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Abstract

Motivation: The increasing amount of data produced by omics technologies has significantly improved
the understanding of how biological information is transferred across different omics layers and to which
extent it is involved in the manifestation of a given phenotype. Besides data-driven analysis strategies,
interactive visualization tools have been developed to make the analysis in the multi-omics field more
transparent. However, most state-of-the-art tools do not reconstruct the impact of a given omics layer
on the final integration result. In general, the amount of omics data analyses strategies and the fields of
applications lack a clearer classification of the different approaches.
Results: We developed a classification for omics data focusing on different aspects of multi-omics data
sets, such as data type and experimental design. Based on this classification we developed the Omics
Trend-comparing Interactive Data Explorer (OmicsTIDE), an interactive visualization tool developed to
address the limitations of current visualization approaches in the multi-omics field. The tool consists of an
automated part that clusters omics data to determine trends and an interactive visualization. The trends
are visualized as profile plots and are connected by a Sankey diagram that allows an interactive pairwise
trend comparison to discover concordant and discordant trends. Moreover, large-scale omics data sets
are broken down into small subsets of concordant and discordant regulatory trends within few analysis
steps. We demonstrate the interactive analysis using OmicsTIDE with two case studies focusing on
different types of experimental designs.
Availability: OmicsTIDE is a web tool and available via http://tuevis.informatik.uni-tuebingen.de/
Contact: kay.nieselt@uni-tuebingen.de

1 Introduction
With the advent of high-throughput technologies, it has become affordable
to comprehensively study the flow of information by taking into account the
entirety of all genes, transcripts, proteins, or metabolites within a sample
(Hasin et al., 2017). A common approach is to analyze a single omics layer,
such as transcriptomics, proteomics, or metabolomics, under different
experimental conditions. On the other hand, the analysis of different omics
layers under one specific experimental condition is applied to focus on how
the flow of biological information propagates through different layers.
This approach is for instance used to determine correlations between the
abundances of expressed transcripts and translated proteins in a sample.

With the increasing complexity and amount of data deriving from
high-throughput technologies, such as next-generation sequencing or
mass-spectrometry-based approaches, that include multiple omics layers,

the demand for methods that integrate the different omics data sets has
been steadily increasing over the past decades (Subramanian et al., 2020).

While a data-driven integration can derive interesting coherences
between different omics layers from the data, this process often remains
intransparent. For instance the impact of single genes or groups of genes
on the integration is often not easy to determine. To overcome this
limitation of the purely data-driven approaches and to show how the
single components of an omics-integration study contribute to detect
concordant and discordant patterns in the compared abundance of omics
data, different approaches have been developed (Hernández-de Diego
et al., 2018; Vercruysse et al., 2020). Many of these approaches reduce
the complexity of the data sets by classifying single genes into different
categories based on their “behaviour". For example, in a data set that deals
with only two conditions, a gene could be classified as being up-regulated
in one condition with respect to the the other condition. The situation
becomes more complex if more than two conditions or even a time series
are given in a data set. This requires the application of clustering methods
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2 Harbig et al.

to obtain representative trends for sets of genes. Here, we define a trend
in omics abundance data as a set of elements (such as genes, proteins, or
metabolites) that follow a distinct course across more than two conditions.

In order to provide a tool that overcomes the current limitations in the
omics visualization field, we first sought to devise a general classification
system for omics data. This classification builds the framework for the
Omics Trend-comparing Interactive Data Explorer (OmicsTIDE), a tool
that creates a connection between the single genes and the trends derived
from multi-omics data sets.

OmicsTIDE visualizes trends as profile plots, also known as parallel
coordinate plots (Heinrich and Weiskopf, 2013), and adapts the idea
of summarizing and visualizing similarities and differences in two data
sets by using a Sankey diagram (Lex et al., 2012). The Sankey diagram
is used to compare the trends across the two data sets, i.e., the genes
following either concordant or discordant trends. OmicsTIDE embeds
trend comparison in an analysis that breaks down large-scale data sets into
small subsets within a few steps based on selecting groups of genes in the
Sankey diagram. By additionally allowing several pairwise comparisons
within one single analysis, OmicsTIDE aims to combine the insights from
different pairwise comparisons into one large analysis. We demonstrate the
effectiveness of OmicsTIDE in two case studies dealing with different
experimental designs.

2 Related Work
The integration of multi-omics data has become a steadily growing research
field. For this paper we define a multi-omics tool as a tool that integrates
and visualizes data of two or more omics layers in a parallel fashion. In
this related work section, we thereby focus on tools that analyze different
omics data in a combined instead of a separated or sequential manner.

The most straightforward way of visually analyzing multi-omics data
is mapping them directly to a genome sequence or a pathway. Any kind of
omics data that can be mapped to a genome sequence can be represented in
genome coordinate-based visualizations such as genome browsers (Nusrat
et al., 2019). With tracks stacked upon each other, various omics layers
can be displayed simultaneously. Another common approach is mapping
omics data to a pathway ID in a node-link diagram, where genes, proteins,
and metabolites can be shown simultaneously (Luo and Brouwer, 2013;
Eichner et al., 2014). While genome browsers and pathway maps can
comprehensively and intuitively visualize multi-omics data, they usually
do not aim at visualizing the entirety of the data but only a small window of
the genome or a single pathway of interest that can be determined using, for
example, pathway enrichment methods (Huang et al., 2009; Eichner et al.,
2014). Additionally, when displaying omics data in multiple conditions,
both types of visualization can become hard to interpret due to overplotting.

Besides these straightforward visualization techniques, various
computational methods for the integration of multi-omics data have been
developed. These approaches make use of different techniques, including
network-based methods (Yan et al., 2018), matrix factorization (Huang
et al., 2017), or Bayesian methods (Bersanelli et al., 2016). Often omics
data are clustered to obtain trends, which can be as simple as classifying
abundance data in time series experiments as decreasing or increasing
over time in a two condition experiment (Hackett et al., 2015). If more
conditions are given in a data set the number possible trends increases,
which often requires more advanced clustering approaches (Rappoport
and Shamir, 2018; Tini et al., 2019). These approaches can be divided into
early integration and late integration approaches. While early integration
approaches first concatenate the data of the different omics layers and then
cluster the merged data, late integration methods first find patterns in the
features of each layer separately which can be combined as input for a
regression or classification (Sharifi-Noghabi et al., 2019).

Commonly, the results of the integration methods are visualized in
node-link diagrams or in trend visualizations, such as heatmaps and
profile plots. 3Omics is a tool for the integration and visualization of
multi-omics data, which integrates up to three different omics layers,
e.g. transcriptomics, proteomics, and metabolomics data. 3Omics uses
hierarchical clustering and visualizes the results as a clustered heatmap.
Alternatively it creates correlation networks as node-link diagrams.
For network visualizations the same limitations arise as for pathway
visualizations, since with an increasing number of nodes, the single
connections cannot be perceived well. A similar heatmap visualization as
provided in 3Omics has been implemented in the recently published tool
multiSLIDE, which combines two heatmaps side-by-side comparing
transcriptomics and proteomics data (Ghosh et al., 2020). While heatmaps
provide an intuitive way of visualizing abundance data, they can become
huge when analyzing a large number of genes. Due to their size and
because of the usage of the color encoding, trends may become difficult
to determine (Gehlenborg, 2012).

Paintomics follows an alternative approach to integrate multiple
omics levels and to include large-scale data sets in the analysis (Hernández-
de Diego et al., 2018). First, it combines the data from the different omics
experiments by determining the KEGG pathways in which the genes can
be found. This allows the integration of a large number of different omics
layers by finding a common pathway key for a shared integrated analyses.
Based on the determined pathway, different analyses can be performed,
such as pathway enrichment or other pathway network analyses. For the
results of the pathway analysis, trends of the given omics layers can be
analyzed by extracting the information of how the genes of an omics layer
are reflected in a selected pathway. However, it does not show to what
degree the genes within a given data set contribute to the final trend. To
directly address the question of how the similarities and differences of
trends between two data sets can be used to provide information about
underlying mechanisms, different strategies to compare trends have been
developed.

For instance, an approach to visualize and compare trends was
demonstrated in a recently published study on the comparison of the
transcriptomes of Arabidopsis thaliana and Zea mays (Vercruysse et al.,
2020), where trends in orthologous genes in leaf development were
determined and compared. For the visualisation of trends, the authors use
profile plots. Thereby trends can be determined more easily than it would be
possible in a heatmap. The approach comprises the determination of trends
by hierarchical clustering and the subsequent comparison of these trends.
Although this comparative approach using hierarchical clustering provides
a good overview of the trends in the two data sets, it has several limitations.
First of all, the hierarchical clustering requires to first perform a manual
separation of the hierarchical clustering into sub-clusters to categorize the
single trends which might be a tedious and error-prone work. Secondly,
the connection between the single trends for either being concordant or
discordant has to be guided by statistical measures. Finally, the analysis
and visualization is static and does not allow user interactions to extend
the analysis with users knowledge.

Despite the fact that many tools have been developed to extract
common features from integrated omics data, interactive visualization
tools that make the data integration transparent and interpretable are
rare. As shown exemplarily for 3Omics and Paintomics, the major
drawback of the current state-of-the-art tools is that they do not create a
connection between the genes in the single data set and the “global” trends
derived by integrating the different data sets. This limitation might be due
to the fact that the resolution for single genes decreases with the growing
number of integrated data sets. Hence, creating a connection between the
single links and their trend is crucial to overcome this limitation. This
was the main motivation for the development of OmicsTIDE. Before we
introduce the design of OmicsTIDE we will first turn to the question
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Fig. 1: Omics data can be classified in different ways that is presented here
for four categories exemplarily. (a) The output of omics experiments can be
described as a matrix of genes and conditions.The attributes are either of
categorical (mutations) or quantitative (e.g. transcript/protein levels) type.
(b) Omics data analysis can also be classified by the experimental design:
here, the analysis typically includes either the comparison of different
conditions in the same omics layers (inter-condition and intra-omics) or the
comparison of data from different omics layers within the same condition
(intra-condition and inter-omics). (c) The combined analysis of omics data
sets can be classified by whether the data sets can be joined by a common
key attribute or not. (d) The integration of different omics layers can either
be done in a pairwise fashion or by directly comparing multiple layers at
once.

of how to conceptually classify omics data. This classification builds the
requirement framework for OmicsTIDE.

3 Classification of Omics Data
In order to create an abstract representation of omics data, which helps us
to further identify the requirements for a novel multi-omics tool from a
visualization point of view, we developed a classification of omics data.
First, omics data can be classified by the attribute type (Figure 1a). Data
that is related to genomics research, typically comes with categorical
data, e.g. for SNP analysis, which is usually provided as a Variant Call
Format (VCF) file. In contrast, the majority of omics technologies, such as
transcriptomics, proteomics, or metabolomics deals with quantitative data.
Quantitative data (or abundance data) is usually provided in a data matrix,
with n rows, corresponding to the genes for example, and p columns,
corresponding to conditions (where usually n � p). Additionally, the
abundance data contains a key attribute, such as a gene ID that uniquely
defines each row. Abundance matrices are the common data format that
can be easily processed and combined with other matrices sharing the same
keys.

Secondly, comparative omics experiments can be classified by
their experimental design, depending on the question one wants to
pursue (Figure 1b). Abundance data usually contains the result of an
experiment that was conducted within a given omics layer (intra-omics)
and between different conditions (inter-condition). A biological question
linked to this experimental setup could be for example “how does the
transcriptome differ between a wild-type organism and an organism
carrying a given mutation?”. Alternatively, omics experiments can answer
additional biological questions when they are planned to include different
omics layers (inter-omics) studying the same biological condition (intra-
condition). Such experiments typically combine two or more different data

modalities. In this case, the main interest may be to check how the flow of
information changes between the different omics layers, e.g. between the
transcriptome and proteome.

If the inter-omics approach is chosen as experimental design, the
connection of integrated data sets can be created based on common key IDs
with which the data sets can be combined or compared (Figure 1c). If the
data sets do not share key IDs, a direct comparison cannot be conducted.
An alternative approach to combine two data sets that do not share the
same IDs could be to use meta-information, such as pathways IDs to make
the two data sets comparable.

For inter-omics experimental designs, the decision on the number
of omics layers that are used for the data integration determines the
subsequent downstream analysis steps (Figure 1d). In order to study a
given biological question it might be sufficient to compare two omics
layers. More complex questions might require different omics studies
(multi-omics). This approach has the advantage of a more powerful analysis
to find specific patterns in the integrated data sets.

The choice for a suitable analysis approach always depends on the
data as well as on the biological question one pursues. The overall aim
for all multi-omics analyses is to perform a combined and not a sequential
analysis and to derive patterns from the studied data. Integration methods
often put a lot of emphasis on integrating as much information and as
many layers as possible by applying sophisticated statistical methods.
However, this often results in information of a specific integrated layer not
being accessible to users. Furthermore, the integration of multiple layers
often exceeds the scientific scope and budget of the majority of research
groups in the life sciences. Hence, a simple tool is demanded that allows
users to conduct straightforward visual-interactive analysis for both, intra-
and inter-omics data sets. The main challenge in creating such a tool is
providing an overview of the integration, while still showing information
about single genes. WithOmicsTIDE this challenge was addressed within
the framework of the developed classification scheme.

4 Design and Implementation
Based on the classification system for omics data described in the previous
section, we developed OmicsTIDE. Here, we describe the requirements
and design decisions that were guided by this classification scheme.
OmicsTIDE is an interactive inter-omics and intra-omics, as well as
intra-condition and inter-condition visualization tool to compare trends
of omics abundance data in a pairwise manner. The approach derives
and visualizes trends for two-dimensional experimental designs. The first
dimension is represented by the data sets that are compared, where each
may be from one or two different omics layers. The other dimension is
represented by further conditions that need to be consistent across data
sets, such as the same time points or the same environmental conditions.
Transcriptomic and proteomic data are especially suited for OmicsTIDE
since they share common keys (gene IDs) and have quantitative attribute
types. As transcriptomic and proteomic data can both be thought of
as matrices showing abundance levels of genes at different conditions,
they are identical from a data type perspective. This leads to a great
flexibility in OmicsTIDE as a tool that can perform inter-omics, intra-
condition comparisons is also able to perform intra-omics, inter-condition
comparisons, such as comparing two transcriptomic data sets.

The central idea of our visualization approach is to cluster omics data
sets containing abundance data and shared keys into trends that are visually
connected via a Sankey diagram, which is a special kind of flow diagram
showing the flow from one set of values to another. The trends of the
different data sets are visualized adjacent to the nodes of the Sankey
diagram. The height of the nodes encodes for the number of genes found
in the trends, whereas the thickness of the bands (links) between the nodes
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file_1_file_2file_1 file_2

SWITCH DIAGRAMS

FILTER GENES BY
VARIANCE OR
ABUNDANCE

HIGHLIGHT GENES 
BY ID

GO TERM 
ENRICHMENT

DOWNLOAD 
ANALYSIS 
(ZIP FILE)

FIRST-LEVEL 
ANALYSIS

SECOND-LEVEL 
ANALYSIS

CHECK 
NCBI ENTRY 
OF GENE 

 LOAD ABUNDANCE FILES
(BETWEEN TWO AND FOUR FILES)

SELECT SUBSET OF GENES

SELECT PAIRWISE COMPARISON

LOAD CUSTOM TREND-
COMPARISON FILE

- SET k PARAMETER
- FILTER GENES BY VARIANCE
- CLUSTER CONCATENATED DATA SETS

a)

b)

c)

ANALYSIS OVERVIEW

f)

DOWNLOAD
ANALYSIS AS CSV

d)

e)

g)

Fig. 2: Basic workflow using OmicsTIDE. (a) Either multiple abundance files or a single custom trend-comparison file can be uploaded. (b) An overview
of all conducted pairwise trend comparisons is shown as horizontal stacked bar chart showing the count of genes either being found in both compared
files (intersecting) or only in one of the two files (non-intersecting). The number of intersecting genes in the bar chart is further categorized by either
following a concordant (purple bar) or discordant trend (yellow bar) in the two compared files (c) After selecting a pairwise comparison in the overview
visualization the data can be analyzed in the first-level analysis, consisting of a Sankey diagram comparing trends in both abundance files. (d) Users can
switch between different trend diagrams, (e) highlight genes using gene ids and filter data by abundance and variance. (f) For a more detailed analysis
subsets of genes can be analyzed in the second-level analysis which includes (g) viewing the NCBI entries of single genes and GO term enrichment
analysis in a bar chart. The x axis corresponds to the −log10(FDR) values and the y axis corresponds to the ten most significant GO term hits.

encodes for the number of genes that either share trends in the two data
sets (concordant genes) or show different trends (discordant genes).

The tool derives and visualizes the trend comparison by performing
an analysis in three major steps referred to as comparison selection, first-
level analysis and second-level analysis (Figure 2). The separation of the
analysis is reflected in the dynamic tab-based design of OmicsTIDE,
which guides the user through the analysis by gradually allowing to
add new tabs corresponding to the respective analysis steps. This design
facilitates to review, refine or even remove choices made in any tab in
order to customize the analysis. The information gained by the user in this
three-step analysis contributes to a more comprehensive understanding of
the omics data.

4.1 Data Loading and Comparison Selection

The data input in OmicsTIDE offers two distinct data input options
(Figure 2a). By choosing the default option, the user can load two or
more abundance files that are clustered by OmicsTIDE to obtain trends.
Choosing the second option, users can upload their own clustering results
for a pairwise trend comparison created with any clustering algorithm.

After uploading abundance files, the input can be modified as follows.
First, to restrict the analysis to variant genes, users can reduce the loaded
data sets by removing genes based on the percentile range of their variances
across different conditions within the respective data set. This prevents
the formation of entirely flat trends or that the shape of the trend is
influenced by low-variance genes. Next, to make the ranges of the data
sets comparable, z-score normalization is applied. The crucial step for the
trend comparison is the determination of the number of trends to be derived
from the data. This is done by initializing the number of trends derived
by k-Means clustering in the range between 2 and 6. For the clustering,
k-Means++ (Arthur and Vassilvitskii, 2006) is used. The fast clustering
using k-Means allows users to quickly explore their data using different
choices of k. For each pairwise combination, OmicsTIDE conducts two
separate trend comparisons: One for the genes found in both data sets
(intersecting genes) and one for the genes found only in one of the two data
sets (non-intersecting genes). Here, OmicsTIDE makes use of an early
integration approach (Rappoport and Shamir, 2018) by first concatenating
the two data sets (e.g. for intersecting genes) in one combined matrix
and applying the clustering to the combined matrix. With this approach,
the genes can easily be classified into following concordant or discordant

.license
CC-BY-NC-ND 4.0 Internationalpeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was not certified bythis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.01.428836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.428836
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2021/2/1 — 16:42 — page 5 — #5 i
i

i
i

i
i

OmicsTIDE 5

trends in the two data sets compared, which represents an intuitive concept
for users. Such a concept would be harder to realize using late integration
approaches which would produce different trends in both data sets.

An overview visualization of the clustering results helps users to select
the comparison of interest for the trend exploration in the first-level analysis
(Figure 2b). The comparisons are visualized using stacked bar charts
showing concordant, discordant and non-intersecting genes. Together with
the user’s knowledge about the experimental design, these three attributes
are especially useful for selecting a comparison of interest since they
represent the similarity of two data sets using very few values. Stacked
bar charts are a simple yet effective visualization for this type of data,
that can easily be interpreted. Moreover, to provide a first glimpse on the
computed trends a small preview of the trend exploration visualization is
shown, which is identical to the visualization in the first-level analysis.

4.2 First-level Analysis: Trend Exploration

The first-level analysis tab provides a detailed visualization of the selected
trend comparison in a Sankey diagram (Figure 2c). The, trends, nodes and
links are colored using a set of categorical colors. Commonly, the links
in Sankey diagrams follow a gradient, transitioning from the color of the
left node to the right node. Although this is often perceived as visually
appealing, we decided to inverse this gradient to easily identify the set of
trends in one data set connected to a trend in the other data set.

By default, the trends are visualized using centroid profile plots, which
provide an overview of the trends by showing the centroid line as well
as the standard deviation of the trend as a band. Alternatively, users
can choose profile or box plots for visualizing the trends (Figure 2d).
Profile plots provide a more detailed view on the composition of each
trend. However, studying the single-gene level is more suitable for a low
number of genes since the visualization of a high number of gene profiles
results in overplotting. As a third option, the user can study the variation
within a given trend in more detail by using box plots. In addition to
the analysis of intersecting genes, the trend visualizations are used for
analyzing non-intersecting genes as well. Since non-intersecting genes do
not share identifiers, they are not connected with a Sankey diagram.

The nodes and links in the Sankey diagram can be hovered to study
the single trends between the two data sets in more detail. Hovering over a
node or link will set the focus to the hovered element and the corresponding
detail diagrams. If a node is hovered, all connected links are included in the
focus, while all other elements are reduced in their opacity (focus-on-hover
strategy). Hovering given elements in the visualization updates the detail
diagrams accordingly. This update is facilitated via an animated transition
to allow the user to visually link the hovering and the data update.

Users can check their own hypotheses about gene sets of interest,
such as pathways, and analyze their behaviour across trends and data
sets. To include own knowledge into the analysis, genes of interest can
be highlighted based on their gene IDs (Figure 2e). Users can directly type
in one or more gene IDs into a text field or upload a text file with gene IDs.
The genes in the diagram corresponding to the given IDs in the query are
marked in red.

The concordance of trends might depend on different attributes.
Typically, data sets are filtered by a given variance or (median) abundance
range of the genes. For example, users might want to analyze if the trends
show more concordance when only highly variant of highly abundant
genes are included in the analysis. Therefore, OmicsTIDE supports range
sliders to dynamically filter data by the percentile ranges of the variance
or the median abundance of the genes (Figure 2c, right). The variance and
the median abundance and their respective percentiles are calculated prior
to z-score normalization. The variance filtering in the first-level analysis
can be applied as an alternative or in addition of the variance filtering
provided when loading the data. In contrast to the variance filtering before
loading the data, which is considered a prepossessing step, the filtering in

the first-level analysis allows users to explore different ranges of variances
quickly.

4.3 Second-level Analysis: Detailed Trend Analysis

Sets of genes corresponding to trends or the intersection of trends can
be analyzed in a more detailed analysis to find, for example, enriched
functions. OmicsTIDE allows users to either select links or nodes in the
visualization in order to extract a single subset or all subsets corresponding
to a given node. To show an overview of the selection, a selection summary
table placed in the controls side bar shows the source node and the target
node of each selected link as well as the number of the corresponding
genes (Figure 2c, lower panel). Thereby users can more easily compare
the actual numbers of genes corresponding to a link.

Selected genes can then be analyzed in detail in the second-level
analysis (Figure 2f). Users can study gene sets on the single-gene level by
hovering the single gene profiles and accessing information of an individual
gene by clicking and being redirected to the corresponding NCBI entry.
Furthermore, the biological function of the selected gene subset can be
studied by summarizing the results in a Gene Ontology context (Figure
2g). Thereby, users can find functions that are enriched in sets of genes
that show a different or the same trend in the compared data sets and
form hypotheses about the biological processes causing the patterns. The
PantherDB API is used to perform a GO enrichment study on a given
gene selection (Mi et al., 2019). The species corresponding to the analysis
needs to be selected in the controls side bar. The GO enrichment analysis is
limited to those species currently provided by Panther. The enrichment
analysis is performed for the three main GO categories molecular function
(GO:0003674), biological process (GO:0008150) and cellular component
(GO:0005575) using Fisher’s exact test and a multiple test correction with
False Discovery Rate (FDR). The results are visualized as horizontal bar
charts showing the negative logarithm of the FDR. Thereby users can
quickly identify the most significant results. Hovering the single bars will
show a tool tip with more detailed information on the given GO term
(Figure 2d, right).

4.4 File Export

Results of the analysis with OmicsTIDE can be exported in several ways.
The user can download the currently studied pairwise trend comparison as
CSV file. This enables the user to load the pairwise comparison for later
analysis without the need to repeat the steps until this point. Moreover,
analysis results of the detailed trend analysis can be exported as a ZIP file
that contains the two profile plots as SVG files, the current selection, and
the results of the GO enrichment as CSV files.

4.5 Implementation

OmicsTIDE is a web-based client-server application that makes use of
established Python data analysis libraries in the back-end to ensure a
seamless communication with the front-end via the web server gateway
interface (WSGI)-based framework Flask (Grinberg, 2018). This
communication allows OmicsTIDE an efficient outsourcing of more
complex computations, such as the trend determination via clustering,
to the back-end. In contrast, smaller computations, such as data filtering,
are performed directly in the front-end. The JavaScript library D3.js
is used for creating interactive SVG-based visualizations (Bostock et al.,
2011). The jQuery library (Severance, 2015) is used to modify specific
HTML elements and to send requests to the back-end. To realize the
dynamic tab-based interface that allows a straightforward workflow with
activated and faded single tabs, the Bootstrap framework (Spurlock,
2013) is applied. The source code of OmicsTIDE is available at
https://github.com/Integrative-Transcriptomics/OmicsTIDE.
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(a) Trend: "RNA-binding proteins" (b) Trend: "Granule Development"

(c) Trend: "Biosynthesis and metabolism" (d) Trend: "ROS machinery"

Fig. 3: First-level analysis: Interactively studying the trend comparison between the transcriptome and proteome during blood cell differentation (Hoogendijk et al., 2019) by
hovering reveals several concordant and discordant trends. (a-d) Four trends found by OmicsTIDE were associated with functionally annotated modules found in the study.
The tooltip displays the information about the identity of the trends that are compared by the current hovering event and the number of contained genes.

5 Case Studies
To demonstrate the usability of the pairwise trend comparison approach in
OmicsTIDE, we applied it to different combinations of omics data sets.
Here, we demonstrate the usage of OmicsTIDE in two case studies. In
the first case study, we show how the combined analysis of transcriptomics
and proteomics data derived from different stages of human blood cells can
be used to extract biologically relevant concordant as well as discordant
trends with few clicks only. The second case study combines two pairwise
trend comparisons to extract information from both, different experimental
conditions and omics layers to demonstrate the synergy effect that can be
achieved by OmicsTIDE.

5.1 Blood Cell Differentiation in Bone Marrow

Neutrophils are an essential part of the human immune system. They
are differentiated in the bone marrow and released to the bloodstream.
The regulation of the neutrophil differentiation is subject of the first case
study, examining the so-called granulopoiesis in vivo (Hoogendijk et al.,
2019). The experimental design uses both transcriptome and proteome
data from five differentiation stages to find concordant and discordant
trends across the two omics layers. The five stages are (pro)myelocytes
(PMs), metamyelocytes (MMs), immature neutrophils with band-shaped
nucleus (BN), mature neutrophils with segmented nucleus (SNs) and
finally the actual peripheral mature neutrophils derived from the blood
stream (PMNs). Here, we show howOmicsTIDE allows the user to easily
explore the trends across the two examined omics layers by reproducing
the findings made by Hoogendijk et al. in their study. The data was

taken from the supplementary material of the publication that contained
quantified transcripts and proteins in the form of FPKM and imputed
log2 LFQ measures, respectively. For each of the five conditions, the
data for three and four biological replicates were given for transcripts and
proteins, respectively. The analysis was performed on the mean values of
all biological replicates for each of the five conditions.

To explore the trends shown by the transcriptome and the proteome of
different blood cell types, the selection of k = 4 initial clusters resulted in
clearly distinguishable trends that are shown as centroid profile diagrams
for either data set (Figure 3). Four of the main trend comparisons between
transcriptome and proteome described in the paper on the neutrophil
differentiation could be reproduced by OmicsTIDE. The authors mainly
focused on main combinations of trends in the proteome and transcriptome
(so-called modules) and classified them based on GO enrichment and
the enrichment of specific database entries. The patterns of the trend
comparisons described in the paper could also be visually identified using
OmicsTIDE by simply hovering the single links in the Sankey diagram
(Figure 3) for the categories “RNA-binding proteins” (Figure 3a), “granule
development” (Figure 3b), “biosynthesis & development” (Figure 3c), and
“ROS machinery” (Figure 3d). The set of genes showing an increasing
pattern in the transcriptome and a decreasing pattern in the proteome are
mainly related to the RNA-binding proteins (Figure 3a) which could be
confirmed in the GO term enrichment of the molecular function category
using the second-level analysis tab.

Since the authors used a combination of GO enrichment and
enrichment using other databases, the other functional annotations could
not be easily reproduced. Yet, if we find that the combinations of trends in
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(a) (b)

Fig. 4: First-level analyses of the transcriptomes of the two Streptomyces coelicolor strains M1152 (on the left side in each subplot) and M145 (on the
right side of each subplot) (a) after focusing on high-abundant genes in both data sets after removing genes with a median abundance below the 80th
percentile. (b) A custom list containing genes involved in the metabolic switch to nitrate respiration under phosphate starvation has been uploaded and
highlighted. The yellow node in the M145 is hovered.

OmicsTIDE and the paper contain the same genes by manual comparison,
we can conclude that the functional enrichment would show similar results
as well. As the trends in OmicsTIDE and the modules in the paper
are created differently, they are not directly comparable. However, the
authors grouped the modules into different categories, such as concordant
increasing, concordant decreasing, and increasing in the transcriptome
while decreasing in the proteome. Moreover, in OmicsTIDE the sets of
concordant genes stemming from both decreasing trends were merged.
OmicsTIDE produced 629 increasing concordant genes, while 621 were
found in the blood cell study with an overlap of 486 genes. Similarly, of the
1320 decreasing concordant genes, 1131 could be found in similar patterns
in OmicsTIDE (total of 1439 trends). The other modules compared were
much smaller and we found more genes in OmicsTIDE. Yet, we could
find more than 70% of the genes of each module.

5.2 Transcriptome and Proteome Time Series Data Set of
Streptomyces coelicolor

In order to demonstrate how inter-omics as well as intra-omics analysis can
be combined using OmicsTIDE, we re-analyzed the data sets of a study
exploring two Streptomyces coelicolor strains with respect to changes in
their metabolisms under phosphate-starving growth conditions in a time-
course experiment. The Streptomyces coelicolor strains M145 and M1152
were used to study the role of biosynthetic gene clusters (BGCs) for the
production of antibiotics. M1152 is a genetically-engineered derivate of
the M145 wild-type strain that was subject to the deletion of different
BGCs (Gomez-Escribano and Bibb, 2011). For both strains samples were
taken at several timepoints. Phosphate was depleted between timepoint
3 and timepoint 4 (Sulheim et al., 2020). Transcriptomics as well as
proteomics data were produced across eight corresponding time points and
for both strains. For each of the time points, three biological replicates were
generated. Both, transcriptome and proteome data was initially quantified
and log2-transformed. The data was normalized by an intra-strain and
intra-omics quantile-normalization across all replicates. Finally, the mean
of the three replicates was calculated for each strain, time point and omics
layer separately.

In OmicsTIDE the four data sets (M145 transcriptome, M1152
transcriptome, M145 proteome, M1152 proteome) were loaded resulting
in six pairwise trend comparisons. For the k-Means clustering k = 4

was chosen since it produced the most clearly distinguishable trends. In
this application we first concentrated on the comparison of two different
strains across a single omics layer (here M1152 transcriptome vs. M145
transcriptome). This approach points to find differences on the transcript
level that reveal regulation differences between the wildtype and the mutant
strain. The insights from this first pairwise comparison is then used to
study whether and how these insights are also reflected by comparing the
transcriptome and proteome within the mutant strain.

5.2.1 Intra-Omics: M1152 transcriptome vs. M145 transcriptome
The comparison of the M1145 transcriptome and the M145 transcriptome
revealed a total of 7,904 genes that appear in both data sets, whereof
around 55% follow concordant trends (data not shown). After applying the
abundance filtering to focus on the genes with a high median abundance of
above the 80th percentile in both data sets the shape of the trends becomes
clearly visible (Figure 4a). Interestingly, the green trend and the orange
trend in the centroid profile plot show the exact inverse trend in the M1152
transcriptome. The same could be observed for the purple trend and the
yellow trend. The inverse behaviour of the trends is also partly reflected
in the M145 transcriptome. However, at least for these highly expressed
genes, about 65% of the genes show discordant expression trends, pointing
to also very different expression regulation in these two strains.

These findings were investigated in more detail by combining the
trend comparison with the information on genes known to be involved
in the metabolic switch to nitrate respiration under phosphate depletion
(Martín et al., 2017). The information on the corresponding gene IDs was
uploaded to OmicsTIDE and the corresponding genes were highlighted
in the profile diagrams (Figure 4b). Intriguingly, the majority of the these
genes were detected in the green, orange and yellow cluster of the M1152
transcriptome and almost exclusively in the yellow cluster of the M145
transcriptome. The trend comparison revealed that the genes that follow
the yellow trend in the wildtype strain, i.e. are down-regulated till timepoint
4, mainly follow the discordant green and orange trends, i.e. show a shifted
alternating increasing and decreasing expression pattern in the mutant
strain.
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Fig. 5: First-level analysis of M1152 transcriptome (left) vs. M1152
proteome (right) of the Streptomyces coelicolor data set with hovering
on the green trend in the transcriptome. Only a small fraction of genes
follows the same green trend in the proteome.

5.2.2 Inter-Omics, Intra-Condition: M1152 transcriptome vs. M1152
proteome

The insights from the first trend comparison of the M1152 and M145
transcriptomes were used to further study the mechanisms in Streptomyces
coelicolor by exploring how these findings are also manifested at the
proteome level. Here, the pairwise trend comparison of the M1152
transcriptome and the M1152 proteome was used for this investigation.
Especially the striking green and orange trends in the transcriptomes were
found to show strong discordance across the two bacterial strains. Here, we
exemplarily show for the green trend that this discordance is also reflected
in the corresponding M1152 proteome (Figure 5). The hovering of the
node in Sankey diagram that corresponds to the green trend in the M1152
transcriptome revealed 350 genes. Hereof only a small number of genes
follows the concordant green trend in the M1152 proteome. However, the
visual-interactive analysis allowed to detect that the remaining three trends
in the proteome all share a small peak at a later time point. Since this small
peak appears to a later time point than the peak in green trend of the M1152
transcriptome it could be used to further investigate whether this might
suggest a time-delayed translation of the protein cognates corresponding
to the gene expression in the green trend of M1152.

In summary, the parallel analysis of intra- and inter-omics data in
OmicsTIDE leads to easily interpretable expression trends and possible
hypotheses. Furthermore, the visual-interactive trend comparison makes
even small changes in abundances salient to the user.

6 Discussion
In this paper we present OmicsTIDE, a new visualisation approach for
the parallel exploration of multi-omics data. The parallel analysis of multi-
omics data sets has become a powerful strategy to explore the informational
flow propagating across different omics layers in a comprehensive manner.
With OmicsTIDEwe bridge the gap between separated single-omics and
integrative multi-omics analyses. In the context of developing OmicsTIDE
we also devised a classification system for multi-omics data, which offers
an underlying framework for our tool, but may also serve useful for future
developments in this field.

OmicsTIDE follows the strategy of a visual-interactive pairwise trend
comparison. This strategy emphasizes the similarities and differences that
appear at the interface of two omics data sets. With this, it marks an
innovation compared to other tools that mainly aim to integrate a large
number of omics data sets to derive a combined pattern. It should be noted

that the pairwise analysis and the multi-omics integration are not mutually
exclusive ways of analysis, but rather complement each other.

OmicsTIDE uses a Sankey diagram to compare trends across different
data sets. With this visualization concordance and discordance in trends
can be intuitively explored by directly linking the data sets. The trends
themselves are either visualized using centroid profile plots, profile plots,
or boxplots. While centroid profile plots visualize an overview of the
profile, detailed profile plots show every gene separately. With this detailed
visualization it is easier to track the behaviour of single genes. A magnified
version of these plots can be found in the second level analysis, where it
can be used to identify subclusters in a selection of genes. Profile plots are
especially useful if the order of conditions is inherent (Gehlenborg, 2012).
In contrast, boxplots do not assume that the conditions are ordered and
are therefore better suited for categorical data. Moreover, they focus on
visualizing the distribution of values at each condition. This is especially
useful to identify outliers or for assessing data set consistency across
replicates.

To compute trends from multi-omics data OmicsTIDE uses an early
integration approach by first concatenating and then clustering the data.
Currently, for the clusteringk-Means++ is implemented inOmicsTIDE.
In addition the user can upload a custom clustering in OmicsTIDE and
continue the visual exploration based on that.

The ability of OmicsTIDE to extract and compare trends was
demonstrated in two case studies using different experimental designs. In
the first case study, the integrated analysis of transcriptome and proteome
data shows that OmicsTIDE can derive the most important information
in few steps. The juxtaposition of the trends in each omics layer gave a
clear overview of the distinct patterns in this data, while the interaction
using hovering of the Sankey diagram confirmed the identification of
the discordant and concordant dynamics between the two omics layers
found by the authors of that respective study. These findings were further
consolidated by a manual comparison of the genes extracted from the
intersections of the trends in OmicsTIDE and the modules defined by the
authors. Overall, we found that between 70 and 85% of the genes found in
the respective modules agreed with the trends identified in OmicsTIDE.

The second case study applies a more complex experimental design
enabling an inter-omics and intra-omics comparison. The central design
feature of OmicsTIDE is the parallel trend comparison of two omics
data sets. When more than two data sets are under investigation, as it was
the case here, OmicsTIDE provides the option of combining different
pairwise omics data comparisons within a single analysis. With this novel
approach trends could be analyzed in the inter-omics as well as the
intra-omics comparison while keeping an overview of all involved data
sets. The combination of the different pairwise comparisons could reveal
information that would not easily have been found by combining all of the
used data sets in one integration. The exploration of the Sankey diagram
using the focus-on-hover strategy could show that the trends initially found
in the inter-condition analysis (the transcriptome comparison) are also
revealed in the proteome.

7 Conclusion and Outlook
With OmicsTIDE we provide a visual analytics tool that is designed
for biologists; its user interface creates clear default views that show
the concordant and discordant patterns in omics abundance data in a
pairwise manner. Even complex experimental designs, such as comparing
intra-omics data as well as inter-omics data can be easily addressed in
OmicsTIDE.

This tool marks an innovation in the pairwise comparison of data sets
by reducing the information on the regulation of genes to single trends and
allowing a clear visual-interactive comparison using the Sankey diagram.
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By following a multi-tab approach that separates the single analysis step,
the switch between overview and the detailed view marks a striking
difference to common interactive omics visualization tools.

While we were able to show that applying this approach extracts the
main trends which can clearly be distinguished, we plan to implement
more sophisticated clustering algorithms, such as iCluster (Shen
et al., 2009). Such approaches might prevent biased trends, especially
if the number of genes in one of the compared data sets is very high
compared to the other data set. To counteract this bias in the current
version of OmicsTIDE we analyze intersecting and non-intersecting
genes separately, which guarantees an equal number of genes for both
data sets in the intersecting analysis. Tools like iCluster would allow
us to conduct a combined analysis for all genes.

For the determination of which genes commonly occur in the respective
data sets, we compare the data sets through molecular IDs (e.g., gene or
protein IDs), that greatly facilitates the comparative visualisation of the
trends. The default view of OmicsTIDE focuses on the set of intersecting
genes between the two data sets. Though also the trends of the non-
intersecting genes can be visualised in profile plots, the current version of
OmicsTIDE does not allow for a direct comparison. In a future version,
a pairwise comparison could be achieved by categorizing the gene ID
for example by common pathway IDs or other meta-information. An
application could for instance be the investigation of orthologous genes in
two different species. An example for this kind of analysis has been shown
in a recent genome-wide comparative transcriptome analysis between
Arabidopsis thaliana and Zea mays (Vercruysse et al., 2020), where trends
of orthologous genes between these two species were compared.
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