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Abstract 15 

Motivation: Virtual screening, which can computationally predict the presence or absence of 16 

protein-compound interactions, has attracted attention as a large-scale, low-cost, and short-17 

term search method for seed compounds. Existing machine learning methods for predicting 18 

protein-compound interactions are largely divided into those based on molecular structure 19 

data and those based on network data. The former utilize information on proteins and 20 

compounds, such as amino acid sequences and chemical structures, while the latter utilize 21 

interaction network data, such as data on protein-protein interactions and compound-22 

compound interactions. However, few attempts have been made to combine both types of 23 

data in molecular information and interaction networks. 24 

Results: We developed a deep learning-based method that integrates protein features, 25 
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compound features, and multiple types of interactome data to predict protein-compound 26 

interactions. We designed three benchmark datasets with different difficulties and evaluated 27 

the performance on them. The performance evaluations show that our deep learning 28 

framework for integrating molecular structure data and interactome data outperforms state-of-29 

the-art machine learning methods for protein-compound interaction prediction tasks. The 30 

performance improvement is proven to be statistically significant by the Wilcoxon signed-31 

rank test. This reveals that the multi-interactome captures different perspectives than amino 32 

acid sequence homology and chemical structure similarity, and both type of data have a 33 

synergistic effect in improving prediction accuracy. Furthermore, experiments on three 34 

benchmark datasets show that our method is more robust than existing methods in accurately 35 

predicting interactions between proteins and compounds that are unseen in the training 36 

samples. 37 

 38 
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 41 

Introduction 42 

Most compounds that currently act as drugs bind to target proteins that can cause disease, and 43 

these compounds can control their functions. Therefore, it is necessary to search for 44 

compounds that can interact with the target protein when developing new drugs, and this 45 

process must be performed efficiently. However, determining the interaction of a large 46 

number of protein-compound pairs via experiments is expensive in terms of time and cost. 47 

Virtual screening that can computationally classify the presence or absence of protein-48 

compound interactions has attracted attention as a large-scale, low-cost, short-term search 49 

method for hit compounds. In particular, the method of using machine learning for virtual 50 
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screening is considered to be applicable to a wide variety of proteins and compounds. 51 

Machine learning-based methods for predicting protein-compound interactions are 52 

largely divided into those based on molecular structure data and those based on network data. 53 

The former use protein and compound data represented in amino acid sequences and 54 

chemical structure formulas, and they can be applied to proteins when a docking simulation 55 

cannot be performed because the three-dimensional structure is unknown. In our previous 56 

study [1-3], using positive interactions between drug compounds and their target proteins 57 

downloaded from DrugBank (a database that contains information on existing drug 58 

compounds) [4] and negative interactions consisting of randomly combined compounds and 59 

proteins, we performed binary classification using a support vector machine (SVM). A 60 

prediction accuracy of 85.1% was achieved. Based on this result, we developed COPICAT, a 61 

comprehensive prediction system for protein-compound interactions, which enabled us to 62 

search for lead compounds from a huge compound database, PubChem [5], consisting of tens 63 

of millions of compounds. 64 

Deep learning, a method developed in the field of machine learning, has been used in 65 

a variety of fields in recent years because it has achieved high prediction accuracy in fields 66 

such as image recognition, speech recognition, and compound activity prediction [6]. Deep 67 

learning-based protein-compound interaction prediction methods have been developed based 68 

on molecular structure data [7-10]. However, these existing deep learning-based methods 69 

utilize only information based on amino acid sequences and chemical structures, so the 70 

functional properties of proteins and compounds have not yet been incorporated into 71 

prediction. 72 

The other type of machine learning approach for protein-compound interaction 73 

prediction is based on network data. An interaction network is commonly used to 74 

comprehensively represent interactions between molecules. For example, the protein-protein 75 
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interaction network represents the relationships among physically interacting proteins. In the 76 

protein-protein interaction network, a node is a protein, and an edge is drawn between a pair 77 

of proteins that interact with each other. 78 

Some previous studies incorporated data from multiple interaction networks to predict 79 

molecular interactions. For instance, multi-modal graphs were proposed to handle three types 80 

of interactions: protein-protein, protein-drug, and polypharmacy side effects. A deep learning 81 

method, Decagon [11], for multi-modal graphs was proposed to predict polypharmacy side 82 

effects. DTINet [12] and NeoDTI [13] were designed and developed as graph-based deep 83 

learning frameworks to integrate heterogeneous networks for drug-target interaction 84 

predictions and drug repositioning. In particular, NeoDTI exhibited a substantial performance 85 

improvement over other state-of-the-art prediction methods based on multiple interaction 86 

network data. 87 

In addition to predicting protein-compound interactions, several studies have 88 

predicted other types of molecular interactions. Protein-protein interactions induce many 89 

biological processes within a cell, and experiential and computational methods have been 90 

developed to identify various protein-protein interactions. High-throughput experimental 91 

methods such as yeast two-hybrid screening were developed to discover and validate protein-92 

protein interactions on a large scale. Computational methods for protein-protein interaction 93 

predictions employ various machine learning methods, such as SVM with feature extraction 94 

engineering [14]. The recurrent convolutional neural network (CNN), which is a deep 95 

learning method, was applied to sequence-based prediction for protein-protein interactions 96 

[15]. Compounds that can interact with each other are often represented as compound-97 

compound interactions (also known as chemical-chemical interactions); interactive 98 

compounds tend to share similar functions. Compound-compound interactions, called drug-99 

drug interactions, can be used to predict side effects based on the assumption that interacting 100 
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compounds are more likely to have similar toxicity [16]. A computational approach to 101 

compound-compound interaction predictions has been studied with various machine learning 102 

methods, including end-to-end learning with a CNN based on the SMILES representation 103 

[17]. 104 

The purpose of this study is to improve prediction accuracy by integrating molecular 105 

structure data and heterogeneous interactome data into a deep learning method for predicting 106 

protein-compound interactions. In addition to the molecular information (amino acid 107 

sequence and chemical structure) itself, protein-protein interaction network data with similar 108 

reaction pathways or physical direct binding and compound network data linking compounds 109 

with similar molecular activities are incorporated into the deep learning model as multiple-110 

interactome data. To the best of our knowledge, there are no deep learning-based solutions 111 

for predicting protein-compound interactions that integrate multiple heterogeneous 112 

interactome data along with the direct input of amino acid sequences and chemical structures. 113 

This study proposes a method for predicting protein-compound (drug-target) 114 

interactions by combining protein features, compound features, and network context for both 115 

proteins and compounds. The network context comes in the form of protein-protein 116 

interactions from the STRING database [18], and the compound-compound interactions come 117 

from the STITCH database [19]. The protein-protein interaction network and compound-118 

compound interaction network are processed using node2vec [20] to generate feature vectors 119 

for each protein node and each compound node in the interaction networks in an 120 

unsupervised manner. Each network-based representation is then combined with additional 121 

features extracted from a CNN applied to the amino acid sequence of a protein and from the 122 

extended-connectivity fingerprint (ECFP) of a compound. The final combined protein 123 

representations and compound representations are used to make a protein-compound 124 

interaction prediction with an additional fully connected layer. The overall learning 125 
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architecture is illustrated in Figure 1. 126 

We designed three benchmark datasets with different difficulties and evaluated the 127 

performance on them. In the performance evaluations, we demonstrate that integrating the 128 

molecular structure data and multiple heterogeneous interactome data has a synergistic effect 129 

in improving the accuracy of protein-compound interaction prediction. Furthermore, 130 

performance comparisons with state-of-the-art deep learning methods based on molecular 131 

information [10] and those based on interaction network data [13] as well as the traditional 132 

machine learning methods SVM and random forest show that our model exhibits significant 133 

performance improvements in the most important evaluation measures: AUROC, AUPRC, F-134 

measure and accuracy, while the other methods show low values of these measures. The 135 

improvement is proven to be statistically significant by the Wilcoxon signed-rank test. 136 

Finally, we analyse whether protein-protein interactions capture a different perspective than 137 

amino acid sequence homology and whether compound-compound interactions capture a 138 

different perspective than chemical structure similarity. 139 

 140 

Methods 141 

 142 

1D-CNN for Encoding Protein Data 143 

First, the protein data were applied to a one-dimensional convolutional neural network (1D-144 

CNN). For the protein input, a one-hot vector was used for the distributed representation of 145 

an amino acid sequence of 20 dimensions at a height and width of 8,923 dimensions with the 146 

maximum length of amino acid sequences. 147 

An amino acid sequence is a linear structure (1-D grid). In this study, a filter (kernel) 148 

with a one-dimensional convolution operation was applied to the linear structure. Here, a 149 

“one-dimensional” convolutional operation for linear structures was interpreted as scanning 150 
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the input structure in only one direction along the linear structure with a filter of the same 151 

height (dimension) as that of the distributed representation of the input. 152 

 153 

One-Dimensional (1D) Convolutional Layer  154 

We denote � � ���
��� , ��

��� , … , ��
����  as an input vector sequence that corresponds to the one-155 

hot vector representation of an amino acid sequence (as illustrated in Figure 1). For a filter 156 

function in the l-th hidden layer of the CNN, the input is the set of feature maps in the (l-1)-th 157 

hidden layer 	�:��	
�,�

�
�� �  
�,��
�� � ����, where r is the size of the filter, m is the size of the 158 

feature map, and n is the number of feature maps. The output of the k-th filter is a feature 159 

map of the l-th layer 
��,�� � ��, which is defined as follows: 160 


��,�� � ���,��
�,��
�� � ��,���, 

where f is an activation function (leaky-ReLU), ��,�� � ������ is the weight matrix of the 161 

k-th filter in the l-th convolutional layer, and ��,�� is the bias vector. The average-pooling 162 

mechanism is applied to every convolution output. To obtain the final output � �163 

����,�� , ���,�� , … , ���,���, global max-pooling is used as follows: 164 

���,�� � max
�

�
���,��� , 

where t represents the last layer of the CNN and s represents the number of filters in the last 165 

layer. 166 

 167 

Extended-Connectivity Fingerprint (ECFP) for Compound Data 168 

The extended-connectivity fingerprint (ECFP, also known as the circular fingerprint or 169 

Morgan fingerprint) [21] is the most commonly used feature representation for representing a 170 

property of the chemical structure of a compound. This algorithm first searches the partial 171 

structures around each atom recurrently, then assigns an integer identifier to each partial 172 
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structure and expresses this as a binary vector by using a hash function. Potentially, an 173 

infinite number of structures exist in the chemical space; consequently, the ECFP requires 174 

vectors with a large number of bits (usually 1,024 - 2,048 bits). In this study, we employed an 175 

ECFP with 1024 bits as the feature representation for the chemical structure of a compound. 176 

 177 

Feature Representation Learning for Protein-protein and Compound-Compound 178 

Interactions 179 

A protein-protein interaction network that connects physically interacting proteins and a 180 

compound-compound interaction network that connects compounds with similar molecular 181 

activities were input as multiple-interactome data. First, each network was represented as a 182 

graph. A node is a protein in the protein-protein network and a compound in the compound-183 

compound network. An edge is drawn between a pair of proteins (compounds) that interact 184 

with each other. By applying this graph to “node2vec” [20], the feature vector of each node 185 

was obtained in an unsupervised manner; node2vec is a deep learning method that learns the 186 

feature representation of nodes in a graph and obtains a feature vector for each node. 187 

Node2vec is a graph embedding algorithm that can be applied to any type of graph, and it can 188 

learn a feature vector such that nodes that are nearby on the graph are also close in the 189 

embedded feature space. In other words, the inner product of the feature vectors of the nearby 190 

nodes is high. It is known that the accuracy of the node classification task and the link 191 

prediction task using the obtained feature representations of nodes is higher than that of the 192 

existing methods. 193 

The node2vec algorithm was applied to the protein-protein interaction network and 194 

the compound-compound interaction network. Using a protein and a compound as vertices, 195 

the interaction networks were converted into graphs with edge weights based on the 196 

reliability of the experimental data and the similarity in molecular activity. Node2vec 197 
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(version 0.2.2) from the Python library, which implemented the node2vec algorithm, was 198 

applied to the converted graph. The node2vec parameters used the default values (embedding 199 

dimensions: 128; number of nodes searched in one random walk: walk_length=80; number of 200 

random walks per node: num_walk=10; control of probability of revisiting a walk node: p=1; 201 

control of the search speed and range: r=1; whether to reflect the graph weight: 202 

weight_key=weight). 203 

Let a protein-protein interaction network be expressed by a weighted graph 204 

��	����� � ���	����� , ��	�����  and a compound-compound interaction network by a 205 

weighted graph ��������� � ���������� , ��������� . By applying node2vec to these 206 

graphs, the feature representations can be obtained and are denoted as !�	����� �207 

node2vec���	����� � ��  and !�������� � node2vec���������� � �� for a dimension 208 

of d. 209 

 210 

Deep Learning Model Structure for Integrating Molecular Information and the 211 

Interaction Network 212 

The feature vectors obtained from the 1D-CNN for the amino acid sequence and node2vec 213 

for the protein-protein interaction network were concatenated and fed to the final output 214 

layer. Similarly, the feature vectors from the ECFP for the chemical structure and node2vec 215 

for the compound-compound interaction network were concatenated and fed to the final 216 

output layer. 217 

We designed an output layer consisting of an element-wise product calculation 218 

followed by a fully connected layer, which is an extension of cosine similarity. The 219 

architecture is illustrated in Figure 2. First, the feature vectors for the proteins and 220 

compounds were mapped onto the same latent space with a fixed dimension d by applying 221 

fully connected layers. The similarity between the vector for proteins and the vector for 222 
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compounds on the latent space was calculated by the element-wise product calculation 223 

method followed by a fully connected layer. When a pair of proteins and compounds was 224 

input, if the similarity was higher than some predefined threshold (where the default was 0.5), 225 

it was predicted that there was an interaction between the input pair. If the similarity was 226 

lower, it was predicted that there was no interaction. This model is denoted as the “integrated 227 

model”. 228 

More precisely, let ��	����� denote the feature vector output by the 1D-CNN for an 229 

amino acid sequence, and let )��������  denote the feature vector of the ECFP for the 230 

chemical structure of a compound. Let !�	�����and !�������� denote the feature 231 

representations obtained from node2vec for the protein-protein interaction network and the 232 

compound-compound interaction network. Two feature vectors ��	����� and !�	����� were 233 

concatenated as one vector *�	�����  for the protein multi-modal feature. Two feature vectors 234 

)��������  and !�������� were concatenated as one vector *�������� for the compound 235 

multi-modal feature. The concatenated feature vectors *�	����� and *�������� were mapped 236 

onto the same latent space with a fixed dimension d by applying the fully connected layers f 237 

and g. From this, the similarity between the two vectors for the latent space was calculated. 238 

*�	����� � concat���	����� , !�	����� , 

*�������� � concat�)�������� , !�������� , 

�,�, ,�, … , ,�� � �*�	������, 

��� , ��, … , ��� � -�*���������, 

output�����	���� � 0�,� · �� , ,� · �� , … , ,� · ���. 

As described above, to handle data from different modalities such as proteins and 239 

compounds, we adopted a method of embedding data of different modalities into a common 240 

latent space. Defining the similarity in the obtained latent space enables the measurement of 241 
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the similarity between the data for different modalities. Visual semantic embedding (VSE) is 242 

a typical example of a method that handles data from different modalities and can associate 243 

images with text data in acquiring these multi-modal representations [22]. VSE was 244 

developed to generate captions from images (image captioning). The image feature and the 245 

sentence feature are linearly transformed and embedded into a common latent space. 246 

 247 

Single-Modality Models  248 

To see the effect of integrating multi-modal features, two baseline models were constructed 249 

for the performance comparison. One was based on molecular structure data and used only 250 

amino acid sequence and chemical structure information, and the other was based on 251 

interaction network data and used only protein-protein interaction and compound-compound 252 

interaction information. The single-modality model based on molecular structure data, 253 

denoted the “single-modality model (molecular)”, is defined as follows: 254 

�,�, ,�, … , ,�� � ���	������, 

��� , �� , … , ��� � -�)���������, 

output������ � 0�,� · �� , ,� · �� , … , ,� · ���, 
and the single-modality model based on interaction network data, denoted the “single-255 

modality model (network)”, is defined as follows:  256 

�,�, ,�, … , ,�� � �!�	������, 

���, �� , … , ��� � -�!���������, 

output�����	� � 0�,� · �� , ,� · ��, … , ,� · ���. 
 257 

Loss Function  258 

For the similarity output , of the model, the output value was restricted to the range 0 to 1 by 259 

the sigmoid function, and cross entropy was applied as the loss function 3�4� to calculate the 260 
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training error. 261 

 262 

Hyperparameter Optimization  263 

The hyperparameters, the number and size of the filters in the convolutional layers in the 1D-264 

CNN, and the number of units in the fully connected output layers were optimized by the 265 

Bayesian optimization tool Optuna [23], which is an automatic hyperparameter optimization 266 

software framework particularly designed for machine learning. For the hyperparameter 267 

optimization, the validation dataset was obtained by dividing the training samples into a set 268 

for training and a set for validation. 269 

 270 

Regularization  271 

Regularization is important for avoiding overfitting and improving the prediction accuracy in 272 

deep learning for complex model architectures with a large number of parameters. 273 

Regularization is especially important in our deep learning model, which integrates multiple 274 

datasets of different modalities; hence, we employed several regularization methods. 275 

We employed batch normalization [24], which allowed us to use much higher 276 

learning rates and be less careful about initialization, after each convolutional layer. We also 277 

inserted dropout [25] after the fully connected layers. Furthermore, we added an L2 278 

regularization term to the training-loss function  3�4�. When incorporating weight decay, the 279 

objective function to be optimized is as follows: 280 

3�4� � 5 1
2 7898�,

�

 

where 9 refers to the parameters of the entire model, and the second term of the above 281 

equation indicates taking the sum of the squared values of all the parameters and dividing by 282 

2. 5 is a parameter that controls the strength of regularization. Adding this term to the 283 
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objective function has the effect of preventing the absolute value of the network weight from 284 

becoming too large, which helps prevent overfitting. 285 

 286 

Comparison with State-of-the-Art Existing Methods 287 

The prediction performance of the proposed models was compared with that of state-of-the-288 

art deep learning methods based on molecular structure data and interaction network data. 289 

The first method was based on a graph CNN for protein-compound prediction [10]. It 290 

employed a graph CNN for encoding chemical structures and a CNN for n-grams of amino 291 

acid sequences. The second method was NeoDTI [13], which demonstrated superior 292 

performance over other previous methods based on multiple-interaction-network data. We 293 

also compared our method with the traditional machine learning methods SVM and random 294 

forest [26] as the baseline prediction methods. These traditional methods require structured 295 

data as input. For the protein information, the 3-mer (3-residue) frequency in the amino acid 296 

sequence was used as the feature vector for 8,000 dimensions. For the compound 297 

information, an ECFP with a length of 1,024 and a radius of 2 was used. The radial basis 298 

function (RBF) was used as the kernel function of SVM, and all other parameters of SVM 299 

and random forest used the default values. In implementing these machine learning methods, 300 

sckit-learn (version 0.19.1) and chainer (version 5.0.0) were used.  301 

 302 

Datasets 303 

The protein-compound interaction data and compound-compound networks were retrieved 304 

from the database STITCH [19], and the protein-protein networks were retrieved from the 305 

database STRING [18]. 306 

 307 

Protein-Compound Interaction Data 308 
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Protein-compound interaction data can be obtained from the STITCH database [19]. STITCH 309 

contains data on the interaction of 430,000 compounds with 9.6 million proteins from 2,031 310 

species. The STITCH data sources consist of (1) structure-based prediction results, such as 311 

the genome context and co-expression; (2) high-throughput experimental data; (3) automatic 312 

text mining; and (4) information from existing databases. When a protein-compound dataset 313 

is downloaded from STITCH, a score based on the reliability is created for each of the above 314 

four items for each protein-compound pair. For the protein-compound interaction data used in 315 

this study (as a “positive” example), the threshold value for the reliability score of item (2) 316 

was set to 700, and the data with a reliability score of 700 or higher were extracted from 317 

STITCH so that interologs were eliminated and the data were composed of only 318 

experimentally reliable interactions; the data that did not meet this threshold were removed. 319 

For the STITCH data, interactions with a confidence score of 700 or more were determined 320 

based on the criterion that they were at least highly reliable [27]. Of the combinations of 321 

proteins and compounds, only pairs not stored in the STITCH database were taken as 322 

“negative” examples. In general, protein-compound pairs that are not stored in STITCH have 323 

very low confidence, with a score of 150 or less for their interaction [28], so these are 324 

considered to be non-interacting negative examples. The ratio of the positive and negative 325 

examples was 1 to 2. 326 

 327 

Protein-Protein Interaction Data 328 

The protein-protein interaction information was obtained from the STRING database [18], 329 

which contains data for protein-protein interactions covering 24.6 million proteins from 5,090 330 

species. The STRING data sources consist of (1) experimental data; (2) pathway databases; 331 

(3) automatic text mining; (4) co-expression information; (5) neighbouring gene information; 332 

(6) gene fusion information; and (7) co-occurrence-based information. In particular, item (1) 333 
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is interaction data obtained from actual experiments, which include biochemical, biophysical, 334 

and genetic experiments. These are extracted from databases organized by the BioGRID 335 

database [29] and the IMEx consortium [30]. When the protein-protein interaction data from 336 

STRING were downloaded, a score based on the reliability was created for each of the above 337 

seven items for each protein-protein pair. Regarding the protein-protein interaction network, 338 

the threshold value for the reliability score of item (1) was set to 150. Data that did not satisfy 339 

this criterion were removed. 340 

 341 

Compound-Compound Interaction Data 342 

The compound-compound interaction data were also obtained from the STITCH database. 343 

The compound-compound interaction data in STITCH are based on (1) the chemical 344 

reactions obtained from the pathway databases; (2) structural similarity; (3) association with 345 

previous literature; and (4) correspondence between the compounds based on molecular 346 

activity similarity. For the similarity of the molecular activities in item (4), the activity data 347 

obtained by screening the model cell line NCI60 were used. When the compound-compound 348 

interaction data were downloaded from STITCH, a score based on the reliability was created 349 

for each of the above four items for each compound pair. For the compound-compound 350 

interaction data used in this study, the threshold value for the reliability score in item (4) was 351 

set to 150. Data that did not satisfy this criterion were removed. 352 

 353 

Construction of the Baseline, Unseen Compound-Test, and Hard Datasets for Evaluation 354 

From the STITCH and STRING databases, a total of 22,881 protein-compound interactions, 355 

175,452 protein-protein interactions and 69,231 compound-compound interactions were 356 

downloaded. Using the downloaded dataset in which the protein-protein interaction, 357 

compound-compound interaction and protein-compound interaction data were all available, 358 
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the three types of datasets below were constructed to perform five-fold cross validation. 359 

In typical k-fold cross validation, all positive and negative examples are randomly 360 

split into k folds. One of them is used as a test sample, and the remaining k−1 are used as 361 

training samples; then, the k results obtained are averaged. We call the cross-validation 362 

dataset the baseline dataset. 363 

In this study, as more difficult and more practical tasks, we constructed two more 364 

cross-validation datasets, called the unseen compound-test dataset and the hard dataset. In 365 

the unseen compound-test dataset, we split the data into k folds so that none of the folds 366 

contain the same compounds as the others. In the unseen compound-test dataset, the 367 

compounds in the test sample do not appear in the training sample. In other words, the 368 

interaction of new (unseen) candidate compounds with the target proteins must be accurately 369 

predicted. In the hard dataset, we split the data into k folds so that none of the folds contain 370 

the same proteins and compounds as the others. In the hard dataset, neither the proteins nor 371 

the compounds in the test sample appear in the training sample. In other words, interactions 372 

in which neither the proteins nor the compounds are found in the training sample must be 373 

accurately predicted. 374 

 375 

Results 376 

The following measures were used for the performance evaluation criteria: AUROC (area 377 

under the receiver operating characteristic curve), AUPRC (area under the precision-recall 378 

curve), F-measure, and accuracy. 379 

F-measure � 2 = Recall = Precision

Recall � Precision
, 

Accuracy � @A � @B
@A � CA � CB � @B , 

where TP is the number of true positives, TN is the number of true negatives, FP is the 380 
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number of false positives, FN is the number of false negatives, Recall is defined by 381 

TP/(TP+FN), and Precision is defined by TP/(TP+FP). 382 

 383 

Effectiveness of Integrating Molecular Structure Data and Interaction Network Data 384 

The performance of our three models was evaluated to determine the effectiveness of 385 

integrating the molecular structure data and the interaction network data. The results on the 386 

three datasets are shown in Tables 1-3. In the tables, the mean and standard deviation (SD) 387 

for the five folds are shown. Furthermore, the symbol “*” indicates that there was a 388 

significant difference in the Wilcoxon signed-rank test, with p-value p <0.05, in comparison 389 

with the integrated model. 390 

 391 

Table 1. Performance comparison of three proposed models with existing methods on the 392 

baseline dataset.  393 

 AUROC AUPRC F-measure Accuracy 

Integrated model 

(molecular+network) 

0.972�0.004 0.954�0.005 0.900�0.006 0.933�0.004 

Single-modality model 

 (molecular) 

0.956�0.004* 0.927�0.006* 0.868�0.009* 0.911�0.006* 

Single-modality model 

 (network) 

0.947�0.008* 0.920�0.010* 0.853�0.015* 0.904�0.009* 

Graph CNN 

 [10] 

0.917�0.006* 0.850�0.006* 0.794�0.014* 0.864�0.008* 

NeoDTI 

 [13] 

0.956�0.005* 0.905�0.016* 0.872�0.006* 0.917�0.004* 

SVM 

 

0.805�0.009* 0.651�0.012* 0.743�0.012* 0.837�0.006* 

Random forest 

 

0.873�0.009* 0.767�0.015* 0.837�0.012* 0.895�0.007* 

 394 

Table 2. Performance comparison on the unseen compound-test dataset.  395 
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 AUROC AUPRC F-measure Accuracy 

Integrated model 

(molecular+network) 

0.890�0.039 0.842�0.050 0.727�0.085 0.843�0.038 

Single-modality model 

 (molecular) 

0.869�0.027 0.786�0.023* 0.657�0.053 0.802�0.017 

Single-modality model 

 (network) 

0.831�0.053 0.759�0.055* 0.661�0.073* 0.809�0.030* 

Graph CNN 

 [10] 

0.804�0.037* 0.679�0.031* 0.637�0.027 0.773�0.009* 

NeoDTI 

 [13] 

0.823�0.067 0.773�0.064* 0.621�0.062* 0.805�0.024* 

SVM 

 

0.765�0.020* 0.603�0.029* 0.689�0.029 0.810�0.016 

Random forest 

 

0.770�0.023* 0.635�0.026* 0.697�0.036 0.828�0.014 

 396 

Table 3. Performance comparison on the hard dataset.  397 

 AUROC AUPRC F-measure Accuracy 

Integrated model 

(molecular+network) 

0.882�0.035 0.834�0.041 0.714�0.064 0.836�0.030 

Single-modality model 

 (molecular) 

0.851�0.023 0.770�0.023* 0.662�0.038* 0.806�0.020* 

Single-modality model 

 (network) 

0.780�0.051* 0.706�0.040* 0.601�0.057* 0.784�0.023* 

Graph CNN 

 [10] 

0.707�0.038* 0.563�0.083* 0.427�0.132* 0.719�0.043* 

NeoDTI 

 [13] 

0.790�0.039* 0.715�0.046* 0.297�0.084* 0.719�0.018* 

SVM 

 

0.652�0.019* 0.500�0.023* 0.481�0.044* 0.755�0.012* 

Random forest 

 

0.605�0.033* 0.452�0.046* 0.364�0.075* 0.728�0.026* 

 398 

Compared with the two single-modality models, the integrated model significantly 399 

improved the prediction accuracy in all evaluation measures. For example, in terms of 400 
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AUPRC, which is a more informative evaluation index in a dataset that is imbalanced 401 

between positive and negative samples, the integrated model showed significant 402 

improvements of 3.0%, 7.1% and 8.3% over the single-modality model (molecular) and 403 

3.7%, 10.9% and 18.1% over the single-modality model (network) in the baseline dataset, the 404 

unseen compound-test dataset and the hard dataset, respectively. This demonstrates that 405 

integrating multiple heterogeneous interactome data with molecular structure data brought a 406 

synergistic effect in improving the accuracy of protein-compound interaction prediction. 407 

 408 

Performance Comparison with Other Existing Methods 409 

The prediction performance of our three models was compared with that of state-of-the-art 410 

deep learning methods and traditional machine learning methods based on molecular 411 

structure data and interaction network data. The results on the three datasets are shown in 412 

Tables 1-3. 413 

The integrated model yielded superior prediction performance compared with the 414 

other existing methods. In the baseline dataset, the integrated model achieved significant 415 

improvements compared with the graph CNN-based method [10], NeoDTI [13] and the 416 

traditional machine learning methods SVM and random forest (Table 1). In fact, the 417 

Wilcoxon signed-rank test [31] verification showed that the performance difference was 418 

statistically significant, with a p-value p<0.05, and hence proved the superiority of the 419 

integrated model. 420 

In the unseen compound-test dataset and the hard dataset, a more remarkable 421 

difference in the performance of the integrated model was confirmed. We compared the 422 

integrated model with the graph CNN-based method and NeoDTI in terms of AUROC, 423 

AUPRC and F-measure. The integrated model greatly outperformed the others, with 424 

significant improvements (10.7% in terms of AUROC, 24.0% in terms of AUPRC and 14.1% 425 
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in terms of F-measure on the unseen compound-test dataset, and 24.8% in terms of AUROC, 426 

48.1% in terms of AUPRC and 67.2% in terms of F-measure on the hard dataset) over the 427 

graph CNN-based method. In comparison with NeoDTI, significant improvements were also 428 

confirmed: 8.1% in terms of AUROC, 8.9% in terms of AUPRC and 17.1% in terms of F-429 

measure on the unseen compound-test dataset, and 11.6% in terms of AUROC, 16.6% in 430 

terms of AUPRC and 140.4% in terms of F-measure on the hard dataset. Based on the above 431 

results, the integrated model can predict protein-compound interactions with stable accuracy, 432 

regardless of the difficulty of the dataset and the types of proteins and compounds that make 433 

up the test data, compared to other existing methods. This is due to the integrated model 434 

using features based on sequence information and compound structure information and 435 

features obtained from the interaction network as well as the effect of using the element-wise 436 

product of the protein feature vector and the compound feature vector in the output layer. 437 

The single-modality model also yielded superior prediction performance compared 438 

with the existing methods using the same-modality input data. The graph CNN-based 439 

prediction method [10] obtains a compound feature vector by converting the chemical 440 

structure into a graph and applying it to the graph CNN, and it obtains a protein feature vector 441 

by splitting the amino acid sequence into n-grams and applying it to the CNN. Therefore, the 442 

graph CNN-based method can be defined as having the same molecular structure data-based 443 

prediction model as the single-modality model (molecular). In the baseline dataset, the 444 

unseen compound-test dataset and the hard dataset, the single-modality model (molecular) 445 

outperformed the graph CNN-based prediction method. For example, in the hard dataset, the 446 

single-modality model (molecular) achieved an improvement of 20.4% in terms of AUROC, 447 

36.8% in terms of AUPRC and 55.0% in terms of F-measure on the hard dataset over the 448 

graph CNN-based method (Table 3). From this result, in protein-compound interaction 449 

prediction, it is sufficient to use the ECFP as a feature representation for the compound 450 
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structure, compared with the deep learning method in which the compound structure is 451 

converted into a graph structure and a graph CNN is applied. 452 

NeoDTI takes protein-protein interaction and compound-compound interaction 453 

information as input and predicts whether an edge is drawn between the compound and 454 

protein nodes by learning to reconstruct the network. Therefore, NeoDTI can be defined as an 455 

interaction network-based prediction model, which is the same as the single-modality model 456 

(network). The difference is that the single-modality model (network) first uses unsupervised 457 

deep learning (node2vec) to automatically learn feature representations for nodes in the given 458 

heterogeneous interaction networks and then applies supervised learning to predict protein-459 

compound interactions based on the learned features, while NetoDTI simultaneously learns 460 

the feature representations of nodes and protein-compound interactions in a supervised 461 

manner. In the three datasets, the prediction performance of the single-modality model 462 

(network) was comparable to that of NetoDTI. 463 

 464 

Discussion 465 

To interpret the accuracy improvement obtained by integrating multiple interactome data 466 

with molecular structure data, which was shown in the previous section, we analysed whether 467 

the protein-protein interaction captured a different perspective than amino acid sequence 468 

homology and whether the compound-compound interaction captured a different perspective 469 

than chemical structure similarity. More concretely, we investigated the relationship between 470 

the amino acid sequence homology and the similarity of proteins in the protein-protein 471 

interaction network as well as the relationship between the chemical structure similarity and 472 

the similarity in the compound-compound interaction network. 473 

For every pair of proteins in the dataset used in the experiments, the amino acid 474 

sequence similarity was calculated using DIAMOND, and the cosine similarity between two 475 
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vectors of the pair output by node2vec using the protein-protein interaction network was 476 

calculated. All of the protein pairs were plotted with the amino acid sequence similarity on 477 

the x-axis and the cosine similarity in the protein-protein interaction network on the y-axis. 478 

The scatter plot is shown in Figure 3 (top). Similarly, for every pair of compounds, the 479 

Jaccard coefficient of the ECFPs of the two compounds and the cosine similarity between the 480 

two vectors output by node2vec using a compound-compound interaction network were 481 

calculated. All of the compound pairs were plotted with the Jaccard coefficient on the x-axis 482 

and the cosine similarity in the compound-compound interaction network on the y-axis, as 483 

shown in Figure 3 (bottom). In both scatter plots, no clear correlation was observed. In fact, 484 

the correlation coefficients for each scatter plot were 0.186 and 0.199, respectively. In other 485 

words, it was confirmed that the amino acid sequence similarity and the similarity in the 486 

protein-protein interaction network were not proportional. Similarly, it was confirmed that 487 

the chemical structure similarity and the similarity in the compound-compound interaction 488 

network were not proportional. Therefore, we concluded that the protein-protein interaction 489 

network captured a different perspective than the amino acid sequence homology and 490 

compensated for it. The compound-compound interactions captured a different perspective 491 

than the chemical structure similarity and compensated for it. 492 

For example, the protein “5-hydroxytryptamine (serotonin) receptor 6, G protein-493 

coupled (HTR6)” and the compound “Mesulergine” in the test sample in the “hard dataset” 494 

have a positive interaction [32], and our model succeeded in correctly predicting it. However, 495 

the single-modality model (molecular) and graph CNN-based method failed to predict the 496 

positive interaction; that is, both predicted that the pair would not interact. The most similar 497 

protein-compound pair in the training sample to the pair HTR6 and Mesulergine was the 498 

protein “adrenoceptor alpha 2A (ADRA2A)” and the compound “Pergolide” [33]. The 499 

protein ADRA2A and the compound Pergolide have a positive interaction in the training 500 
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sample. The sequence similarity score between HTR6 and ADRA2A is rather low at 100.5, 501 

but the similarity of the two proteins in the protein-protein interaction network is relatively 502 

high at 0.805. A part of the protein-protein interaction network around HTR6 and ADRA2A 503 

is displayed in Figure 4 (left). Similarly, the Jaccard coefficient of the ECFPs between 504 

Mesulergine and Pergolide is relatively low 0.273 (in general, compound pairs with a Jaccard 505 

coefficient of ECFPs below 0.25 are considered not to have chemically similar structures 506 

[34]), but the cosine similarity of the two compounds in the compound-compound interaction 507 

network is high at 0.735. A part of the compound-compound interaction network around 508 

Mesulergine and Pergolide is displayed in Figure 4 (right). 509 

 510 

Conclusions 511 

This study aimed to improve the performance of predicting protein-compound interactions by 512 

integrating molecular structure data and interactome data. This was achieved by integrating 513 

multiple heterogeneous interactome data into predictions of protein-compound interactions. 514 

An end-to-end learning method was developed that combined a 1D-CNN for amino acid 515 

sequences, an ECFP representation for compounds, and feature representation learning with 516 

node2vec for protein-protein and compound-compound interaction networks. The proposed 517 

integrated model exhibited significant performance differences with respect to the accuracy 518 

measures in comparison to the current state-of-the-art deep learning methods. The 519 

performance improvement was verified by the Wilcoxon signed-rank test as being 520 

statistically significant. The results indicated that the proposed model was able to more 521 

accurately predict the protein-compound interactions even in the hard dataset, where neither 522 

the proteins nor the compounds in the test sample appear in the training sample. 523 

An important future task is to integrate the gene regulatory network as additional 524 

interactome data to further improve protein-compound interaction prediction. A large number 525 
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of gene expression profiles for various tissues and cell lines are available in public databases, 526 

and gene regulatory networks can be effectively inferred from the gene expression profiles. 527 

 528 

 529 
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 662 

Figure legends 663 

Figure 1. Deep learning architecture that integrates molecular structure data and interactome 664 

data to predict protein-compound interactions. It integrates graph-based and sequence-based 665 

representations for the target protein and compound. The amino acid sequence of the protein 666 

input was embedded into a one-hot vector of 20 dimensions in height. The ECFP 667 

representation of the compound input was embedded into a 1024-dimensional vector. The 668 

feature vectors were also extracted from the protein-protein and compound-compound 669 

interaction network using node2vec, a feature representation learning method for graphs. 670 

These feature vectors were combined as a protein vector and a compound vector. The 671 

interaction was predicted in the output unit. 672 

 673 

Figure 2. The output layer architecture. The integrated model predicts the protein-compound 674 

interactions by embedding the protein and compound data from different modalities into a 675 
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common latent space. The feature vectors for the proteins and compounds are mapped onto 676 

the same latent space by applying a fully connected layer. Then, their similarity in the latent 677 

space is calculated with an element-wise product calculation followed by a fully connected 678 

layer. 679 

 680 

Figure 3. (Top) Relationship between the amino acid sequence similarity and the similarity 681 

in protein-protein interaction network. (Bottom) Relationship between the chemical-structure 682 

similarity and the similarity in compound-compound interaction network. The amino acid 683 

sequence similarity was calculated using DIAMOND, and the chemical structure similarity 684 

was calculated as the Jaccard coefficient of the ECFPs of the two compounds. The correlation 685 

coefficients are 0.186 and 0.199, respectively. 686 

 687 

Figure 4. (Left) Part of the protein-protein interaction network around ABL1 and YES1. 688 

(Right) Part of the compound-compound interaction network around Crizotinib and Ceritinib. 689 

 690 
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