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Abstract 

 
Toxicogenomics studies typically reveal a group of genes relevant to the pathophysiology of drug-
induced organ injury. In recent years, network-based methods have become an attractive analytical 
approach as they can capture not only the global changes of regulatory gene networks but also the 
relationships between their components. Among them, a causal reasoning approach additionally 
depicts the mechanisms of regulation that connect upstream regulators in signaling networks 
towards their downstream gene targets. 
 
In this work, we applied CARNIVAL, a causal network contextualisation tool, to infer upstream 
regulatory signaling networks based on gene expression microarray data from the TG-GATEs 
database. We focussed on six compounds that induce observable histopathologies linked to drug-
induced liver injury (DILI) from repeated dosing experiments in rats. We compared responses in 
vitro and in vivo to identify potential cross-platform concordances in rats as well as network 
preservations between rat and human. Our results showed similarities of enriched pathways and 
network motifs between compounds. These pathways and motifs induce the same pathology in 
rats but not in humans. In particular, the causal interactions “LCK activates SOCS3, which in turn 
inhibits TFDP1” was commonly identified as a regulatory path among the fibrosis-inducing 
compounds. This potential pathology-inducing regulation illustrates the value of our approach to 
generate hypotheses that can be further validated experimentally. 
 
Keywords: causal reasoning, pathway footprints, signaling networks, network contextualization, 
toxicogenomics, drug-induced liver injury (DILI) 
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1 Introduction 
 
Drug-induced liver injury (DILI) is one of the principal reasons for attrition in drug development 
(Guengerich and Peter Guengerich 2011; Lin and Will 2012). To better understand the molecular 
mechanisms that govern the observed pathologies, the field of toxicogenomics emerged and 
offered bioinformatic approaches tailored to the analysis of toxicology data. (Alexander-Dann et 
al. 2018). 
 
In a conventional approach, molecular markers of drug toxicity are identified based on statistical 
differences between the control and toxicant-treated groups (Mishra et al. 2011). However, such a 
list of individual markers does not necessarily lead to a better understanding of the 
pathophysiology of drug toxicity; the markers can be genes with multiple functions, or of not 
known function. Over-representation and enrichment analyses of differentially expressed genes 
offer an additional, integrated level of information on pathway regulation and biological processes 
(Souza et al. 2016). Nevertheless, these approaches do not consider the interactions between genes 
either. 
 
Accordingly, there is a growing interest in network-based approaches as they can define how the 
changes of each gene marker could affect the functionalities of the other genes within the network 
(Bai and Abernethy 2013). These methods use networks describing interactions among molecular 
entities, mostly proteins. The respective interactions can be found in curated databases such as 
Reactome (Fabregat et al. 2018), WikiPathways (Slenter et al. 2018) as well as meta-databases 
such as STRING (Szklarczyk et al. 2019) and OmniPath (Türei et al. 2016). These network-based 
methods have been successfully applied in many fields, especially in cancer (Gumpinger et al. 
2020). Among these studies, different levels of network abstraction were applied to represent the 
networks including simple graph theory, causal network, logic-based network, or network based 
on biochemical representation, each with their inherent advantages and limitations (Le Novère 
2015).  
 
Graph theory is a preferable choice to extract key features from network structures such as degree 
of connectivity, betweenness and hubness while some of these features were shown to be 
correlated with the importance of the respective nodes (molecules) in the network (Mason and 
Verwoerd 2007; Franz and Nunn 2009). Logic-based modeling provides a more refined view of 
the connection between nodes in the network via simple gates (e.g. OR/AND) and takes the 
directionality and the sign of edges (connections) into account (Abou-Jaoudé et al. 2016). This 
approach was traditionally designed to only capture the up- and down-regulation of molecular 
entities based on the absolute “0 and 1” state values. More detailed formalisms such as ordinary 
differential equation (ODE)-based networks can overcome this limitation (Di Cara et al. 2007; 
Wittmann et al. 2009) but they require parameters, which are often not available. If not available, 
they can be inferred from data, but this requires quite rich data sets and is computationally 
expensive.  
 
As an intermediate between graph-based and logic-based models, causal networks can be an  
attractive approach for toxicogenomics analysis. Causal networks of signaling pathways’ 
components can capture the states of molecules as being up- or down-regulated, (Plaisier et al. 
2016). The directionality of the interactions in the networks is also taken into account to infer 
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causal mechanisms connecting  a deregulated node and the nodes upstream influencing it. Due to 
the simplicity of causal networks, efficient implementations for their  identification exist, such as 
via statistical tests in CausalR (Chindelevitch et al. 2012; Bradley and Barrett 2017) or the integer 
linear programming (ILP) formulation of causal network inference in CARNIVAL (Melas et al. 
2015; Liu et al. 2019). Causal network modeling thus represents a balance between granularity of 
abstraction and computational efficiency, rendering it well suited for an automated regulatory 
network construction based on large-scale data such as transcriptomics. 
 
To illustrate how causal networks could reveal potential upstream regulatory networks based on 
downstream observations in toxicogenomics study, we applied CARNIVAL to infer regulatory 
signaling networks of DILI. As inputs, we used the microarray gene expression profiles available 
from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system (TG-GATEs) 
database (Igarashi et al. 2015) and network information from OmniPath (Türei et al. 2016). We 
analyzed the rat liver single and repeated dosing, rat primary hepatocyte, and human primary 
hepatocyte datasets, thus enabling the assessment on in vitro-in vivo conservation and rat-to-human 
species translation. We identified conserved regulatory network components between the in vitro 
and in vivo experimental set-ups and we propose them as potential mechanisms of toxicity insults 
which could be further investigated experimentally.  
  
 
 
2 Results 
 
We applied the causal network contextualization tool CARNIVAL to infer regulatory signaling 
networks from gene expression datasets in the TG-GATEs database. We focussed on compounds 
representing three major histopathological findings in the liver including necrosis, apoptosis and 
fibrosis. Out of 154 compounds from the rat liver (in vivo) datasets within TG-GATEs, 55 
compounds do not have any association to these major pathological observations while only 14 
compounds have only one type of histopathological phenotype without any other findings. Within 
these limited choices of representative compounds, we selected six exemplar compounds that are 
most exclusively associated with the key histopathological findings in DILI. These include 
acetaminophen (APAP) and captopril (CAP) for necrosis, methapyrilene (MTP) and ethambutol 
(ETB) for apoptosis, and carbon tetrachloride (CCL4) and monocrotaline (MCT) for fibrosis. 
Three additional compounds, caffeine (CAF), haloperidol (HAL) and penicillamine (PCN), were 
also chosen as negative controls for DILI (see for more details in Materials and Methods). 
 
In the analytical pipeline, we first inferred transcription factors (TFs)’ activities from gene 
expression data. Then, they were applied as inputs for CARNIVAL to generate contextualized 
regulatory signaling networks for each compound connecting deregulated TFs towards upstream 
signaling molecules. The networks were generated individually for each experimental condition 
from the combination of dose and treatment time for all compounds. Subsequently, we first 
investigated CARNIVAL results at the network topology level to identify common regulatory 
network components (motifs) for each pathological phenotype. Then, we performed enrichment 
analyses using signaling proteins (i.e. ‘nodes’) in the inferred CARNIVAL networks and analyzed 
network topologies to identify the enriched pathways and conserved network motifs for each 
pathological phenotype. Note that only combined enrichment results from the three most 
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representative experimental conditions that induce histopathological phenotypes were chosen to 
be presented in this study (see details in Materials and Methods).  
 
We investigated the different datasets in the following order: First, we investigated the deregulated 
pathways that connected to the histopathological changes in the rat repeated dosing dataset over 
29 days. Then, we analyzed regulatory networks from the rat liver single dosing dataset with 
treatment time up to 24 hours in order to identify early deregulated signaling pathways which 
might be connected to the histopathological observations in the repeated dosing group. After that, 
we repeated the same pipeline in the rat primary hepatocyte dataset to identify whether there is an 
in vivo-in vitro conservation in the rat species. Lastly, we applied the same analysis on the primary 
human hepatocyte dataset to evaluate the preservation between the two species. 
 
In the following sections we present the CARNIVAL results separately for each rat and human 
dataset followed by the combined results of enrichment analyses from all datasets. Finally, we 
provide a comparison of CARNIVAL enrichment results to the conventional enrichment analysis 
based on differentially expressed genes.  
 

2.1 Rat liver repeated dosing dataset 

 
After applying CARNIVAL to generate regulatory signaling networks from the rat liver repeated 
dosing dataset, we examined the topology of the resulting CARNIVAL networks to delineate the 
perturbed signaling pathways upon compound perturbation. Networks were generated individually 
for each experimental condition where an example of a regulatory network from CCL4 treatment 
at high dose on 29 days repeated dosing scheme is shown in Figure 1. 
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Figure 1: Network topology inferred from carbon tetrachloride (CCL4) at 29-day high dose 
treatment dataset. Up-regulated nodes and activatory edges are indicated in blue while down-
regulated nodes and inhibitory edges are colored in red. Triangles correspond to transcription 
factors, diamonds represent the most upstream nodes and circles correspond to inferred nodes. 
Only nodes and edges presented in at least 50% of the pool of network solutions are shown. 
 
The components of many signaling pathways were dysregulated upon CCL4 treatment (Figure 1). 
These include DNA damage pathway (TP53), oxidative stress pathway (NFE2L2), cell cycle 
pathway (RB1, E2F2, E2F4), NFkB pathway (NFKB2, SOCS3) and many others. It should be 
noted that these components were not connected via canonical paths but rather through crosstalk 
across multiple signaling pathways. Hence, the observed fibrosis in histology upon CCL4 
treatment was the result of a multiple dysregulation of signaling pathways upon hepatotoxicants’ 
perturbation. 
 
In the next step, we aimed to identify whether there exist some similarities of inferred network 
structures form different experimental conditions. We performed an unsupervised clustering of 
network interactions (edges) and molecular activities (nodes) of the rat liver repeated dosing 
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dataset (Figure 2 and Supplementary Figure S1, respectively). Among these results, certain 
interactions are commonly present in the regulatory network topologies of fibrosis-inducing 
compounds including CCL4 and MCT (see “Cluster 1” in Figure 2). The regulatory networks of 
MTP at middle-to-high dose at later time points (8 to 29 days) were also clustered together in this 
fibrosis group. The common interactions in this group include “LCK -> SOCS3” and “SOC3 -| 
TFDP1” where the symbols “->” refers to activation and “-|” refers to inhibition. Another cluster 
belongs to the compounds that induce apoptosis i.e. MTP and ETB. The overlapped interactions 
in this group are “MAPK3 -> RPS6KA3”, “RPS6KA3 -> ATF4” and “CSK2A1 -| ATF1”. The 
common up-regulated node activities from these two clusters are TFDP1, MAPK3, RPS6KA3, 
ATF4 and ATF1, while LCK, SOC3 and CSNK2A1 are commonly down-regulated (see 
Supplementary Figure S1 and Supplementary Text S1). 
 
 

 

Figure 2: Unsupervised clustering of network interactions (edges) and experiments from the rat 
liver repeated dosing dataset. The clustering was based on the frequency of network interactions 
being present in the pool of CARNIVAL network solutions. Two clusters of experiments are 
highlighted: “Cluster 1” mainly comprising compounds from the fibrosis cluster and “Cluster 2” 
mainly containing compounds from the apoptosis cluster. 
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Next, we performed a pathway enrichment analysis using deregulated nodes (molecules) in the 
CARNIVAL networks as inputs to identify which signaling pathways these nodes belong to (Table 
1). 
 

Table 1: Enrichment of hallmark pathways based on nodes in CARNIVAL networks inferred from 
the rat liver repeated dataset. Signed log-10 p-values are shown in each cell with positive value 
being up-regulated, negative value being down-regulated and 0 refers to conflicting up- and down-
regulation across different doses and time-points. Only the significant results with p-value < 0.05 
were represented in the table, otherwise shown as blanks. 
 

 
 
The directionalities of many enriched hallmark pathways are inverse between APAP and CAP, 
except for IFNg and TNFa/NFkB pathways that are consistently down-regulated in the necrosis 
group (Table 1). For the apoptosis group, upregulated MYC and cell cycle pathways are in 
agreement between MTP and ETB. Interestingly, the TNFa/NFkB pathway is strongly up-
regulated for both CCL4 and MCT in the fibrosis group while the cell cycle pathway is also 
consistently up-regulated. Lastly, there are no consistent enriched pathways for all three 
compounds in the negative control group (CAF, HAL and PCN) but some pathways (cell cycle, 
IFNg, IL6/Jak-STAT and PI3K/Akt) are still partly overlapped. 
 

2.2 Rat liver single dosing dataset 
 
The same analytical pipeline was applied to the rat liver single dosing dataset with a shorter time-
course until one day (3, 6, 9 and 24 hours, instead of 4, 7, 15 and 29 days above). Given that we 
previously identified some conserved regulatory network paths from the fibrosis cluster in the rat 
liver repeated dosing dataset, we investigated further if there are also conserved nodes and 
interactions in the rat liver single dosing dataset at earlier time points for each individual fibrosis-
inducing compound (See Figure 3 and Supplementary Text S2). For CCL4, we highlighted two 
clusters: “Cluster 1” at earlier time points (3-6 hours) and “Cluster 2” at a later time point (24 hour) 
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(Figure 3A/3B, top panel). The first CCL4 cluster comprises the interactions: PPP2CA -> 
SMAD2/3/4 -| FOXA1/2 -> NFIB -| NFIC where SMAD4, NFIB and NFIC were previously 
classified as DILI-genes (Kohonen et al. 2017). The second cluster comprises two sets of 
interactions from conventional pathways including JAK1 -> STAT2 from Jak-Stat pathway and 
RB1 -| E2F2 from cell cycle pathway. For MCT, three clusters were shown i.e. “Cluster 1” at 3 
and 9 hours at middle-to-high doses, “Cluster 2” at 6 hours at middle-to-high doses and “Cluster 
3” at a later time point (24 hours) (Figure 3C/3D, bottom panel). The three clusters consists of the 
following interactions: PCGF2 -| UBE2I -> SUMO1 -> CTBP1/CTCF -> ZEB2 (Cluster 1); 
PCGF2 -| UBE2I -> SUMO1 -> CTCF4/SMAD4 (Cluster 2); and CDK2 -| NR1I2 and JAK2 -> 
STAT6 (Cluster 3). It should be noted that there is a high similarity between the interactions in 
“Cluster 1” and “Cluster 2” for MCT (UBE2I -> SUMO1 -> CTCF). Also, there is a common 
involvement of JAK-STAT signaling and cell cycle at the later time point (24 hour) for both CCL4 
and MCT which could potentially be a unique set of regulatory network paths in the fibrosis group. 
Nevertheless, none of these identified network paths was common between this dataset and the 
previous rat liver repeated dosing dataset. 
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Figure 3: Unsupervised clustering of network interactions (edges) and signaling protein activities 
(nodes) of CARNIVAL results from the rat liver single dosing dataset for carbon tetrachloride 
(CCL4; top ‘A’ and ‘B’) and monocrotaline (MCT, bottom ‘C’ and ‘D’). The clustering of edges 
[‘A’ and ‘C’] was based on the frequency of network interactions in the pool of CARNIVAL 
network solutions. The clustering of nodes [‘B’ and ‘D’] was based on their average activities in 
the pool of CARNIVAL network solutions ranging from -100 percent (i.e. fully down-regulated 
in red) to 100 percent (i.e. fully up-regulated in green) Several small clusters were highlighted for 
each compound. The list of common edges and nodes together with the frequency of their presence 
are in Supplementary Text S2. 
 
The enrichment analyses of CARNIVAL networks did not reveal any common enriched hallmark 
pathways among the compounds within the same group of histopathology (Supplementary Table 
S1). Similarly, there is no clearly identified cluster of the network topology among the compounds 
from the same group of pathological findings in this dataset either (Supplementary Figure S2 and 
S3).  
 

2.3 Rat primary hepatocyte dataset 
 
First, we analyzed the network topology of inferred regulatory networks from this dataset and 
highlighted several clusters based on common histopathological findings (Supplementary Figure 
S4 and S5). Among them, there is a mixture of experimental conditions from the representative 
compounds in the same groups of histopathological findings for fibrosis and negative controls (e.g. 
CCL4 and MCT are still in the same cluster for fibrosis). Nevertheless, the highlighted clusters for 
apoptosis and necrosis groups mostly contain only the experimental conditions from individual 
compounds (e.g. APAP and CAP in the same necrosis group are not clustered together). This 
suggests that there might be highly similar regulatory network topologies of fibrosis-inducing 
compounds and negative controls compared to the ones of the other two phenotypes that are more 
compound-specific in this dataset. 
 
Next, we focused on analyzing the network topologies of fibrosis-inducing compounds as they 
were previously shown to have some consistency of results within the same group (Supplementary 
Figure S6). For CCL4, it appears that the edges and nodes are still mostly clustered by the time of 
treatments (2, 8 and 24 hours), even if the samples from 2-hour and 24-hour treatment at high 
doses were missing. The common regulatory interactions in these clusters include FYN -> 
MAPK14/PPP2CA2 -> RB1 -| E2F2 (24-hour time point) and MAPK1 -> TP53 ; SRC -| HNF4A 
(8-hour time point). On the MCT side, 3 clusters of edges and nodes were observed. These 
comprise the first cluster with 8-hour middle dose & 8/24-hour high dose samples represented by 
the following interactions UBE2I -> SUMO1 -> CTCF; PCSK7 -| CEBPA -> SPI and CTNNB1 -
> HNF1A -> ESR1 -> PPARG; the second cluster with 24-hour low and middle doses samples 
represented by the interactions PCGF2 -| UBE2I -> SUMO1 -> CTCF; RB1 -| E2F2 and LCK -> 
SOCS3 -| TFDP1; and the third cluster with 2-hour at low and high doses samples represented by 
the interaction ZNF76 -| TBP (Figure 4). Note that even if the representative interactions in each 
cluster of the two compounds are mostly different, there are still a few interactions which are 
common e.g. RB1 -| E2F2. This observation is in line with the results from the rat liver single 
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dosing dataset that showed the involvement of cell cycle regulation which has been converged 
together at the 24-hour time point for CCL4. Also, it should be highlighted that the regulatory 
interactions ‘LCK -> SOCS3 -| TFDP1’ in MCT networks were shown to be in common to the one 
previously identified in the rat repeated dosing dataset (Figure 1 and 4). 
 

 

Figure 4: Network topology inferred from Monocrotaline (MCT) at 24-hour middle dose 
treatment dataset. Up-regulated nodes and activatory reactions are indicated in blue while down-
regulated nodes and inhibitory edges are colored in red. Triangles correspond to transcription 
factors, diamonds represent the most upstream nodes and circles correspond to inferred nodes. 
Only nodes and edges presented in at least 50% of the pool of network solutions are shown. 
 
Subsequently, we performed enrichment analyses of the inferred regulatory networks from the rat 
primary hepatocyte dataset at 2, 8 and 24 hour time points. The results showed a few overlapping 
enriched hallmark pathways among the compounds from the same pathology group (Table 2). 
These include the down-regulation of IFN gamma/alpha pathway and the up-regulation of K-Ras 
MAPK pathway in the necrosis group, the down-regulation of cell cycle and hormonal pathways 
(androgen/estrogen) for the apoptosis group, and the down-regulation of cell cycle pathway and 
the up-regulation of the K-Ras MAPK and unfolded protein response (UPR) pathways (partial) in 
negative control group. Note that there is no common enriched pathway in the fibrosis group but 
this might partly be due to the missing dataset of CCL4 at the 2 and 24 hour time points at the high 
dose in the original TG-GATEs dataset. 
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Table 2: Enrichment of hallmark pathways based on nodes in CARNIVAL networks inferred from 
the rat primary hepatocyte dataset. Signed log-10 p-values are shown in each cell with positive 
value being up-regulated, negative value being down-regulated and 0 refers to conflicting up- and 
down-regulation across different doses and time-points. Only the significant results with p-value 
< 0.05 were represented in the table, otherwise shown as blanks. 
 

 
 

2.4 Human primary hepatocyte dataset 

 
In the last dataset, we first examined CARNIVAL results at the network topology level. We 
observed a higher degree of clustering for compounds in the same group of pathology when 
clustered by edges (Supplementary Figure S7) than by nodes (Supplementary Figure S8). This 
observation might reflect the fact that the effect of regulations on signaling molecules (nodes) by 
the same interactions (edges) that could still be different for each compound. For instance, if A -| 
B, A could be down-regulated and B could be up-regulated in one compound but the activities of 
A and B are inverse in another compound while the interaction ‘A -| B’ remains the same. Of note, 
this finding was not observed in any of the rat datasets and is a unique feature for the human 
dataset. 
 
Subsequently, we followed up the investigation on the fibrosis-inducing compounds by analyzing 
the network topologies of CCL4 and MCT generated from the human dataset (Supplementary 
Figure S9). For CCL4, it appears that nodes are clustered based on the time points but the edges 
are not. The most representative common set of interactions from CCL4 experiments at 8-hour is 
“PTPRB -| MAPK1 -> CDK2/CSKN2A1 -> NPAT/ATF1/NFE2L2 -> HINFP”. In parallel, there 
are many missing experimental conditions on the MCT dataset (no data for 2-hour low/middle/high 
doses and for 8/24-hour at low dose). Hence, we only observed one cluster of 8-hour middle dose 
and 24-hour high dose conditions which are represented by the interactions “MAPK1 -> 
SMAD3/CSNK2A1/YAP1 -> CTNNB1/TEAD4 -> NR4A1”. The interaction “MAPK1 -> 
CSNK2A1” is common between the CCL4 and MCT clusters. This interaction could potentially 
demonstrate the involvement of the MAPK pathway on cell cycle regulation. 
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Lastly, enrichment analyses of networks generated from the primary human hepatocyte datasets 
revealed some common overlapped enrichment results between compounds in the same DILI 
group (see Supplementary Table S2). These include the down-regulations of IFN alpha/gamma, 
IL6/Jak-Stat3, hypoxia and TNFa/NFkB pathways for necrosis, the upregulation of IFN 
alpha/gamma pathway for apoptosis, the upregulation of TNFa/NFkB pathway for fibrosis, and 
the down regulation of cell cycle, IL6/Jak-Stat3 and TGFb pathways for negative controls. These 
results suggest that there are some common regulatory mechanisms across compounds in the same 
group of histopathological phenotypes from human in vitro experiments. 
 

2.5 Enrichment results of CARNIVAL networks across all datasets 
 
Finally, we combined the enrichment results from all datasets of the two species and put them side-
by-side for comparisons in order to identify whether there exists any preservation of enrichment 
results. The results are grouped by compounds that induce the same histopathological observations 
where the one for the ‘fibrosis’ group can be found in Table 3 and the ones for ‘necrosis’, 
‘apoptosis’ and ‘negative control’ can be found in Supplementary Tables S3, S4 and S5, 
respectively. 

Table 3: Combined enrichment results of carbon tetrachloride (CCL4) and monocrotaline (MCT) 
in the ‘fibrosis’ group. The results were generated from nodes in CARNIVAL networks with the 
hallmark pathways gene sets and presented for all four datasets including rat liver repeated dosing 
(RLR), rat liver single dosing (RLS), rat primary hepatocytes (RPH) and primary human 
hepatocyte (PHH). Signed log-10 p-values are shown in each cell with positive value being up-
regulated, negative value being down-regulated and 0 refers to conflicting up- and down-regulation 
across different doses and time-points. Only the significant results with p-value < 0.05 were 
represented in the table, otherwise shown as blanks. 
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A direct comparison of enrichment results among the four datasets revealed, several consistent 
trends of enrichment results can be observed. For necrosis (Supplementary Table S3), the down-
regulation of IFNg, IL6/JakStat and TNFa/NFkB pathways have a high degree of conservation 
across all 4 datasets. For apoptosis (Supplementary Table S4), better overlaps of cell cycle and 
MYC pathways among in vivo rat results were observed but not across the two species. Regarding 
fibrosis (Table 3), there are more consistently conserved patterns across different datasets 
including the up-regulation of cell cycle, UPR, PI3K/Akt and K-ras/MAPK pathways in the rat in 
vivo and in vitro datasets. In addition, significant and consistent up-regulations of TNFa/NFkB 
pathway were observed for the rat liver repeated dosing and primary human hepatocyte datasets 
which might indicate the preservation between species for this specific pathology. Last but not 
least, the enrichment results of networks from negative control compounds are mostly inconsistent 
(Supplementary Table S5). Yet, the up-regulated bile/cholesterol metabolism and down-regulated 
TGFb pathways were still consistently observed between all 4 data types and could be the hallmark 
of protective mechanisms against DILI in this group. 
 

2.6 Comparison of CARNIVAL enrichment analyses to a conventional pathway enrichment 
approach 

 
Finally, we performed an enrichment analysis directly on the list of differentially expressed genes 
(DEGs) using the gene sets from Reactome (see Material and Methods and Supplementary Table 
S6). In contrast to the enrichment of the CARNIVAL results, here the expression of the genes is 
mapped directly to the pathway components, reflecting downstream changes instead of causal 
driving mechanisms based on pathway footprints (Szalai and Saez-Rodriguez). In this analysis, 
cell cycle, PI3K/Akt and K-ras/MAPK pathways are shown to be enriched for necrosis while 
another set of pathways (IFNg, IL6/JakStat and TNFa/NFkB) were enriched in the CARNIVAL 
results in this group. This suggests that signaling of IFNg, IL6/JakStat and TNFa/NFkB pathways 
is altered, which in turn affect the regulation of the genes in the cell cycle, PI3K/Akt and K-
ras/MAPK pathways (Szalai and Saez-Rodriguez). In summary, these results provide 
complementary insights to those of the enrichment results from CARNIVAL.  
 

3 Discussion 

 
Fibrosis has strong conserved regulatory network paths in the rat liver repeated dosing 
dataset 
 
Based on CARNIVAL results, the fibrosis pathology has the most conserved enriched pathways 
and regulatory network paths across the fibrosis-inducing compounds (CCL4 and MCT) in the rat 
liver repeated dosing datasets up to 29 days. The pro-inflammatory pathways including TNF-alpha 
and NF kappa-B pathways as well as cell cycle are both enriched in the up-regulated direction, 
consistent with the previous reports in literature (Taub 2004; Sunami et al. 2012). Network 
topology analyses revealed that the interactions “LCK -> SOCS3 -| TFDP1” is commonly found 
within the fibrosis cluster (Figure 2). According to the DILI status of each gene (Kohonen et al. 
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2017), only TFDP1 was listed as a DILI gene in the core list (Yasui et al. 2002) while LCK and 
SOCS3 were not. Nevertheless, the role of SOCS3 in liver diseases including liver fibrosis has 
already been proposed (Ogata et al. 2006; Masuhiro et al. 2008). Hence, this finding from our 
network-based approach highlighted a potential novel mode of regulation that could link to the 
inhibition of DILI-gene TFDP1 via the activation of SOCS3 through LCK.  
 
Compound-specific networks were identified at early time points while the networks of 
fibrotic-inducing compounds showed a convergence at 24 hours 
 
The investigation of the rat liver single dosing dataset at earlier time points (up to 24 hours) could 
potentially reveal the regulatory patterns which connect to the observed histopathological findings 
at later time points (up to 29 days). Interestingly, the nodes and edges in the contextualized 
networks were mostly clustered within the same compound at different concentrations and time 
points rather than being clustered together with the other compound(s) which induce the same 
types of histopathology. This observation implies that the regulatory signaling networks at earlier 
time points might be compound-specific, similar to the reported study by (Melas et al. 2015), while 
the ones at late time points are more tissue-specific and less independent of individual compounds’ 
effects.  
 
In the network topologies inferred from fibrotic-inducing compounds (CCL4 and MCT), the edges 
and nodes were clustered according to the treatment time points within each compound. Only the 
edge and node clusters at the 24 hour time point are highly similar among the two compounds and 
both show the deregulations of the JAK-STAT signaling as well as the cell cycle pathway. In 
addition, the original transcriptomic profile at the gene expression level also shows the 
convergence at 24 hour for these two compounds (Supplementary Figure S10). Our results suggest 
that there are compound-specific  mechanisms that induce liver injury, that lead to a common 
response of the liver tissue starting at 24 hours upon insult. 
 
Regulatory networks inferred from the rat in vitro experiments have similar network 
network paths compared to the ones inferred from the rat in vivo datasets 
 
One question that could be addressed with the TG-GATEs dataset is “how well-conserved are the 
regulatory networks between in vitro and in vivo experiments within the same species?”. The 
CARNIVAL networks between the rat primary hepatocyte and rat liver single dosing with similar 
time points (up to 24 hours) clustered according to the treatment time points,  especially in the 
fibrosis group (Figure 3 and Supplementary Figure S6). Enrichment results of regulatory networks 
from the rat in vivo experiments show a deregulation of Jak-STAT and cell cycle pathways among 
the fibrotic-inducing compounds.In parallel, the enrichment of cell cycle pathway at 24 hour was 
also observed in the rat primary hepatocyte dataset for the same compound set. We could therefore 
assume that there is a conservation of the regulatory pathways between the in vitro and in vivo 
systems in rats. This supports the performance of experiments in cell culture instead of live animals 
following the 3R (replace, reduce and refine) principle (Russell and Burch 1959), at least for the 
investigation of liver fibrosis in the rat species. 
 
Besides the time-matched comparison of the rat in vitro and in vivo experiments, we also checked 
whether the regulatory network paths inferred from the in vitro experiments at early time points 
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have an association to the regulatory network paths from the in vivo experiments at the late time 
points where pathological findings take place. It was shown in previous studies that early 
deregulated gene signals could be predictive of late pathological findings (Zhang et al. 2014; 
Sutherland et al. 2018). We also identified the set of conserved interactions from the fibrosis cluster 
“LCK -> SOCS3 -| TFDP1” in the rat primary hepatocyte dataset and also in the rat liver repeated 
dosing dataset. The aforementioned potential involvements of LCK and SOCS3 in the induction 
of liver injury and fibrosis further support to investigate experimentally these particular regulatory 
interactions to evaluate the conservation of this fibrosis-inducing network paths across in vivo and 
in vitro systems. 
 
Minimal preservation of enrichment results between species was observed but not at the 
network topology level: a careful consideration towards species translation 
 
According to the trend of enrichment results comparison from all four datasets (Table 3 and 
Supplementary Table S3-S5), only a few consistent results between the rat and human species 
were observed. These include the down-regulation of IFNg, IL6/JakStat and TNF/NFkB pathways 
for the necrosis group and the up-regulation of TNF/NFkB pathway for the fibrosis group. These 
minimal sets could serve as the hallmarks of deregulation for each of liver pathology which were 
also reported in a previous study (Sunami et al. 2012). Conventional enrichment analyses based 
on the list of DEGs offer alternative insights on the list of pathway enrichments (Supplementary 
Table S6), since the pathway enrichment analysis in CARNIVAL were performed on the protein 
activity levels inferred from transcriptomic footprints, while the conventional analyses directly 
apply inputs at the transcriptomics level onto pathway gene set memberships. (Dugourd and Saez-
Rodriguez 2019; Liu et al. 2019) thus reflecting the downstream stream effect of signaling 
networks and transcription factors. (Szalai and Saez-Rodriguez)  
 
Besides the enrichment results, the analysis on network topologies of fibrosis-inducing compounds 
demonstrate very limited consistent findings within the clusters from CCL4 and MCT datasets 
except the deregulation of cell cycle signaling network path CSNK2A1 by MAPK1 in the ERK-
MAPK pathway. In addition, there is no overlap of the representative interactions in the identified 
cluster from the rat and human primary hepatocytes datasets, questioning the translatability of 
results between species for fibrosis-inducing compounds.  
 
Our findings shed new light on the value of studying human toxicology from experimental 
investigations in rats. Even if it has been previously described that there is a high preservation of 
gene expression between humans and rodents (mice and rats) ((Prasad et al. 2013), Supplementary 
Figure S11), the regulatory networks can be largely different between species (Fijten et al. 2013). 
The network-based studies therefore offer a different perspective for the evaluation of deregulated 
biological functions: they not only utilize the gene expression changes but also the prior knowledge 
network information, as shown in this study (Figure 5).  
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Figure 5: Summarized key findings from the presented CARNIVAL results based on the TG-
GATEs dataset. The regulatory network interactions “LCK activates SOCS3, which in turn inhibits 
TFDP1” was identified to be involved with the pathogenesis of liver fibrosis in rats. Also, the 
respective findings from the rat in vitro experiments are well-conserved to the rat in vivo 
experiments but not to ones from the corresponding human dataset. 
 
Limitations and future plan 
 
Even if our study could provide some insights into the enrichment of regulatory networks, network 
topologies as well as species preservation, there are several limitations to be considered. First, we 
studied only 2-3 compounds per group.. There are very few compounds in the TG-GATEs dataset 
that represent each single histopathological finding that does not overlap with the others. As we 
aimed to identify the most distinct and unique signaling hallmarks for each type of pathology, we 
focused our analysis only on the compounds with the least number of concurrent pathologies (see 
Materials and Methods). To the least, this study as presented with 9 exemplar compounds should 
still serve as a proof-of-concept work to illustrate how the inference and analysis of regulatory 
signaling networks with a causal reasoning approach can be performed on toxicogenomics datasets 
and hence pave a way for larger studies in the same direction. 
 
From the computational point of view, the regulatory signaling networks inferred from 
CARNIVAL can be compared with the ones inferred from different approaches such as prize-
collecting Steiner’s tree algorithms (Huang and Fraenkel 2009) or diffusion-based methods (Paull 
et al. 2013).  
 
Lastly, we identified enriched pathways and preserved regulatory nodes and interactions from the 
study, which could serve as hallmarks of histopathological phenotypes. These findings would be 
ideal candidates for perturbation-based experiments to confirm the validity of the computational 
results. Such experimental validation would then lead to the discovery of novel targets that might 
offer a better prevention of DILI. 
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4 Materials and Methods 
 
Gene expression dataset and associated histopathology findings 
 
Database: The Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system (TG-
GATEs) microarray gene expression datasets and associated histological findings are publicly 
available from https://toxico.nibiohn.go.jp/english/index.html (Igarashi et al. 2015). The following 
liver datasets were applied in the current study: rat liver repeated dosing (4, 8, 15 and 29 days), rat 
liver single dosing (3, 6, 9 and 24 hours), rat primary hepatocyte (2, 8 and 24 hours) and human 
primary hepatocyte (2, 8 and 24 hours), all with low, middle and high doses. The observed 
histopathological findings were based on the rat liver datasets (both single and repeated dosing). 
 
Compound selection: In this study, we selected the compounds which induce three most 
representative histopathological findings for DILI including “necrosis”, “apoptosis” and “fibrosis” 
at different degrees of pathological observations. All selected compounds have datasets across the 
rat and human species on the TG-GATEs database. The list of compounds, observed pathologies 
and DILI-status (Chen et al. 2016) are shown in Table 4.  

Table 4: List of selected compounds in the study with observed pathologies, DILI-status and 
missing individual experiments in TG-GATEs.  (NA: not available) 
 
Compound Observed pathology in TG-

GATEs 
DILI-
status 

Missing experiments in 
TG-GATEs 

Acetaminophen Mild necrosis only Most DILI None 

Captopril Mild/moderate necrosis only Less DILI None 

Methapyrilene Mild apoptosis only NA None 

Ethambutol Moderate/severe apoptosis 
only 

Most DILI None 

Carbon 
tetrachloride 

Mild/moderate fibrosis 
almost exclusively 

NA No high dose samples at 2- 
& 24-hour for rat primary 
hepatocytes 

Monocrotaline Mild/moderate necrosis + 
mild/moderate fibrosis 

NA No 2-hour & low dose 
samples for human primary 
hepatocytes and no high 
dose samples at 29 days for 
rat liver repeated dose 
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Caffeine None No DILI None 

Haloperidol None Less DILI None 

Penicillamine None Less DILI None 

 
Gene expression and data processing:  Raw gene expressions were downloaded from the TG-
GATEs database. CEL files were then processed, normalized (RMA) and the genes annotated 
(Entrez IDs) using customized R scripts available on ArrayAnalysis (arrayanalysis.org). Statistical 
tests to identify differentially expressed genes versus controls were conducted with the Limma R 
package (Ritchie et al. 2015). Annotation between rat and human genomes was conducted using 
the biomaRt R package, in which the rat gene symbols from rat genome database (RGD) were 
mapped to human gene symbols from the human genome nomenclature (HGNC) (Durinck et al. 
2009). 
 
Organ- and species-specific networks generation: For human networks, the human protein-
protein interactions were downloaded from the meta-database Omnipath (Türei et al. 2016). Only 
the directed and signed interactions (annotated as activation or inhibition) were selected to ensure 
the compatibility with the network contextualization pipelines with causal reasoning. Once an 
interaction was annotated as both activation and inhibition, it was separated into two interactions, 
each with a single mode of regulation. Subsequently, the transcript per million (TPM) measure of 
RNA abundance in the Human Protein Atlas database (Uhlén et al. 2015) at 1 TPM was used as a 
threshold to define whether the respective genes were expressed in the human liver. Only the 
interactions that contain the genes which are expressed in the liver were included into the final 
network of human protein-protein interactions. 
 
For the rat species, as the information on protein-protein interactions in the human species is much 
more abundant, we used the directed and signed human interaction network from Omnipath as a 
template. To generate a rat liver-specific network, we first applied the cut-off at 1 TPM on gene 
expression from the study E-MTAB-2800 in ArrayExpress to identify the genes which are 
expressed in rat liver. (Palasca et al. 2018). Then, the rat gene symbols from the rat genome 
database (RGD) were mapped to the human gene symbols from the human genome nomenclature 
(HGNC) database using the biomaRt R package (Durinck et al. 2009). In the last step, the 
“humanized” list of rat genes expressed in the rat liver were then used to prune the human template 
network to generate a final liver-specific network for the rat species. 
 
Network contextualization pipeline: Log2-transformed fold-change of gene expressions were 
used to calculate transcription factor (TF) activities using DoRothEA (Garcia-Alonso et al. 2019) 
and pathway activities using PROGENy (Schubert et al. 2018), where both serve as inputs for the 
CARNIVAL pipeline. Top 50 TFs with the highest activities were mapped as input nodes for 
network contextualization while the weights of cost function for the nodes that represent the 
pathway activities were also modulated as described in the original CARNIVAL publication (Liu 
et al. 2019). Given that there are potentially multiple network solutions being generated from 
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CARNIVAL, we combined results where only nodes and edges which were present in more than 
50% of the pool of network solutions were reported. 
 
Gene enrichment analysis: The 50 curated gene-sets from the MSigDB database in the Hallmark 
(H) branch were chosen for an over-representation analysis of nodes in CARNIVAL networks 
(Subramanian et al. 2005). The most significant p-value across multiple experimental conditions 
(dose and time-point combination) were reported per compound. The p-value threshold at 0.05 
was applied to determine the significance of enrichment results. The enrichment of top 3 
experimental conditions which induce the histopathologies of interest (necrosis, apoptosis and 
fibrosis) in the rat liver repeated dosing group as well as the enrichment results from all time-
points at high dose of negative controls and all other treatment groups (rat liver single dose, rat 
primary hepatocyte and human primary hepatocyte) were included in the enrichment analyses. In 
addition, we performed an enrichment analysis based on the list of differentially expressed genes 
(absolute 1.5-fold cutoff and FDR <= 0.05) using the Panther.db package with Reactome datasets 
(Mi et al. 2019) to compare with CARNIVAL enrichment results. 
 
Codes and results availability: The computational pipelines applied to generate CARNIVAL 
results in this study are available at https://github.com/saezlab/CausalToxNet. 
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