateral DCN staining in (A) 3/3 dorsal thalamus injections and (B) 5/5 ventral thalamus injections. (C-D) Fluorescent tracer injection in...
Arl13b^{V358A/V358A} animals resulted in contralateral DCN staining in (C) 3/3 dorsal thalamus injections (Fisher’s exact test, two-tailed, ns, P>0.9999) and (D) 5/5 ventral thalamus injections (ns, P>0.9999).

Figure 3: SCPs expressing JS allele Arl13b^{R79Q} project normally to both the dorsal and ventral thalamus (A-D) Representative images of dorsal (A, C) or ventral (B, D) thalamus injection site (top panel) and cerebellum (middle panel) with the DCN in hatched white circle and magnified (bottom panel) with recoloring to black and white to aid visualization. Numbers indicate the number of positively stained DCN clusters out of the total number of injected animals. Note that no tracing was observed on the injection’s ipsilateral side. (A, B) Fluorescent tracer injection in Arl13b^{R79Q/+} control animals resulted in contralateral DCN staining in (A) 4/4 dorsal thalamus injections and (B) 3/3 ventral thalamus injections. (C-D) Fluorescent tracer injection in Arl13b^{R79Q/R79Q} animals resulted in contralateral DCN staining in (C) 3/3 dorsal thalamus injections (Fisher’s exact test, two-tailed, ns, P>0.9999) and (D) 3/4 ventral thalamus injections (ns, P>0.9999).

Figure 4: Mouse embryos expressing JS allele Arl13b^{R79Q} display normal cell patterning in the neural tube. Shh, Olig2 and Pax6 staining of E10.5 Arl13b^{+/+} (n=3), Arl13b^{R79Q/R79Q} (n=3), Arl13b^{R79Q/D} (n=3) and Arl13b^{D/D} (n=3) mouse neural tubes. Scale bar = 100 micrometers. (A-D) Shh is visible in the notochord and floorplate of (A) Arl13b^{+/+}, (B) Arl13b^{R79Q/R79Q} and (C) Arl13b^{R79Q/D} neural tubes but absent from the floorplate of (D) Arl13b^{D/D} embryos. (E-H) Olig2 stains the pMN domain in (E) Arl13b^{+/+},
(F) Arl13b^{R79Q/R79Q} and (G) Arl13b^{R79Q/Δ} embryos and stains an expanded domain in (H) Arl13b^{V/Δ} embryos. (I-L) Pax6 expression is visible in the dorsal neural tube in (I) Arl13b^{+/+}, (J) Arl13b^{R79Q/R79Q} and (K) Arl13b^{R79Q/Δ} neural tubes but shifted dorsally in (L) Arl13b^{V/Δ} neural tubes.

Figure 5: Arl13b^{R79Q} mutation does not affect cerebellar size. (A) Representative surface-facing images of cerebella from control and Arl13b^{R79Q/R79Q} mutant mice. Scalebar = 1mm. (B) Ratio of Arl13b^{R79Q/R79Q} mutant to control cerebellar width measured from surface views of sex- and age-matched pairs showed no significant difference from the hypothetical ratio of 1 (one-sample t-test: female p=0.9524, male p=0.5244). (C) Ratio of Arl13b^{R79Q/R79Q} mutant to control vermis width measured at lobule VII showed no significant difference from hypothetical ratio of 1 (one-sample t-test: female p=0.4895, male p=0.9376). Each dot represents a pair of sex- and age-matched animals.

Figure 6: Pan-neuronal deletion of Arl13b results in a small cerebellum. (A) Representative images of cerebella from control and Arl13b^{Brn4-Cre} mutant mice. Scalebar = 1mm. (B) The ratio of Arl13b^{Brn4-Cre} mutant to control cerebellar width was reduced 6% in both female and males compared to a hypothetical ratio of 1 (one-sample t-test: female p=0.0111, male p=0.0144). (C) The ratio of Arl13b^{Brn4-Cre} mutant to control cerebellar vermis width was reduced 27% in female and 33% in male age matched pairs (one-sample t-test: female p<0.0001, male p<0.0001). Each dot represents a pair of sex- and age-matched animals.
Figure 7: Mice expressing cilia-excluded $Arl13b^{V358A}$ have cerebella of normal size. (A) Representative images of cerebella from control and $Arl13b^{V358A/V358A}$ mutant mice. Scalebar = 1mm. (B) Ratio of $Arl13b^{V358A/V358A}$ mutant to control cerebellar width measured in same-sex age-matched pairs of mice showed no significant difference from the hypothetical ratio of 1 (one-sample t-test: female $p=0.6885$, male $p=0.2704$). (C) Ratio of $Arl13b^{V358A/V358A}$ mutant to control vermis width measured at lobule VII showed no significant difference from hypothetical ratio of 1 (one-sample t-test: female $p=0.4246$, male $p=0.0519$). Each dot represents a pair of sex- and age-matched animals.
<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Smo<sup>Nex-Cre</sup></th>
<th>Arl13b<sup>Nex-Cre</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>6/8</td>
<td>0/6</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>8/11</td>
<td>4/4</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>4/4</td>
<td>1/7</td>
</tr>
</tbody>
</table>
A Control

Arl13b

B cerebellum

C vermis

Figure Legend:

- (A) Images show control and *Arl13b* knockout brain sections. Scale bar indicates 0.05 mm.
- (B) Graphs display cerebellum width for females and males.
- (C) Graphs display vermis width for females and males.

Graphs:

- **X-axis:** Sex (females and males).
- **Y-axis:** Cerebellum width and Vermis width.

The data suggests a significant difference in cerebellum and vermis width between control and *Arl13b* knockout conditions.