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Abstract 16 
 17 
Collecting data online via crowdsourcing platforms has proven to be a very efficient way to recruit individuals from a large 18 
diverse sample. While many fields in psychology have embraced online studies, the field of motor learning has lagged 19 
behind. We suspect this is because of an implicit assumption that the loss of experimental control with online data collection 20 
will be problematic for kinematic data. As a first foray to bring motor learning online, we developed a web-based platform 21 
to collect kinematic data, serving as a template for researchers to create their own online sensorimotor control and learning 22 
experiments. As a proof-of-concept, we present three visuomotor rotation experiments conducted with this platform, asking 23 
if fundamental motor learning phenomena discovered in the lab could be reproduced online. In all experiments, there was a 24 
close correspondence between the results obtained online with those previously reported from research conducted in the 25 
laboratory. As such, our web-based motor learning platform can serve as a powerful tool to exploit the benefits of 26 
crowdsourcing approaches and extend research on motor learning beyond the confines of the traditional laboratory. 27 
 28 
Introduction  29 
 30 
The ability to produce a wide repertoire of movements, and to adjust those movements in response to changes in the body 31 
and environment, is a core feature of human competence. This ability helps a tired ping-pong player compensate for her 32 
fatigue, and facilitates a patient’s motor recovery from neurological injury (John W. Krakauer, Hadjiosif, Xu, Wong, & 33 
Haith, 2019; Roemmich & Bastian, 2018; Jonathan S. Tsay & Winstein, 2020). By improving our understanding of how 34 
movements are learned, we can uncover general principles about how the motor system functions and develops, optimize 35 
training techniques for sport and rehabilitation, and design better brain-machine interfaces. 36 
 37 
A paradigmatic approach for studying motor learning is to introduce a new mapping between the motion of the arm and the 38 
corresponding visual feedback (J. W. Krakauer, Pine, Ghilardi, & Ghez, 2000). Historically, such visuomotor perturbations 39 
were accomplished by the use of prism glasses that distort the visual field (Helmholtz, 1924). Nowadays, virtual reality 40 
setups allow more flexible control of the relationship between hand position and a feedback signal. A commonly used 41 
perturbation is visuomotor rotation. Here, participants reach to a visual target with vision of the arm occluded. Feedback is 42 
provided in the form of a cursor presented on a computer monitor. After a brief training period during which the feedback 43 
corresponds to the actual hand position, a perturbation is introduced by rotating the position of the cursor from the actual 44 

hand position (e.g., 15°). The mismatch between the expected and actual position of the feedback induces a change in the 45 
heading direction of the hand, with the hand moving in the opposite direction of the rotation and thus reducing the mismatch 46 
in subsequent trials. If the mismatch is small, this change will emerge in a gradual manner over trials and occurs outside the 47 
participant’s awareness, a phenomenon known as implicit sensorimotor adaptation. If the mismatch is large, this adaptive 48 
learning process may also be accompanied by more explicit adjustments in aiming (Kim, Avraham, & Ivry, 2020; 49 
McDougle, Ivry, & Taylor, 2016; Shadmehr, Smith, & Krakauer, 2010).  50 
 51 
Motor learning experiments are typically run in-person, exploiting finely calibrated apparatuses (digitizing tablets, robotic 52 
manipulandum, full VR displays, etc.) that provide data with high temporal and spatial resolution. However, these 53 
experiments come at a cost: Beyond the expenses associated with purchasing specialized equipment, the labor demands are 54 
high for recruiting participants and administering the experiment, especially since testing is usually limited to one participant 55 
at a time. In-person studies are also likely WEIRD (white, educated, industrialized, rich, and democratic), limiting the 56 
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generalizability of these research findings to the population writ large (Henrich, Heine, & Norenzayan, 2010). Moreover, 57 
exceptional circumstances that limit in-person testing, such as a global pandemic, may halt research progress (Fauci, Lane, 58 
& Redfield, 2020).  59 
 60 
Online experiments have been embraced across the social sciences as a powerful alternative approach for collecting data 61 
for behavioral experiments (Anwyl-Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020). Crowdsourcing platforms, 62 
such as Amazon Mechanical Turk (mturk.com) and Prolific (www.prolific.co), allow researchers to recruit a large number 63 
of participants, perform rapid pilot testing, and efficiently collect data using a variety of experimental designs. Compared 64 
to in-person studies, the online recruitment pool is likely to be more representative of the general population (Paolacci & 65 
Chandler, 2014). Online studies can also reach patient populations who have mobility deficits that limit their capability and 66 
willingness to come to the lab.  67 
 68 
Several studies have shown that the data obtained in online studies replicate those obtained from in-person studies (e.g., 69 
Crump, McDonnell, & Gureckis, 2013). However, only a limited number of online studies have been performed in the 70 
domain of sensorimotor learning. The field of motor learning may have shied away from these online methods because of 71 
concerns related to the inherent loss of experimental control with online data collection, something that may be especially 72 
problematic for kinematic data. Not only will the response devices be variable, but it would be difficult to control how 73 
movements are produced between participants or even across the experimental session for a single participant. Previous 74 
efforts examining motor learning in the wild (Chen et al., 2018; Crocetta et al., 2018; Fernandes, Albert, & Kording, 2011; 75 
Haar, van Assel, & Faisal, 2020; John W. Krakauer et al., 2020; Takiyama & Shinya, 2016) have primarily focused on 76 
testing specific hypotheses in their ecological setup, making it hard to directly compare their findings with those obtained 77 
in the lab. Here we set out to create a general-purpose online platform that could be adopted by researchers for studying 78 
sensorimotor control and learning. We report a series of experiments with designs commonly used to study sensorimotor 79 
learning. We ask whether the data from our online studies replicate core phenomena reported in previous in-person studies. 80 
The platform, OnPoint, is available on GitHub (Jonathan Sanching Tsay, Lee, et al., 2020), and participants were recruited 81 
over Amazon’s Mechanical Turk. The results show a close correspondence between the motor learning behavior observed 82 
in-person and online, validating our tool as a platform for motor learning research, and serving as a proof-of-concept to 83 
bring motor learning outside the confines of the traditional laboratory.  84 
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Results 85 
 86 
Experiment 1: Learning visuomotor rotation of different sizes 87 
 88 
Motor learning is frequently treated as an implicit phenomenon. Indeed, expert performers frequently comment on letting 89 
their “body do the thinking” when they execute an overlearned skill (Schmidt & Young, 1987). However, these experts are 90 
also able to make rapid and flexible motor corrections, suggesting that even when behavior seems automatic, there remains 91 
considerable cognitive control (Fitts & Posner, 1979). Recent work has highlighted how performance in even simple 92 
sensorimotor adaptation tasks reflects the operation of multiple learning processes that may solve different computational 93 
problems (Benson, Anguera, & Seidler, 2011; Diedrichsen, White, Newman, & Lally, 2010; Haith, Huberdeau, & Krakauer, 94 
2015; Hegele & Heuer, 2010; Leow, Marinovic, de Rugy, & Carroll, 2018; Mazzoni & Krakauer, 2006; Miyamoto, Wang, 95 
& Smith, 2020; Taylor, Krakauer, & Ivry, 2014; Werner et al., 2015). One source of evidence for this comes from a study 96 
by Bond and Taylor (Bond & Taylor, 2015) who studied how people learn to respond when the visual feedback was rotated, 97 
and in particular, when the size of the rotation was manipulated between 15° and 90° (Figure 1a). Explicit strategies, as 98 
measured by verbal aim reports, were dominant when the error size was large, producing deviations in hand angle that 99 
scaled with the size of the perturbation. Yet, implicit adaptation, as measured by aftereffects during a no-feedback block 100 
that was introduced immediately after learning, remained constant over these perturbations.  101 
 102 
Experiment 1 was designed to provide an online replication of Bond and Taylor (2015), testing whether the learning of 103 
visuomotor rotation – incorporating both explicit and implicit processes – scales with rotation size, and whether the 104 
aftereffect – reflecting solely the implicit process – remains constant across rotation sizes. After a series of baseline blocks 105 
to familiarize the participants with the apparatus and basic trial procedure, participants experienced one of four rotation 106 
sizes (15°, 30°, 60°, 90°), with the perturbation constant for an entire block of 80 rotation trials. Participants were instructed 107 
to make the cursor intersect the target; we did not specify if they should explicitly alter their aim to facilitate performance. 108 
 109 
These learning functions are presented in Figure 1b (in-person, Bond and Taylor (2015)) and 1d (online version). We 110 
analyzed our data together with those obtained by Bond and Taylor (2015), evaluating mean performance at three phases of 111 
the experiment: Early adaptation, late adaptation, and aftereffect (Figures 1c and 1e). Learning scaled with the size of the 112 
rotation during early learning (main effect of perturbation size: 𝐹(","$%) = 64.5, 𝑝 < 0.01), a signature of strategic aiming 113 

at play. While there was no main effect of setting (𝐹(","$%) = 0.5, 𝑝 = 0.46), adaptation scaled faster in the in-person group 114 

compared to the online group (setting x perturbation size interaction: 𝐹(","$%) = 64.5, 𝑝 < 0.01). The mean angle during the 115 

late phase of adaptation in all conditions reached an asymptote close to the size of the perturbation. As such, learning scaled 116 
with the size of perturbation during the late phases of learning in both experiments (𝐹(","$%) = 810.1, 𝑝 < 0.01). There was 117 

neither a main effect of setting (𝐹(","$%) = 1.3, 𝑝 = 0.24) nor an interaction between setting x perturbation size (𝐹(","$%) =118 

0.37, 𝑝 = 0.54). 119 
 120 
Hand angle dropped dramatically in the no-feedback aftereffect block, presumably due to the termination of aiming. 121 
However, the direction of the hand movements remained different than zero in the direction away from the feedback (all 122 
groups: 𝑝 < 0.01), the signature of an implicit aftereffect. Critically, the magnitude of the aftereffect did not scale with the 123 
size of the rotation (𝐹(","$%) = 2.5, 𝑝 = 0.12), indicating that implicit adaptation reaches a common saturation point, at least 124 

for the large range of values tested here. The magnitude of aftereffects was nominally similar to that reported in Bond and 125 

Taylor (2015) (main effect of setting: 𝐹(","$%) = 1.9, 𝑝 = 0.17), with the size of the aftereffect ranging from 0° to 30°. There 126 

was no interaction between setting x perturbation size in aftereffects (𝐹(","$%) = 0.1, 𝑝 = 0.75). 127 

 128 
While the data from our online study are similar to the results from Bond and Taylor (2015), there were several notable 129 

differences. First, within-participant variability was greater in the online group (In-person SD: 12.4 ± 1.3°; Online SD: 130 

19.0 ± 1.5°;  𝑝 < 0.01). This may be due to the lack of stringent experimental supervision or differences in the types of 131 
movements used in the in-person study (arm movements in Bond and Taylor) and online study (likely wrist and/or finger 132 
movements given that most participants used a trackpad). Second, the online participants learned at a slower rate. This may 133 
be because participants in the in-person study were able to identify and implement an aiming strategy faster than those tested 134 
online. The lower variability for in-person movements is likely more conducive for identifying an appropriate strategy. 135 
Alternatively, it may be easier to strategically adjust the aim of natural arm movements compared to the aim of finer 136 
movements involving more distal joints over a trackpad.   137 
 138 
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Third, and unexpectedly, the aftereffect data for the online participants was non-monotonic: More variance was explained 139 

by a quadratic model (𝑅'()* = 0.31, 𝑝 < 0.01) compared to a linear model (𝑅'()* = 0.04, 𝑝 = 0.29), an effect that was not 140 

present in the Bond and Taylor (2015) data, where neither a linear (𝑅'()* = 0.06, 𝑝 = 0.06) or quadratic function 141 

(𝑄:	𝑅'()* = 0.05, 𝑝 = 0.14) accounted for a significant percentage of variance. The reason for the non-monotonicity in the 142 

online data is unclear. The dip for the 90° group might reflect some sort of discounting by the implicit system of this large, 143 
non-ecological error (Berniker & Kording, 2008, 2011; Körding et al., 2007; Wei & Körding, 2009). However, the 144 

aftereffect for this group was similar to that observed for the group exposed to a 15° rotation, the condition in which strategic 145 
aiming is unlikely to make much, if any contribution (Morehead, Qasim, Crossley, & Ivry, 2015). An alternative possibility 146 

is that the aftereffect data for the 30° and 60° groups are artifactually inflated by some residual effect of the aiming strategy 147 
in the no-feedback aftereffect block. For example, there may have been a hysteresis effect when re-establishing the mapping 148 

required to move straight to the target when using a trackpad or mouse, an effect that was not present for the 90°. It is also 149 
possible that the extent of implicit adaptation as measured in the aftereffect data does vary with error size, albeit in a non-150 
linear manner. We revisit this question using a different approach in Exp 2. 151 
 152 

 153 
 154 
Experiment 2: Adaptation in response to non-contingent rotated visual feedback 155 
 156 
In Experiment 2, we turn to a method designed to measure implicit learning in the absence of strategic aiming. Motivated 157 
by the idea that adaptation is obligatory in response to a visual sensory prediction error, Morehead et al. (Morehead, Taylor, 158 
Parvin, & Ivry, 2017) replaced the standard movement-contingent visual feedback cursor with a “visual clamp”. Here, the 159 
cursor follows an invariant trajectory on all trials, with the radial position dependent on the participant’s hand position (as 160 
in standard feedback), but the angular position always shifted from the target by a fixed angle (Figure 2a). In this manner, 161 
the angular position of the cursor is no longer contingent on the participant’s movement. This manipulation, in combination 162 
with instructions to ignore the cursor feedback and always move directly to the target, induces gradual changes in hand 163 
angle away from the target in the direction opposite to the perturbation. Learning here is assumed to be entirely implicit, 164 
verified in both subjective interviews provided by participants at the end of the experimental session (Kim, Morehead, 165 
Parvin, Moazzezi, & Ivry, 2018; Kim, Parvin, & Ivry, 2019), as well as in reports of sensed hand location obtained on probe 166 
trials throughout the adaptation block (Jonathan S. Tsay, Parvin, & Ivry, 2020).  167 

 
 
Figure 1. Sensorimotor learning in response to visuomotor rotations. (a) Schematic of a visuomotor rotation task. The cursor feedback (red dot) was rotated with 
respect to the movement direction of the hand, with the size of the rotation varied across groups (15°, 30°, 60°, or 90°). Translucent and solid colors display hand 
and cursor positions at early and late stages of learning, respectively. (b, d) Mean time courses of hand angle for 15° (green), 30° (yellow), 60° (purple), and 90° 
(pink) rotation conditions from the in-person experiment of Bond and Taylor (2015) and the online experiment. Hand angle is presented relative to the target (0°) 
during veridical feedback, no-feedback (grey background), and rotation trials. Shaded region denotes SEM. (c, e) Average hand angles during early and late phases 
of the rotation block, and during the no-feedback aftereffect block from the in-person (c) and online (e) experiments. Box plots denote the median (thick horizontal 
lines), quartiles (1st and 3rd, the edges of the boxes), and extrema (min and max, vertical thin lines). The data from each participant is shown as translucent dots.  
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 168 
Given the assumption that learning is implicit, the clamp method provides another way to ask how error size influences 169 
implicit adaptation. Morehead et al (2017) demonstrated that the rate of adaptation is largely invariant over a wide range of 170 

error sizes (clamp angles ranging from 7.5° - 95°). Moreover, the asymptote has also been shown to be independent of the 171 

error size for this range of perturbations, averaging between 15° - 25° across several studies (Avraham, Keizman, & 172 
Shmuelof, 2019; Kim et al., 2018; Jonathan S. Tsay, Avraham, et al., 2020; Jonathan S. Tsay, Kim, Parvin, Stover, & Ivry, 173 
2020).  174 
 175 
Experiment 2 used a design based on a subset of the conditions in Morehead et al (2017). We examined adaptation in 176 

response to visual clamps of 7.5°, 15°, and 30°, with each perturbation tested in separate groups of participants as in 177 

Experiment 1. We also included a 0° condition, one in which the cursor feedback always moved directly to the target. This 178 
condition provides a baseline to ensure that changes in hand angle in the other groups are driven by error-based learning, 179 
rather than changes due to fatigue or proprioceptive drift (Brown, Rosenbaum, & Sainburg, 2003a, 2003b; Cameron, de la 180 
Malla, & López-Moliner, 2015; Wann & Ibrahim, 1992).  181 
 182 
These learning functions are presented in Figures 2b & 2d. We analyzed our data together with those obtained by Morehead 183 
et al (2017), evaluating mean performance at three phases of the experiment: Early adaptation, late adaptation, and 184 
aftereffect. As expected, there was no consistent change in performance in response to the 0° clamp in our data (one sample 185 
permutation test: early learning: 𝑝 = 0.62; late adaptation, 𝑝 = 0.87; aftereffects, 𝑝 = 0.19), similar to that observed in 186 
Morehead et al (2017) (one sample permutation test: early learning, 𝑝 = 0.46; late adaptation, 𝑝 = 0.26; aftereffects, 𝑝 =187 
0.82). In contrast, adaptation was evident in all stages of learning for the non-zero clamps (one sample permutation test, all 188 
𝑝 < 0.05).  189 
 190 
For non-zero clamp sizes, adaptation did not scale with rotation size during early learning (𝐹(",,%) = 0.2, 𝑝 = 0.66), late 191 

learning (𝐹(",,%) = 0.0, 𝑝 = 0.91), and the no-feedback aftereffect block (𝐹(",,%) = 0.0, 𝑝 = 0.96) (Figures 2c and 2e). The 192 

functions for the 7.5°, 15°, and 30° clamps reach a common asymptote around 15°, with the range of values across 193 
individuals similar to that seen in the aftereffect data of Experiment 1. We note that the magnitude of adaptation is 194 

approximately twice that of the perturbation for the 7.5°. While this might seem puzzling, it is important to keep in mind 195 
that, unlike normal adaptation studies where the position of the feedback cursor is contingent on the hand movement and 196 
thus, the size of the visual error is reduced throughout adaptation, the error size remains invariant with the clamped feedback 197 
task and continues to drive adaptation. In terms of a comparison to in-person results, the online data were similar to those 198 
collected by Morehead et al. (no main effect of setting: Early, 𝐹(",,%) = 0.8, 𝑝 = 0.13; Late,  𝐹(",,%) = 0.2, 𝑝 = 0.63, 199 

Aftereffects, 𝐹(",,%) = 0.0, 𝑝 = 0.98). Within-participant variability was again greater in the online group (In-person SD: 200 

4.5 ± 1.4°; Online SD: 8.2 ± 0.4°;  𝑝 < 0.01). 201 
 202 
In sum, these online results replicate two core insights that are derived from in-person studies using clamped feedback. 203 
First, implicit adaptation occurs automatically in response to a visual sensory prediction error. Second, the learning function 204 
is invariant across a large range of error sizes, both in the shape of the function and its asymptotic value. This invariance 205 
poses a challenge to the standard state-space model of sensorimotor adaptation where the rate and magnitude of learning 206 
are dependent on error size (Herzfeld, Vaswani, Marko, & Shadmehr, 2014; Marko, Haith, Harran, & Shadmehr, 2012; 207 
Shadmehr et al., 2010; Smith, Ghazizadeh, & Shadmehr, 2006). Thus, the current results add additional evidence pointing 208 
to the need for novel perspectives of adaptation, ones that do not assume adaptation to be sensitive to error size, but instead 209 
constrained by the limits of sensorimotor plasticity (Kim et al., 2018) or sensory biases (Heald, Lengyel, & Wolpert, 2020; 210 
Jonathan S. Tsay, Kim, et al., 2020).  211 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.30.181370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.30.181370
http://creativecommons.org/licenses/by-nd/4.0/


 212 
 213 
Experiment 3: Adaptation in response to variable, non-contingent rotated visual feedback 214 
 215 
The use of a fixed perturbation for each participant in Experiments 1 and 2 allowed us to assess the full learning curve and 216 
aftereffect. This design often lacks the power to identify subtle differences in sensitivity to error size because the standard 217 
methods of analysis involve smoothing the data over multiple trials and making comparisons between individuals (or across 218 
sessions if a repeated measures design is employed). An alternative approach to study the effect of error size on implicit 219 
adaptation is to use a random perturbation schedule, exposing each individual to a range of error sizes throughout the 220 
perturbation block. By including both clockwise and counterclockwise rotations, there is no cumulative measure of learning; 221 
rather, the analysis focuses on trial-to-trial changes in heading angle (Figure 3a) (Avraham et al., 2019; Hutter & Taylor, 222 
2018; Körding & Wolpert, 2004; Marko et al., 2012; Jonathan S. Tsay, Avraham, et al., 2020; Wei & Körding, 2009, 2010). 223 
Even if the feedback is contingent on hand position, learning with this method is assumed to be entirely implicit since these 224 
trial-by-trial perturbations, if relatively small, fall within the window of variation that arises from motor noise (Avraham et 225 
al., 2019; Gaffin-Cahn, Hudson, & Landy, 2019). Variable perturbations can also be employed with non-contingent clamped 226 
feedback, with the instructions providing a way to ensure that the behavioral changes are automatic and implicit. 227 
  228 
Following the in-person method used in Tsay et al (2020) (Jonathan Sanching Tsay, Haith, Ivry, & Kim, 2020), we varied 229 
the size of the non-contingent clamped feedback across trials. Each participant was exposed to a set of eight rotation sizes 230 

between 0 - 60°, with four of these involving clockwise rotations and the other four involving counterclockwise rotations 231 
of the same size. To sample a large range while keeping the experiment within 1 hour, participants received different sets 232 
of perturbations (total of four sets, see Methods). Given that the eight perturbations within a set have a mean of zero, there 233 
should be limited accumulated learning across trials. Similar to Experiment 2, participants were instructed to ignore the 234 
cursor feedback and always move directly to the target.  235 
 236 
As a trial-by-trial measure of implicit adaptation, we averaged each participant’s change in hand angle from trial n to trial 237 
n + 1, as a function of the rotation size on trial n. As can be seen in Figure 3c, the participants showed a sign-dependent 238 
change in hand angle in response to the clamped feedback, similar to that observed in the in-person study of Tsay et al. 239 
(Figure 3b, adapted from (Kasuga, Hirashima, & Nozaki, 2013; Kim et al., 2018; Ranjan & Smith, 2020; Jonathan S. Tsay, 240 

 
 
Figure 2. Sensorimotor adaptation in response to non-contingent displaced visual feedback. (a) Schematic of the clamped feedback task. The cursor feedback 
(red dot) follows a trajectory rotated relative to the target, independent of the position of the participant’s hand. The rotation size remains invariant throughout the 
rotation block but varied across groups. Participants were instructed to move directly to the target (blue circle) and ignore the visual feedback. The translucent and 
solid colors display hand position early and late in learning, respectively. (b, d) Mean time courses of hand angle for 0° (green), 7.5° (dark green), 15° (brown), and 
30° (dark purple) rotation conditions (in-person experiment, adapted from Morehead et al. 2017). Hand angle is presented relative to the target (0°) during no-
feedback (dark grey background), veridical feedback, and rotation trials. Shaded region denotes SEM. (c, e) Average heading angles during early and late phases of 
the rotation block, and during the no-feedback aftereffect block from the in-person (c) and online (e) experiments. Box plots denote the median (thick horizontal 
lines), quartiles (1st and 3rd, the edges of the boxes), and extrema (min and max, vertical thin lines). The data from each participant is shown as translucent dots.  
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Avraham, et al., 2020; Wei & Körding, 2009, 2010). The function is sublinear, composed of a quasi-linear zone for smaller 241 

perturbations (up to around 16°) and a saturation range for larger perturbations; indeed, the data suggest that the size of the 242 
trial-by-trial change in hand angle may fall off for the largest perturbations. In both the online and in-person studies, the 243 
mean changes in hand angle fall within a similar range (±	2.5°).  244 
 245 
To statistically evaluate these data, we first extracted the slope from each individual’s learning function, asking whether this 246 
value was significantly less than 0. The slopes were significantly less than 0 for the online and in-person experiments (both 247 
𝑝 < 0.01), confirming robust sign-dependent implicit adaptation. We then asked whether the learning functions were 248 
sublinear by comparing, for each individual, the slope when computed using all perturbation sizes to the slope when using 249 

only the small perturbations (in-person: 0, ±4°; online: the smallest two rotation sizes in their set, maximum size = ±25°). 250 
If the function is sublinear, the absolute slope calculated using all of the rotation sizes should be smaller (less negative). The 251 
results indicated that the functions were sublinear in both sets of data (in-person, 𝑝 = 0.01; online, 𝑝 = 0.02).  252 
 253 
In sum, the results of Experiment 3 show a striking correspondence to that obtained in-person using a near-identical design 254 
(Kasuga, Hirashima, & Nozaki, 2013; Kim et al., 2018; Ranjan & Smith, 2020; Jonathan S. Tsay, Avraham, et al., 2020; 255 
Wei & Körding, 2009, 2010). Moreover, the functions, both in shape and magnitude are quite similar to that reported in 256 
previous studies that have used a variable-sized perturbation to study implicit adaptation (Kasuga, Hirashima, & Nozaki, 257 
2013; Kim et al., 2018; Ranjan & Smith, 2020; Jonathan S. Tsay, Avraham, et al., 2020; Wei & Körding, 2009, 2010).  258 
 259 

  260 

 
 
Figure 3. Trial-by-trial estimates of sensorimotor adaptation in response to variable, non-contingent visual feedback. (a) Schematic of the task. The cursor 
feedback (red dot) was rotated relative to the target, independent of the position of the participant’s hand. The size of the rotation was varied randomly on a trial-by-
trial basis. (b, c) The average change in hand angle from trial n to trial n + 1 is plotted as a function of rotation size on trial n. Thin grey lines are individual data 
collected in-person (b) and online (c), with the best-fitting loess line indicated by the orange curve (shaded region denotes SEM). Orange points denote group means 
and bars denote SEM.  
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Discussion 261 
 262 
Bringing motor learning experiments online has considerable potential for providing researchers with a tool to collect data 263 
from large and diverse samples in an efficient and low-cost method. As a proof-of-concept, we report here three experiments 264 
examining behavioral changes in response to perturbed visual feedback, adopting established tasks for our online platform. 265 
Qualitatively, the results from these three on-line studies show a close correspondence with those obtained from in-person 266 
studies. Specifically, early and late learning scaled with the size of the rotation when both implicit and explicit processes 267 

were involved (Exp 1), but implicit adaptation was insensitive to error size across a large range of errors (7.5° - 90°, Exps 268 
1 and 2). In a more granular analysis, size sensitivity was found for smaller errors (Exp 3). These results, in aggregate, 269 
demonstrate that online experiments provide a viable alternative to study sensorimotor adaptation outside the confines of 270 
the traditional laboratory setting.  271 
 272 
These similarities between online and in-person experiments are especially striking in light of the many differences between 273 
online and in-person settings. Almost all of the participants in our study reported using a trackpad (see Methods).# Although 274 
we did not obtain detailed reports, we assume that their “reaching” movements here involved relatively small rotations about 275 
the wrist, perhaps coupled with extension of the index finger. These types of movements will entail a very different set of 276 
biomechanical and sensory constraints compared to reaches performed by moving along a digitizing tablet or when holding 277 
a robotic manipulandum (de Rugy, Hinder, Woolley, & Carson, 2009; Debats & Heuer, 2018; Hollerbach & Flash, 1982; 278 
Yin, Wang, Wei, & Körding, 2019). In-person experiments afford additional control, with the experimenter in a position to 279 
provide verbal instructions, answer questions, and supervise the participant to ensure the movement is performed as desired. 280 
This level of control is not possible with online studies where instructions are only given with on-screen messages and on-281 
line monitoring is limited to feedback messages (e.g., “too far” or “too slow”).  282 
 283 
Another limitation with online experiments is greater uncertainty concerning the temporal delay of the feedback (Anwyl-284 
Irvine, Dalmaijer, Hodges, & Evershed, 2020). This can be a critical factor for studies of adaptation given the evidence 285 
showing that the rate of learning can fall off dramatically if the feedback is delayed, at least for endpoint feedback (Brudner, 286 
Kethidi, Graeupner, Ivry, & Taylor, 2016; Held, Efstathiou, & Greene, 1966; Kitazawa, Kohno, & Uka, 1995). We have 287 
observed this in our studies using clamped visual feedback. In our original study (Morehead, Taylor, Parvin, & Ivry, 2017), 288 

the common asymptote across different error sizes was ~15°.  Subsequent to that study, we modified the code to reduce the 289 
feedback delay (from around 70 ms to 25 ms). Using this refined code, Kim et al. (2018) also observed a common asymptote 290 

in response to clamps of different sizes, but now the asymptotic values were ~25°. For this reason, we would urge caution 291 
in the use of online studies if the focus of the research is on absolute values such as the point of saturation. Concerns with 292 
temporal delays are mitigated for relative comparisons (such as the analyses presented here to compare conditions in the 293 
online studies).   294 
 295 
In summary, online experiments provide a viable and novel way to test predictions about motor learning with large numbers 296 
of participants in a short amount of time. Whereas it would have taken months to collect the data reported here if the studies 297 
were run in-person, our online platform allowed us to collect these data in just a few days. Moreover, participants recruited 298 
online represent greater diversity, one that spans a range in terms of age, ethnicity, handedness, and years of education (see 299 
Participants) (Paolacci & Chandler, 2014). We do not envision online experiments replacing in-person testing in the domain 300 
of sensorimotor control and learning, since the laboratory affords the means to capture kinematic data with unparalleled 301 
precision. Nonetheless, many core phenomena central to our understanding of sensorimotor learning are robust and ripe for 302 
online investigation.  303 

 
# Because there were too few mouse users in each experiment, we opted not add device (trackpad or mouse) as a factor in our analysis. However, in an unpublished 
study using a standard visuomotor rotation, we tested 435 individuals, 205 who reported using a trackpad and 225 who reported using a mouse (5 opted to not provide 
this information or used some other response device). There were no differences in measures of adaptation for the two groups.   
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Methods 304 
 305 
Participants 306 
 307 
The protocol was approved by the institutional review board at the University of California, Berkeley. Participants (n = 260; 308 
age range = 21 – 61, mean age ±	sd = 34.6 ± 9.0) were recruited from the Amazon Mechanical Turk (AMT). Participants 309 
received financial compensation for their participation at an $8 per hour rate. Recruitment was restricted to the United 310 
States. Based on the participants who completed an optional online survey (n = 180 out of 260 responded, 130 declined to 311 
participate in the survey), there were 100 male participants, 69 female participants, and 11 identified as other. 124 of the 312 
participants identified as White, 17 as Asian, 25 as African American, 1 as a Pacific-Islander, 2 as multi-racial, and 11 313 
declined to answer. 144 of the participants were right-handed, 22 left-handed, and 4 self-identified as ambidextrous. In 314 
terms of response devices, we encouraged participants to use a trackpad to limit variance from the device used. As a result, 315 
there were 154 trackpad users but only 16 mouse users (others opted not to provide this information). No statistical methods 316 
were used to determine the target sample sizes.  317 
 318 
Apparatus 319 
 320 
Participants used their own computer to access a dynamic webpage (HTML, JavaScript, and CSS) hosted on Google 321 
Firebase. The task progression was controlled by JavaScript code running locally in the participant’s web browser. We 322 
assumed that monitor sampling rates were typically around 60 Hz, with little variation across computers (Anwyl-Irvine, 323 
Dalmaijer, et al., 2020). The size and position of stimuli were scaled based on each participant’s screen size, which was 324 
automatically detected.  325 
 326 
A package containing all the codes of the experiment can be accessed and downloaded from GitHub 327 
(https://github.com/alan-s-lee/OnPoint) and Gorilla (https://gorilla.sc/openmaterials/111001). We also provided a user 328 
manual to assist other researchers in setting up motor learning experiments at https://tinyurl.com/y6k8fvkk.  329 
 330 
Reaching Task Procedure  331 
 332 
The participant made reaching movements by moving the computer cursor with the trackpad or computer mouse. We did 333 
not obtain information concerning the monitors used by each participant (something corrected in on-going studies); as such, 334 
we cannot specify the size of the stimuli. However, from our experience in subsequent studies, we assume that most online 335 
participants are using a laptop computer. To provide a rough sense of the stimulation conditions, we assume that the typical 336 
monitor had a 13” screen with a width of 1366 pixels and height of 768 pixel (Anwyl-Irvine, Dalmaijer, et al., 2020). On 337 
each trial, the participants made a center-out planar movement from the center of the workspace to a visual target. The 338 
center position was indicated by a white circle (0.5 cm in diameter) and the target location was indicated by a blue circle 339 
(also 0.5 cm in diameter). The radial distance of the target from the start location was 6 cm. In experiments 1 and 2, the 340 
target could appear at one of two locations on an invisible virtual circle (45°: upper right quadrant; 135°: upper left quadrant). 341 
For these experiments, a movement cycle is defined as 2 consecutive reaches, one to each target. In Experiment 3, the target 342 
appeared in a single position at 45° throughout the entire experiment.  343 
 344 
To initiate each trial, the participant moved the cursor, represented by a white dot on their screen (0.5 cm in diameter), into 345 
the start location. During this initialization phase, feedback was provided when the cursor was within 4 cm of the start circle. 346 
Once the participant maintained the cursor in the start position for 500 ms, the target appeared. The location of the target in 347 
Experiments 1 and 2 was selected in a pseudo-randomized manner. The participant was instructed to reach, attempting to 348 
rapidly “slice” through the target. The feedback cursor, when presented (see below) remained visible throughout the duration 349 
of the movement and remained fixed for 50 ms at the radial distance of the target when the movement amplitude reached 6 350 
cm. If the movement was not completed within 500 ms, the message “too slow” was displayed in red 20 pt. Times New 351 
Roman font at the center of the screen for 750 ms.  352 
 353 
The feedback could take one of the following forms: veridical feedback, no-feedback, rotated contingent feedback (Exp. 1), 354 
and rotated non-contingent (“clamped”) feedback (Exps. 2 and 3). During veridical feedback trials, the movement direction 355 
of the visual feedback was veridical with respect to the movement direction of the hand. During no-feedback trials, the 356 
feedback cursor was extinguished as soon as the hand left the start circle and remained off for the entire reach. The cursor 357 
only became visible during the return phase of the trial, when the cursor was within 4 cm of the start circle. With rotated 358 
contingent feedback, the cursor moved at an angular offset relative to the position of the hand; the radial position of the 359 
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cursor corresponded to that of the hand up to 6 cm, at which point, the cursor position was frozen for 500 ms before turning 360 
off. During rotated clamped-feedback trials, the cursor moved at a specified angular offset relative to the position of the 361 
target, regardless of the movement direction of the hand (“clamped feedback”); as with rotated contingent feedback, the 362 
radial position of the cursor corresponded to that of the hand. 363 
 364 
Experiment 1: Learning visuomotor rotation of different sizes 365 
 366 
AMT participants (N = 100) completed a visuomotor adaptation task consisting of four blocks of trials (178 trials total: 89 367 
trials x 2 targets): Baseline no-feedback block (28 trials), baseline feedback block (28 trials), rotated feedback block (100 368 
trials), and no-feedback aftereffect block (20 trials). During the rotation block, each participant was assigned one of four 369 
rotation sizes (15°, 30°, 60°, 90°; 25 participants/ group), with the direction of the rotation (clockwise or counterclockwise) 370 
counterbalanced across participants 371 
 372 
Prior to each baseline block, the instruction “Move directly to the target as fast and accurately as you can” appeared on the 373 
screen. Prior to the rotation block, a new instruction message was presented: “Your cursor will now be rotated by a certain 374 
amount. In order to continue hitting the target, you will have to aim away from the target.” Prior to the no-feedback 375 
aftereffect block, the participants were instructed “Move directly to the target as fast and accurately as you can.”  376 
 377 
Experiment 2: Adaptation in response to non-contingent rotated visual feedback 378 
 379 
A new sample of AMT participants (N = 80) completed a visuomotor adaptation task, with the same exact block structure 380 
as Experiment 1 (178 total trials). There was only one critical difference: Rotated, non-contingent feedback was used during 381 
the rotation block, with the clamp fixed at one of four angular offsets relative to the target (0°,	7.5°,	15°, 30°; 20 382 
participants/group). The direction of the non-zero clamps (clockwise or counterclockwise) was counterbalanced across 383 
participants.  384 
 385 
The instructions for baseline and no-feedback aftereffect blocks were identical to those used in Experiment 1. Prior to the 386 
rotation block, the instructions were modified to read: “The white cursor will no longer be under your control. Please ignore 387 
the white cursor and continue aiming directly towards the target.” To clarify the invariant nature of the clamped feedback, 388 
three demonstration trials were provided. On all three trials, the target appeared straight ahead (90º position) and the 389 
participant was told to reach to the left (demo 1), to the right (demo 2), and backward (demo 3). On all three of these 390 
demonstration trials, the cursor moved in a straight line, 90º offset from the target. In this way, the participant could see that 391 
the spatial trajectory of the cursor was unrelated to their own reach direction. 392 
 393 
Experiment 3: Adaptation in response to variable, non-contingent rotated visual feedback 394 
 395 
A new sample of AMT participants (N = 60) completed a visuomotor adaptation task consisting of four blocks of trials (255 396 
total trials): Baseline no-feedback block (5 trials), baseline feedback block (15 trials), rotated feedback block (230 trials), 397 
and no-feedback aftereffect block (5 trials). During the rotation block, the non-contingent feedback varied from trial to trial, 398 
both in direction (clockwise or counterclockwise) and angular offset. Participants were assigned one of four sets of rotation 399 
sizes (Set 1: ±2°, ±4°, ±6°, ±20°; Set 2: ±10°, ±25°, ±40°, ±60°; Set 3: ±7.5°, ±15°, ±30°, ±45°; Set 4: ±2°, ±4°, ±17°, 400 
±27°) where ± indicates that the clamped feedback could be rotated clockwise (-) or counterclockwise (+). Given that eight 401 
perturbations within a set have a mean of zero, the accumulated learning across trials should be limited. The same 402 
demonstration trials (see Experiment 2) were included before the rotated clamped feedback block.  403 
 404 
Attention and Instruction Checks 405 
 406 
It can be difficult to verify if participants tested online fully attend to the task. To mitigate this issue, we sporadically 407 
instructed participants to make specific keypresses: “Press the letter “b” to proceed.” If participants failed the make an 408 
accurate keypress, the experiment was terminated. These attention checks were randomly introduced within the first 50 409 
trials of the experiment. We also wanted to verify that the participants understand the task, and in particular, understood in 410 
Experiments 2 and 3 that the angular position of the feedback was independent of the direction of their hand movement. To 411 
this end, we included one instruction check after the three demonstration trials: “Identify the correct statement. Press 'a': I 412 
will aim away from the target and ignore the white dot. Press 'b': I will aim directly towards the target location and ignore 413 
the white dot.” The experiment was terminated if participants failed to make an accurate keypress (i.e., “b”). 414 
 415 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.30.181370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.30.181370
http://creativecommons.org/licenses/by-nd/4.0/


Data Analysis  416 
 417 
The primary dependent variable of reach performance was hand angle, defined as the angle of the hand relative to the target 418 
when movement amplitude reached 6 cm from the start position (i.e., angle between a line connecting the start position to 419 
the target and a line connecting the start position to the hand). To aid visualization, the hand angle values for the groups (or 420 
trials in Experiment 3) with counterclockwise rotations were flipped, such that a positive hand angle corresponds to an angle 421 
in the opposite direction of the rotated feedback, the direction expected to result from learning. 422 
 423 
Outlier responses were defined as trials in which the hand angle deviated by more than 3 standard deviations from a moving 424 
5-trial window. These outlier trials were excluded from further analysis since behavior on these trials could reflect 425 
attentional lapses or anticipatory movements to another target location (average percent of trials removed per participant: 426 
Experiment 1: 2.0 ± 1.0% Experiment 2: 1.5 ± 1.1% Experiment 3: 1.0 ± 0.7%). 427 
 428 
Experiments 1 and 2: Data analysis mimicked the two studies we sought to replicate (Bond & Taylor, 2015; Morehead et 429 
al., 2017). The mean heading angle for each movement cycle was calculated and baseline subtracted to evaluate adaptation 430 
relative to idiosyncratic movement biases. Baseline was defined as the last 5 cycles of the verdical feedback baseline block 431 
(cycles 24 – 28). We evaluated three hand angle measures: early adaptation, late adaptation, and aftereffect. Early adaptation 432 
was operationalized as the average mean hand angle over cycles 31 – 35 (cycles 3-7 of the rotation block). Late adaptation 433 
was defined as the mean hand angle over cycles 64 – 68 (cycles 35 – 40 of the rotation block, mimicking Bond and Taylor, 434 
2015; and Kim et al, 2018). The aftereffect was operationalized as the average mean angle over the first 5 cycles of the no-435 
feedback aftereffect block (cycles 79 – 83).  436 
 437 
All dependent measures were evaluated using an ANCOVA permutation test (R statistical packages: aovperm in the 438 
permuco package; 5000 permutations) as a more robust measure when the data is both normal and non-normally distributed 439 
(Lehmann and Romano 2008). Post-hoc pairwise permutation t-tests were performed (R statistical package: perm.t.test), 440 
and p values were Bonferroni correct to assess group differences. 441 
 442 
Experiment 3: As our measure of trial-by-trial adaptation, we calculated the change in hand angle on trial n + 1 as a function 443 
of the rotation size on trial n for each trial. Means were then calculated for each clamp size, averaging over the clockwise 444 
and counterclockwise perturbations for a given size. These mean data were submitted to a linear regression to extract each 445 
individual’s slope (R statistical package: lm), with Rotation Size as the main effect. To ask whether these learning functions 446 
were sublinear, we compared each individual’s slope computed with all four rotation sizes, against the slope computed with 447 
the two smallest rotation sizes in their set. If adaptation was sublinear, then the slopes computing using all rotation sizes 448 
would be smaller in absolute magnitudes (less negative) than the slope computed using only small rotation sizes.  449 
 450 
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