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Abstract1

Viral infections such as those caused by the influenza virus can put a strain on healthcare2

systems. However, such a burden is typically difficult to predict. In order to improve3

such predictions, we hypothesize that the severity of epidemics can be linked to viral4

evolutionary dynamics. More specifically, we posit the existence of a negative association5

between patients’ health and the stability of coevolutionary networks at key viral proteins.6

To test this, we performed a thorough evolutionary analysis of influenza viruses circulating7

in continental US between 2010 and 2019, assessing how measures of the stability of these8

coevolutionary networks correlate with clinical data based on outpatient healthcare visits9

showing Influenza-Like Illness (ILI) symptoms. We first show evidence of a significant10

correlation between viral evolutionary dynamics and increased influenza activity during11

seasonal epidemics, and then show that these dynamics closely follow the progression of12

epidemics through each season, providing us with predictive power based on genetic data13

collected between week 20 and week 40/52, that is one to fifteen weeks prior to peak ILI.14

Viral evolutionary dynamics may hence be used by health authorities to further guide15

non-pharmaceutical interventions.16

Key words: influenza virus; hemagglutinin; neuraminidase; coevolution; network analy-17

sis; ILI.18
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1 Introduction19

Recent human history has been repeatedly plagued by viral outbreaks such as the 191820

H1N1 “Spanish flu” (Kilbourne, 2006), or the novel 2009 H1N1 pandemic (Smith et al.,21

2009) – pandemics that aggravate the already heavy burden of seasonal epidemics, esti-22

mated to be as high as 650,000 deaths globally (Paget et al., 2019). In any case however,23

these numbers are hard to predict ahead of/or as the outbreak unfolds. While standard24

epidemiological models can inform us on which non-pharmaceutical intervention works25

best to limit casualties (Davies et al., 2020), and while phylodynamics can reveal the26

genetic structure of an epidemic (du Plessis et al., 2021), models predicting the next viral27

strain have shown little predictive power (Sandie and Aris-Brosou, 2014), and approaches28

predicting burden on healthcare systems are scarce.29

The case of influenza might help in this regard, as both the World Health Organization30

(WHO, 2020) and the Centers for Disease Control and Prevention (CDC, 2019a) closely31

monitor influenza activity in humans worldwide, in particular in the US. To this effect,32

the CDC enrolls around 3,000 healthcare providers that report numbers and percentages33

of patients showing symptoms of Influenza-Like-Illnesses (ILI), defined as a fever (a tem-34

perature ≥ 37.8◦C) and a cough and/or sore throat, on a weekly basis, since the 1997-9835

influenza season (CDC, 2019b). These weekly updates report, among others, ILI values36

that represent the number of patients with ILI divided by the total number of patients37

seen, which hence stands for a good indicator of ILI burden on the healthcare system.38

These data are then aggregated by state for all 50 states, plus the District of Columbia,39

Puerto Rico, and the US Virgin Islands, and are available since the 2010-11 season, start-40

ing right after the emergence of the pandemic 2009 H1N1 strain (CDC, 2019b). In parallel41

to these clinical data is a wealth of sequence data deposited in public repositories such42
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as GenBank (Bao et al., 2008), where the data can be filtered by country, season (from43

week 40 to week 39 of the following year), influenza subtype, host, and gene. Information44

about the state where each sequence was collected is available through the name of each45

sequence. It is therefore possible to match, in an aggregated manner, clinical and genetic46

data on a state by state basis, as well as on a weekly basis since 2010-11, and hence to test47

for the existence of genetic predictors of ILI burden. The outstanding question remains48

as to which genetic predictors to use for this purpose.49

Previous work suggests that outbreaks and epidemics affect the evolutionary dynamics50

of select viruses: more specifically, outbreaks where found to be associated with a break-51

down of coevolving amino acid, leading to what was characterized as a destabilization of52

their coevolutionary networks (Aris-Brosou et al., 2017). This results is sensible as exper-53

imental evidence shows that influenza viruses evolve in such a way that when some amino54

acid sites mutate, there may be a compensatory mutation (Gong et al., 2013). When55

many amino acids interact in such a way, they are considered to evolve in a correlated56

manner, often forming networks of coevolving residues (Nshogozabahizi et al., 2017), net-57

works that are not limited to viruses as they are also found in bacteria (Dench et al.,58

2020). These networks are thought to stabilize a genome from an evolutionary point of59

view (Aris-Brosou et al., 2019), a stability that is compromised during an outbreak, po-60

tentially because of a lack of compensatory mutations. Because this previous work was61

limited to case studies, it remains unclear whether such associations can be generalized,62

and more critically how they translate in the clinic. To address this outstanding issue,63

we tested for the existence of a correlation between viral evolutionary dynamics and ILI64

burden, focusing on the analysis of the two main influenza antigens, the hemagglutinin65

and the neuraminidase genes, whose products are respectively involved in cell entry and66

exit of viral particles (Nelson and Holmes, 2007), found in the two subtypes commonly67
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circulating in humans since 1968: H1N1 and H3N2. Our prediction was that if Influenza68

activity is indeed linked to destabilization, then the coevolving amino acid networks that69

are most disconnected should match to high Influenza levels in that state and season.70

Through a time window analysis, we show that maximum predictive power is reached71

when analyzing genetic data collected between week 20 and week 52, two to four weeks72

prior to peak ILI activity.73

2 Materials and Methods74

2.1 Data retrieval75

Unweighted ILI data (i.e., the percentage of cases of Influenza that tested positive as76

reported by contributing healthcare providers) were retrieved from the CDC website us-77

ing the FluView portal at gis.cdc.gov/grasp/fluview/fluportaldashboard.html, for78

each weekly report dating from October 4, 2010, the first available date in the report and79

the start of the 2010-11 season, through March 10, 2020, or about two-thirds of the last80

season. These data were first summarized for each state and for each season by the mean81

ILI.82

Corresponding hemagglutinin and neuraminidase coding sequences were retrieved from83

the NCBI Influenza database (Bao et al., 2008) for the same range of dates for viruses84

circulating in the US. Only “full length plus” sequences, that may be missing start/stop85

codons, with complete collection dates, including pandemic H1N1 sequences were down-86

loaded. Identical sequences were kept, as those could have been collected in different87

states. Altogether, this led us to retrieve 5,292 HA and 9,386 NA sequences for H1N1,88

and 16,499 HA and 14,423 NA sequences for H3N2.89
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2.2 Phylogenetic analyses90

These four datasets were then aligned using Muscle ver. 3.8.31 (Edgar, 2004). Upon91

visual inspection, sequences that appeared misaligned were deleted, and indels caused92

by sequencing errors were removed. FastTree ver. 2.1.1 (Price et al., 2010) was used to93

generate a first phylogenetic tree for each of the four datasets, assuming the General Time-94

Reversible +Γ model of evolution (e.g., Aris-Brosou and Rodrigue, 2019). Sequences with95

extreme branch lengths were removed, leaving us with 5,288 HA and 9,331 NA sequences96

for H1N1, and 16,493 HA and 14,403 NA sequences for H3N2.97

As we focused exclusively on the continental US, the “lower 48’s”, we removed all98

sequences collected in Alaska, Hawaii, the Virgin Islands, and the District of Columbia99

based on the sequence names. We corrected spelling errors, resolved city names to their100

state name, removed environmental sequences and sequences with odd locations that101

were not matching a correct state name. Remained for the final analyses 4,474 HA and102

8,530 NA sequences for H1N1, and 15,197 HA and 13,147 NA sequences for H3N2. The103

four datasets were then split into sub-alignments by state and by season, an influenza104

season running from week 40 to week 39 of the following year, hence generating at most105

48× 12 = 576 state- and season-specific alignments for each gene and each subtype.106

2.3 Reconstruction of networks of coevolving sites107

For each gene and subtype, these 576 alignments were analyzed as above with FastTree108

to create phylogenetic trees, that were mid-point rooted with Phytools ver. 0.2.2 (Revell,109

2012), and node labels (aLRT SH-like support values) were removed as they caused parsing110

errors at the next stage. HyPhy ver. 2.3.3 (Pond et al., 2004) was then employed to infer111

co-evolving residues with a modified SpiderMonkey (Poon et al., 2008) script (available112
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from github.com/sarisbro). Briefly, the MG94×HKY85 codon substitution model was113

used to reconstruct non-synonymous substitutions in the codon sequences at each node114

of the tree. These reconstructions were then transformed to a binary matrix, where115

rows and columns represent the unique branches and amino acid positions, respectively.116

A Bayesian Graphical Model (BGM) was then used to find the pairs of sites that find117

evidence of correlated evolution. Each node represents a codon, and edges originating118

from a node represent a correlated relationship best explaining the data (a parent node119

having influence over a child node). To prevent overcomplicating the BGM, a maximum120

of two parents was assumed for any child. This dependence was estimated for each pair121

of codons by its posterior probability, itself inferred using a Markov chain Monte Carlo122

(MCMC) sampler that was run for 1,000,000 steps. A burn-in of 10,000 steps was assumed123

to be long enough to reach stationarity, and a total of 9,900 samples were evenly taken124

in what remained of each chain. To check for convergence, each MCMC sampler was125

run twice, and all downstream analyses were hence performed on each replicate, hence126

globally assessing the robustness of our results to sampler convergence. The two smaller127

temporal analyses had convergence issues and therefore were run for 106 steps, with a128

burn-in of 5× 105 steps, and sampling a total of 95,000 samples129

The igraph package ver. 1.2.4.2 (Csardi and Nepusz, 2006) was then used to create130

the networks of co-evolving residues, and to compute the network summary statistics:131

diameter (the maximum average greatest distance between any two nodes), average path132

length (the mean length of every potential path between any two nodes), betweenness133

(how often a node is included in all the shortest paths between two other nodes). α134

centrality (a measure of the influence of nodes over others), assortativity (testing whether135

or not nodes that are similar are likely to be connected), dyad census (a classification of136

the relationship for every pair of nodes), transitivity (probability that adjacent vertices137

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.31.429026doi: bioRxiv preprint 

github.com/sarisbro
https://doi.org/10.1101/2021.01.31.429026
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

are connected), and mean eccentricity (the average greatest distance between any two138

nodes). These network summary statistics were calculated over a series of 100 posterior139

probability thresholds ∈ (0.1, 0.99), representing weak to strong evidence for co-evolution.140

3 Results and Discussion141

3.1 Whole-season predictors of ILI142

First, in order to test for the existence of a global correlation between viral evolutionary143

dynamics and ILI, we analyzed state-specific and season-specific sequence alignments for144

the HA and the NA genes from H1N1 (the pandemic strain) and H3N2 subtypes between145

the2010-11 and 2019-20 seasons. Note that while it can be expected that these sequences146

are unevenly collected through time and across states, we could not find any sequence147

in the database for HA in H1N1 for the last three seasons surveyed, 2017-18 to 2019-20148

(Fig. S1-S2).149

In all cases, these analyses included data running from week 40 of a given year to150

week 39 of the following year, dates that reflect the official start and the end of influenza151

seasons, as can be shown either by non-aggregated data (Fig. S3), or with the weekly-152

aggregated ILI values derived from the WHO (Fig. 1A). After alignment, these sequence153

were subjected to a phylogenetic reconstruction to detect pairs of (codon) sites evolving154

in a correlated manner based on Bayesian Graphical Models (BGMs; Poon et al., 2008).155

Convergence of the BGMs was assessed based on the estimated posterior probabilities156

from two independent runs (Fig. S4). Such pairs of sites have previously been shown157

to form networks (Nshogozabahizi et al., 2017; Dench et al., 2020), that can then be158

analyzed based on statistics used in social network analyses such as average path length159

or eccentricity (Newman, 2018). Here we computed eleven such statistics, and used them160
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first to further assess the convergence of the MCMC samplers used by the BGMs, running161

each analysis twice. Our results show that for all statistics, except for α-centrality of HA162

in H1N1, both runs lead to almost identical results (Fig. S5).163

From previous work comparing non-pandemic and pandemic viruses, we expected164

that with increasing ILI, the diameter, average path length, eccentricity, and betweenness165

would decrease, while transitivity would increase, in particular for weakly interacting sites166

(around a posterior probability PP = 0.25, Aris-Brosou et al., 2017). Our results here167

generally support these previous findings, in that we observe significant and negative corre-168

lations between network statistics and total ILI values for diameter (Fig. 1B), average path169

length (Fig. 1C), betweenness (Fig. 1D), as predicted, but also for α-centrality (Fig. 1E),170

assortative degree (Fig. 1F) and dyad (Fig. 1G). Among these, HA in H3N2 almost sys-171

tematically shows a negative correlation at weak evidence for coevolution (PP ≈ 0.25),172

while NA for H1N1 shows a negative correlation at stronger evidence for coevolution173

(PP ≈ 0.75). Altogether, these negative correlations imply that amino acid residues are174

coevolving less as ILI increases, so that coevolutionary networks tend to dissociate. On175

the other hand, transitivity and mean eccentricity show positive correlations with total176

ILI for NA in H1N1 and H3N2, respectively (Fig. 1H-I). These statistics indicate that177

networks become smaller as ILI increases. Altogether, these results show that, mainly178

for NA in H1N1 and HA in H3N2, an increase in ILI is associated with a disruption of179

the coevolutionary dynamics at these two antigens, which, again, is consistent with our180

previous results (Aris-Brosou et al., 2017).181

3.2 Look-ahead predictors of ILI182

To go beyond mere associations between network structures and ILI during an entire183

season, and to assess the utility of the above results in terms of public health, we split184
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the sequence data into four different and overlapping temporal windows, beginning before185

the official start of each season to assess carryover effects: window 1 ran from week 20186

(20 weeks before the start of the season – this is approximately when sequences deposited187

in GenBank start accumulating) to week 30 (10 weeks before the start of the season),188

window 2 ran from week 20 to week 40 (the official start of the focal season), window189

3 from week 20 to week 52 (end of calendar year), and window 4 spanned weeks 20-190

10. We elected to start each analysis from week 20 as by then, epidemics are usually191

almost over (Fig. 1A), and data-deposition in GenBank reaches its nadir or lowest rate192

(Fig. S5). Because H3N2 is usually the subtype most impacting human populations since193

its emergence in 1968 (Jester et al., 2020), HA and NA sequences from this subtype are194

about twice as abundant as for H1N1 in GenBank (Fig. S5). Furthermore, because of195

the missing H1N1 HA sequences for the past three seasons (Fig. S1), our data contained196

fewer HA than NA sequences for H1N1, when it is this latter gene sequences that are197

usually less sequenced (Fig. S5B). As a result, we focused the temporal analyses on H3N2198

exclusively, for both HA and NA. In each case, we used genetic data coming from each199

time window to predict the mean ILI for the entire focal season.200

Window 1 should serve as a control, as it starts and ends before the start of the focal201

season, and hence should not have accumulated enough genetic data to have any predictive202

value with respect to ILI (Fig. 2A). As expected, none of the network statistics showed any203

significance at the 1% level, except dyad census for NA, which was negatively predicting204

upcoming ILI at moderately interacting residues (Fig. 2B-I), and should henceforth be205

interpreted with care.206

From window 2 onward, the results are expected to be more meaningful, as they207

represent a catchment of genetic data directly leading up to the focal season. Indeed,208

from this point on, HA shows the strongest and most consistent predictive value over a209
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number of network statistics, with temporal trends as we move across windows. More210

specifically, diameter is first a positive predictor of ILI for HA and NA (Fig. 3B), but as211

genetic data accumulate, diameter becomes a negative predictor (Fig. 4B and Fig. 5B).212

This again is highly consistent with our previous results, where during a sever outbreak,213

networks of coevolving residues become destabilized, and regain stability over time (Aris-214

Brosou et al., 2017).215

Likewise, average path length goes from showing no relationship with ILI for sequences216

sampled sampled 10 weeks prior to the start of the season (Fig. 2C), to progressively217

showing a more negatively significant trend as we accumulate sequence data through the218

course of the season, and coevolutionary networks are dislocating. Notably, these networks219

start by dislocating at weakly coevolving residues (Fig. 3C: PP ≈ 0.20), and the stronger220

interactions are progressively affected (Fig. 4C: PP ≈ 0.30; Fig. 5C: PP ≈ 0.60). To221

some extent, the same behavior is observed for betweenness (Fig. 3D: PP ≈ 0.20; Fig. 4D:222

PP ≈ 0.30; Fig. 5D: PP ≈ 0.60), and alpha centrality (only late in the season: Fig. 5E:223

PP ≥ 0.60). For reasons that are as of yet unexplained, only HA is affected by this trend:224

NA exhibits no pattern at all.225

Similar dynamics are observed for betweenness (from no association to negative to226

no association for HA: Fig. 2D-Fig. 4D), alpha centrality (from no association to positive227

to slightly negative for HA: Fig. 2E-Fig. 4E), assortative degree (from no association to228

positive to no association for HA: Fig. 2F-Fig. 4F), dyad (from no association to briefly229

positive to no association for HA: Fig. 2G-Fig. 4G), transitivity (from no association to230

positive to almost no association for HA: Fig. 2H-Fig. 4H), and eccentricity (from no231

association to positive to no association for HA: Fig. 2I-Fig. 4I). Taken altogether, these232

results show that networks are destabilized with increasing ILI (smaller diameter) as the233

epidemic is reaching its peak, and they regain a certain stability at the end of the season,234
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when in-clinic visits plummet. More to the point, these results show that our maximum235

predictive power is reached when analyzing genetic data collected between week 20 and236

40-to-52, that is to say one to fifteen weeks prior to peak ILI burden, which is usually237

between December and February (Figure 1A; Paget et al., 2007; Murray et al., 2018).238

3.3 Conclusions239

We here showed the existence of an association between the evolutionary dynamics of in-240

fluenza viruses circulating seasonally in humans and the public health burden caused by241

this virus in the continental US. More specifically, we showed that network statistics sum-242

marizing the level of correlated evolution, and hence evolutionary constraints, affecting243

the main influenza antigens are associated with the clinical burden due to influenza-like244

illnesses. With a time-window analysis, we further show that these networks of coevolving245

residues become destabilized, and regain stability over time (Aris-Brosou et al., 2017).246

While the time-window analyses suggest such a seasonal dynamics, causality is far from247

being obvious. At our level of granularity, it is indeed impossible to identify the drivers of248

these associations, without also having phenotypic data on virulence and transmissibility249

of these viruses. Potentially more problematic here is the use and nature of ILI values.250

By reducing these values to their mean by state by season to represent the entire season,251

we neglect temporal variation, cumulative ILI values, or maybe more critically maximum252

ILI values that undoubtedly have a dire impact on health systems. One serious limitation253

however is that ILI values, irrespective of how they are summarized, do not allow us254

to tease viral subtypes apart: to alleviate this issue, we limited our analyses to H3N2,255

assuming that being the prevalent subtype in most seasons (Jester et al., 2020), ILI values256

will most likely reflect clinic visits due to H3N2, but there is no means of checking the257

validity of this assumption. Using data that separate ILI by subtype would also be helpful258
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for future analysis. One such database with this capacity would be the WHO/NREVSS259

(WHO/NREVSS, 2020).260

From a purely pragmatic point of view, our results essentially mean that some of261

these statistics such as network diameter predict ILI values, one to fifteen ahead of peak262

influenza season in terms of outpatient visits to a clinic. This is a short lead, but one263

that could henceforth be used routinely to predict ILI burden on the healthcare system,264

and therefore help plan resource allocations and shifts – and put new non-pharmaceutical265

interventions into place to curb transmission in the first place (Davies et al., 2020).266
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The data assembled and the code developed for this work are available from github.com/268
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Loman, N. J., O’Toole, Á., Nicholls, S. M., Parag, K. V., Scher, E., Vasylyeva, T. I.,301

Volz, E. M., Watts, A., Bogoch, I. I., Khan, K., COVID-19 Genomics UK (COG-UK)302

Consortium, Aanensen, D. M., Kraemer, M. U. G., Rambaut, A., and Pybus, O. G.303

2021. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK.304

Science.305

Edgar, R. 2004. Muscle: multiple sequence alignment with high accuracy and high306

throughput. Nucleic Acids Res , 32(5): 1792–97.307

Gong, L., Suchard, M., and Bloom, J. 2013. Stability-mediated epistasis constrains the308

evolution of an influenza protein. Elife, 2.309

Jester, B. J., Uyeki, T. M., and Jernigan, D. B. 2020. Fifty years of influenza A(H3N2)310

following the pandemic of 1968. Am J Public Health, 110(5): 669–676.311

Kilbourne, E. D. 2006. Influenza pandemics of the 20th century. Emerging Infectious312

Diseases , 12(1): 9–14.313

Murray, J. L. K., Marques, D. F. P., Cameron, R. L., Potts, A., Bishop, J., von Wissmann,314

B., William, N., Reynolds, A. J., Robertson, C., and McMenamin, J. 2018. Moving315

epidemic method (MEM) applied to virology data as a novel real time tool to predict316

peak in seasonal influenza healthcare utilisation. the Scottish experience of the 2017/18317

season to date. Euro Surveill , 23(11).318

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.31.429026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429026
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Nelson, M. I. and Holmes, E. C. 2007. The evolution of epidemic influenza. Nat Rev319

Genet , 8(3): 196–205.320

Newman, M. 2018. Networks . Oxford university press.321

Nshogozabahizi, J. C., Dench, J., and Aris-Brosou, S. 2017. Widespread historical con-322

tingency in influenza viruses. Genetics , 205(1): 409–420.323

Paget, J., Marquet, R., Meijer, A., and van der Velden, K. 2007. Influenza activity324

in europe during eight seasons (1999-2007): an evaluation of the indicators used to325

measure activity and an assessment of the timing, length and course of peak activity326

(spread) across europe. BMC Infect Dis , 7: 141.327

Paget, J., Spreeuwenberg, P., Charu, V., Taylor, R. J., Iuliano, A. D., Bresee, J., Si-328

monsen, L., and Viboud, C. 2019. Global mortality associated with seasonal influenza329

epidemics: New burden estimates and predictors from the glamor project. Journal of330

global Health, 9(2): 020421.331

Pond, S. L. K., Frost, S. D. W., and Muse, S. V. 2004. HyPhy: hypothesis testing using332

phylogenies. Bioinformatics , 21(5): 676–79.333

Poon, A., Lewis, F., Frost, S., and Pond, S. 2008. Spidermonkey: rapid detection of334

co-evolving sites using bayesian graphical models. Bioinformatics , 24(17): 1949–50.335

Price, M., Dehal, P., and Arkin, A. 2010. Fasttree 2 – approximately maximum-likelihood336

trees for large alignments. PLOS ONE , 5(3): 1–10.337

Revell, L. 2012. phytools: An R package for phylogenetic comparative biology (and other338

things). Methods in Ecology and Evolution, 3: 217–23.339

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.31.429026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429026
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

Sandie, R. and Aris-Brosou, S. 2014. Predicting the emergence of H3N2 influenza viruses340

reveals contrasted modes of evolution of HA and NA antigens. J Mol Evol , 78(1): 1–12.341

Smith, G., Vijaykrishna, D., Bahl, J., Lycett, S., Worobey, M., Pybus, O., Ma, S., Cheung,342

C., Raghwani, J., Bhatt, S., Peiris, J., Guan, Y., and Rambaut, A. 2009. Origins and343

evolutionary genomics of the 2009 swine-origin H1N1 Influenza A epidemic. Nature,344

459: 1122–25.345

WHO 2020. The global influenza programme. Accessed March 2020.346

WHO/NREVSS 2020. National respiratory and enteric virus surveillance system. Ac-347

cessed April 14, 2020.348

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.31.429026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429026
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

Figures349

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.31.429026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429026
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

H1N1
H3N2

0

2500

5000

7500

10000

10 20 3040 50
Weeks (over all seasons)N

um
be

r 
of

 p
at

ie
nt

s 
ty

pe
d 

by
 th

e 
W

H
O (A) − Temporal distribution of WHO patients

H1N1_HA
H3N2_HA

H1N1_NA
H3N2_NA−3

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(B) − diameter

−2

0

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(C) − avepathlen

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(I) − meanEccentric

−3

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(E) − alpha

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(F) − assort_deg

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(G) − dyad

−2

0

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(H) − transitivity

−2

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
Posterior probability threshold (strength of coevolution)

−
lo

g1
0(

P
)

(I) − meanEccentric

Figure 1. Network analyses based on genetic data from the entire season for
the HA and NA genes in H1N1 and H3N2 subtypes. (A) Distribution of
unweighted ILI values summed per week over the entire nine seasons, from 2010-11 to
2018-19 based on WHO data for H1N1 (dark red) and H3N2 (dark blue). The next
eight panels show the significance of the robust regressions for each network statistic at
a particular posterior probability threshold (the strength of coevolution) against total
unweighted ILI value. Negative values indicate a negative slope, and vice-versa for
positive values. Gray horizontal lines indicate significance thresholds (dash: 5%; long
dash: 1%). LOWESS regressions are shown with the 95% confidence envelope for each
subtype and each gene: warm colors for H1N1 (red for HA, orange for NA) and cold
colors for H3N2 (blue for HA, turquoise for NA).
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Figure 2. Network analyses based on genetic data from weeks 20-30 (window
1) for the HA and NA genes in H3N2. (A) Temporal distribution of sequences
deposited in GenBank (shaded hues for window 4, solid colors for the current window)
for HA (blue) and NA (turquoise). The next eight panels show the significance of the
robust regressions for each network statistic at a particular posterior probability
threshold (the strength of coevolution) against total unweighted ILI value. Negative
values indicate a negative slope, and vice-versa for positive values. Gray horizontal lines
indicate significance thresholds (dash: 5%; long dash: 1%). LOWESS regressions are
shown with the 95% confidence envelope for each subtype and each gene: blue for HA,
turquoise for NA.
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Figure 3. Network analyses based on genetic data from weeks 20-40 (window
2) for the HA and NA genes in H3N2. (A) Temporal distribution of sequences
deposited in GenBank (shaded hues for window 4, solid colors for the current window)
for HA (blue) and NA (turquoise). The next eight panels show the significance of the
robust regressions for each network statistic at a particular posterior probability
threshold (the strength of coevolution) against total unweighted ILI value. Negative
values indicate a negative slope, and vice-versa for positive values. Gray horizontal lines
indicate significance thresholds (dash: 5%; long dash: 1%). LOWESS regressions are
shown with the 95% confidence envelope for each subtype and each gene: blue for HA,
turquoise for NA.
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Figure 4. Network analyses based on genetic data from weeks 20-52 (window
3) for the HA and NA genes in H3N2. (A) Temporal distribution of sequences
deposited in GenBank (shaded hues for window 4, solid colors for the current window)
for HA (blue) and NA (turquoise). The next eight panels show the significance of the
robust regressions for each network statistic at a particular posterior probability
threshold (the strength of coevolution) against total unweighted ILI value. Negative
values indicate a negative slope, and vice-versa for positive values. Gray horizontal lines
indicate significance thresholds (dash: 5%; long dash: 1%). LOWESS regressions are
shown with the 95% confidence envelope for each subtype and each gene: blue for HA,
turquoise for NA.
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Figure 5. Network analyses based on genetic data from weeks 20-10 (window
4) for the HA and NA genes in H3N2. (A) Temporal distribution of sequences
deposited in GenBank (shaded hues for window 4, solid colors for the current window)
for HA (blue) and NA (turquoise). The next eight panels show the significance of the
robust regressions for each network statistic at a particular posterior probability
threshold (the strength of coevolution) against total unweighted ILI value. Negative
values indicate a negative slope, and vice-versa for positive values. Gray horizontal lines
indicate significance thresholds (dash: 5%; long dash: 1%). LOWESS regressions are
shown with the 95% confidence envelope for each subtype and each gene: blue for HA,
turquoise for NA.
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