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Abstract 

 
Biological age (BA), a measure of functional capacity and prognostic of health outcomes that 
discriminates between individuals of the same chronological age (chronAge), has been 
estimated using a variety of biomarkers. Previous comparative studies have mainly used 
epigenetic models (clocks), we use ~1000 participants to create eleven omics ageing clocks, 
with correlations of 0.45-0.97 with chronAge, even with substantial sub-setting of 
biomarkers. These clocks track common aspects of ageing with 94% of the variance in 
chronAge being shared among clocks. The difference between BA and chronAge - omics 
clock age acceleration (OCAA) - often associates with health measures. One year’s OCAA 
typically has the same effect on risk factors/10-year disease incidence as 0.46/0.45 years of 
chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while 
others capture specific risks. We conclude BA is measurable and prognostic and that future 
work should prioritise health outcomes over chronAge. 
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Introduction 

Age is a phenotype that we are all familiar with, and is a major risk factor for numerous 
diseases including the largest causes of mortality1. We all become acquainted with visible 
changes that accompany ageing, such as greying hair, baldness, loss of skin elasticity and 
worsening of posture, and that these vary noticeably amongst individuals of the same 
chronological age (chronAge). However, there are also molecular hallmarks of ageing such 
as telomere shortening, genomic instability and cellular senescence that also show variation 
in individuals of the same chronAge1. It has previously been hypothesised that an underlying 
biological age (BA), likely tagged by these molecular hallmarks, is what gives rise to age-
related disease risk2. Measuring BA therefore has the potential to be more prognostic of 
health and functional capacity than chronAge and, as importantly, BA may be reversible3, 
unlike chronAge4.  
 
Since this concept was proposed, there has been a push to construct models of BA, using a 
variety of both statistical methods and types of biomarkers; the resultant estimates we shall 
term omics clock ages (OCAs). The first OCAs were epigenetic clocks that used methylation 
levels of CpG sites across the genome - DNA methylation (DNAme) - to estimate chronAge 
using penalised regression5,6. The excess of OCA over chronAge being omics clock age 
acceleration (OCAA), hopefully measuring an underlying biological effect. DNAme’s 
verification as a meaningful BA measure, rather than a mere statistical artefact, was 
confirmed when DNAme OCAA as calculated by Horvath’s clock was shown to be 
associated with all-cause mortality7. Ageing clocks trained on chronAge have since been 
constructed using DNA methylation5,6,8,9, telomere length9,10, facial morphology11, neuro-
imaging data12–15, metabolomics9,16–18, glycomics19, proteomics9,20–22 and immune cell 
counts23. There has however, been limited comparison of the performance, for example 
accuracy and correlation, of different omics ageing clocks, particularly in the same set of 
individuals.  
 
Moreover, there has been inadequate additional progress in demonstrating that the various 
OCA measures are actually tracking underlying BA beyond chronAge, and whether some 
clocks’ OCAAs are more aligned to certain outcomes than others. For example, few 
significant associations of chronAge-trained OCAAs have been found with health outcomes 
other than mortality and those that do have low effect sizes24–27. 
 
The deep omic and health outcome annotation of the Scottish population-based Orkney 
Complex Disease Study28 cohort (ORCADES) permits interrogation of the utility and 
limitations of BA clocks. Here, we compare the performance of 11 ageing clocks built from 9 
different omics assays in the same set of approximately 1000 individuals in ORCADES, 
including whole body imaging and a clock based on the grand union of all the omics. Next, 
we assess the biological meaningfulness of the derived OCAA measures, by assessing their 
association with health-related phenotypes and incident hospital admissions (post-
assessment) over up to 10 years follow-up.  
 
The notion of BA raises fundamental questions. Is there one BA for a person, or a set of 
BAs, perhaps relating to different bodily systems22,29. Are measured (chronAge trained) 
OCAs tracking a single BA, with differences arising due to their focus and accuracy, or are 
they tracking different underlying BAs? This study aims to shed some light on these issues.  
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Results 

Performance of Omics Clocks 

We constructed eleven ageing clocks, training on chronAge, in the ORCADES cohort from 
assays already understood to be able to form effective ageing clocks5,6,19,20, covering plasma 
Immunoglobulin G (IgG) glycans, proteins, metabolites, lipids, DNA methylation and a 
collection of commonly used clinical measures (such as weight, blood pressure, fasting 
glucose, etc), which we label Clinomics. To this we added two novel omics sets for clock 
construction: a DEXA whole body imaging set of body composition measures, and one 
based on all the omics assays considered simultaneously, which we term Mega-omics, as 
listed in Table 1 (see Methods for assay descriptions). Rather than creating completely novel 
DNAme clocks when effective and extensively studied published clocks exist, our 
methylation clocks’ potential predictor sets are the subsets of the CpG sites used in Hannum 
and Horvath’s epigenetic clocks available on the Illumina EPIC 850k methylation array. With 
this caveat, all clocks were derived from scratch using the set of available predictors and 
elastic net regression.  
 
We first assessed various forms of penalised regression: LASSO, elastic net with a fixed 
alpha of 0.5 and elastic net with alpha calculated via cross-validation, training clocks in 75% 
of the ORCADES cohort and evaluating in the remaining 25% (the testing sample). We 
found that clock performance in estimating chronAge was independent of penalised 
regression method used, across all the assays (Supplementary Figure 1) and so elastic net 
regression with a fixed alpha of 0.5 only was employed in subsequent analyses.  
 
Ages estimated by the model in the test set (i.e. OCAs) were highly correlated with 
chronAge for the majority of the omics clocks tested (Table 1), particularly PEA proteomics 
(r=0.93) and DNAme based (r=0.96 Hannum CpGs, r=0.93 Horvath CpGs) clocks 
(correlations in the training set in Supplementary Figure 2). Unsurprisingly, the mega-omics 
OCA had the highest correlation (r=0.97). Although all features were given equal opportunity 
to contribute to the mega-omics clock, those selected by the regression were predominantly 
DNAme- and PEA proteomics-based (34.6% CpGs, 31.8% PEA Proteomics, 20.6% MS 
metabolites, 13.1% other). We found that the MS Fatty Acids Lipidomics OCA had the 
lowest correlation with chronAge (r=0.45; Figure 1). The number of biomarkers available and 
then selected for model inclusion for each omics clock are indicated in Table 1 (Full list of 
biomarkers measured in each assay in Supplementary Table 2 and coefficients for all clocks 
in Supplementary Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.01.429117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429117
http://creativecommons.org/licenses/by/4.0/


 4

Omic N 
Individuals 

N Predictors 
Available 

N Predictors 
Selected r 

MS Fatty Acids 
Lipidomics 952 33 27 0.45 

DEXA 1158 28 28 0.66 

MS Complex Lipidomics 940 908 130 0.7 

NMR Metabolomics 1643 86 81 0.74 

UPLC IgG Glycomics 1937 77 50 0.74 

Clinomics 1815 13 12 0.8 

MS Metabolomics 861 682 181 0.81 

DNAme Horvath CpGs 957 333 155 0.93 

PEA Proteomics 805 886 203 0.93 

DNAme Hannum CpGs 1033 62 50 0.96 

Mega Omics 796 2471 214 0.97 

Table 1. Multiple omics make accurate ageing clocks. Indicating for each omics assay: N 
Individuals: the number of individuals in the ORCADES cohort that passes quality control, N 
Predictors Available: the number of predictors passing assay-level quality control and 
therefore available for selection for inclusion in the standard model, N Predictors Selected: 
the number of predictors selected for inclusion in the standard model, r: Pearson correlation 
of omics clock age (OCA) and chronAge. DEXA: Dual X-ray absorptiometry, DNAme: DNA 
methylation, CpG: cytosine nucleotide followed by guanine (5’ to 3’ direction), MS: mass 
spectrometry, NMR: nuclear magnetic resonance, PEA: proximity extension assay, UPLC: 
ultra-performance liquid chromatography, IgG: Immunoglobulin G. Within each omic 
category, subject mean age at baseline was 53-56 (SD~15) with an age range across clocks 
of 16-100, whilst the proportion female ranged from 55-61% (Supplementary Table 1). 
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Figure 1. Multiple omics estimate chronological age, to varying degrees of accuracy, 
in a broadly unbiased manner. The correlations of chronAge on the y-axis with ages 
estimated by the omics ageing clock (OCA) in the ORCADES testing sample. Pearson 
correlation coefficient (r) and the slope of the regression of OCA on chronAge are indicated 
in each panel. Identity line indicated in black. 

Validation of Clock Performance in Independent Cohorts 

We next used the clocks trained in ORCADES to estimate age in independent European 
cohorts to validate if they were more widely applicable beyond the Orkney population. We 
found that correlations between OCA and chronAge replicated to varying degrees in 
independent populations (Supplementary Figure 3). PEA proteomics and DNAme based 
clocks produced correlations of OCA and chronAge in the range of 0.89-0.98 in European 
cohorts replicating the range of 0.91-0.96 in ORCADES. UPLC IgG glycomics and Clinomics 
OCAs in independent populations showed a range of OCA-chronAge correlations of 0.56-
0.62 compared to the 0.74-0.80 in ORCADES. Whilst the NMR metabolomics and DEXA did 
not replicate with correlations of 0.26-0.55 in validation cohorts compared with 0.66-0.73 in 
ORCADES. 
 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.01.429117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429117
http://creativecommons.org/licenses/by/4.0/


Accurate Performance of Clocks with Substantial Core Subset of Biomarkers 

If the aim is to create BA clocks that have the potential to be clinically useful, it would be 
more efficient and cost effective to reduce the numbers of biomarkers that need to be 
measured in patients. To this end, we investigated the performance of our clocks using a 
reduced set of biomarkers. For each of our 11 omics clocks a “core” clock was constructed 
using only those biomarkers which were selected for model inclusion in >95% of 500 
iterations of our clock construction procedure, as done by Enroth et al.20 (See Methods for 
details). Comparable correlations of OCA and chronAge were achieved across all 11 clocks 
with a substantial subset or core of biomarkers (Figure 2), highlighting the potential for 
accurate OCAs with a small number of predictors (e.g. 30s-60s of biomarkers). 
 

Figure 2. Substantial subsetting of biomarkers results in little dilution of accuracy. 
Pearson’s correlation (r) and 95% confidence interval of chronAge and OCAs from standard 
and core models for each omics assay indicated on the y-axis in the ORCADES testing 
sample. The number of predictors selected for inclusion in the standard and then core 
models are indicates in the y-axis labels (standard|core). 
 

Comparison of Biological Age Between Clocks 

Omics Clock Age Accelerations (OCAAs) showed varying degrees of positive correlation 
between clocks (Figure 3). Unsurprisingly, the two DNAme based OCAAs were the most 
correlated with each other (r=0.73) and, in hierarchical clustering, formed a group on their 
own. The four clocks that are primarily constructed from lipid species and fractions, MS Fatty 
Acids Lipidomics, MS Complex lipidomics, NMR Metabolomics and MS Metabolomics 
clocks, all clustered together. The DEXA, Clinomics and UPLC IgG glycomics clocks formed 
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a related group. Interestingly, the PEA Proteomics OCAA clustered between the DNAme 
and glycomics-DEXA-Clinomics-lipidomics cluster, on its own.  
 

 
Figure 3. Variable positive correlations between different omics age accelerations. 
Pearson correlation of OCAAs (omics clock age–chronAge) in ORCADES testing and 
training samples. Colour indicates the direction and the shade and number indicates the 
magnitude of the correlation. Rows and columns are ordered based on hierarchical 
clustering of the pairwise correlations. 
 

Proportions of Variance in Age Explained by Different Clocks 

To determine if our different clocks are explaining the same or different variance in 
chronAge, we partitioned the variance in chronAge explained among our clocks. We 
calculated the unique variance in chronAge explained by each OCA as the squared part 
correlations of chronAge and OCA, while controlling for all other clocks. 93.9% of the 
variance in chronAge is explained by two or more clocks whilst 4.1% remains unexplained 
by the 10 ageing clocks tested, with the remaining 1.9% being explained by one clock 
uniquely (Supplementary Figure 4a). The PEA proteomics and Hannum CpG clocks explain 
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the most variance in chronAge uncaptured by any other clock (0.59% and 0.46% 
respectively; Supplementary Figure 4b). Pairwise clock comparisons are shown in 
Supplementary Figure 5. 
 
 

Figure 4. Bivariate analyses reveal that clock pairs tend to overlap more than 
expected by chance in the variance in ChronAge they explain. The amount of excess 
overlap than would be expected by chance is indicated for each pair of clocks. This is the 
deviation of the observed variance in chronAge explained by a bivariate model containing a 
pair of OCAs and the variance expected to be explained by that pair given that we know how 
much variance in chronAge they explain individually, if each of the clocks were independent 
samples from a set of latent complete predictors. This measure of deviation of observed 
from expected is scaled (See Methods for details) so that a value of 1 means that the 
second clock is adding no more information than the first, meaning that they overlap entirely 
in the information they provide about chronAge. A value of 0 would indicate the observed 
variance explained in chronAge is exactly what is expected if the two clocks were 
independently sampling. Negative values are possible on this scale but are not observed 
and would indicate disproportionately complementary components of chronAge were being 
tracked. 
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Having found that clocks overlap in the information they provide about chronAge, we tested 
to see if, together, pairs of clocks jointly explained a different proportion of variance in 
chronAge than would be expected if the clocks were each independently sampling from a 
latent set of complete predictors of chronAge (ISLSP). This analysis should reveal whether 
the clocks were tracking complementary dimensions of ageing: situations where the pair of 
clocks overlapped less than expected if they were independently sampling (negative values 
on this scale). Strikingly, excess overlap was found across all pairs of clocks (Figure 4), with 
the lowest excess overlap value measured at 0.41 (comparison of the NMR Metabolomics 
and DEXA clocks): all 10 omics clocks, considered pairwise, track more common rather than 
complementary aspects of chronAge. 
 
The most overlapping were the MS Fatty Acids Lipidomics and the MS Complex Lipidomics 
clocks (excess overlap of 0.98; note on our scale, a clock shows 1.00 excess overlap with 
itself, whilst ISLSP would show 0.00). These two clocks formed a cluster with the clocks 
derived from NMR and MS Metabolomics (which both contain many lipid features). Similarly, 
the two DNAme-based clocks clustered tightly together with an excess overlap of 0.91. As 
these clocks are extremely accurate, a large amount of overlap in variance explained is 
inevitable; they are tracking common aspects of ageing. 
 

OCAAs compared to chronAge as predictors of disease risk 

We next sought to test the effect of OCAAs compared to chronAge on risk factors and post 
assessment disease incidence, as measured by hospitalisation in the ORCADES cohort, 
where the outcome was thought a priori to associate with age. For risk factors we chose 
body mass index (BMI), systolic blood pressure (SBP), cortisol, creatinine, C-reactive protein 
(CRP), forced expiratory volume in 1 second (FEV1), Framingham Risk Score, and total 
cholesterol. For diseases we chose five International Statistical Classification of Diseases 
and Related Health Problems(ICD)-10 Chapters: II (Neoplasms - codes C), IV (Endocrine, 
nutritional and metabolic diseases - codes E), IX (Diseases of the circulatory system - codes 
I), and X (Diseases of the respiratory system - codes J). The ICD-10 blocks used and their 
codings are listed in Supplementary Table 4). 
 
In order to compare OCAA and chronAge, we first quantified the effect of chronAge on risk 
factors and disease (Supplementary Figures 6a & 6b). All 8 risk factors and 32/44 disease 
blocks were taken forward as they were significantly associated with chronAge (beta>0, 
FDR<10%) and had >5 incident cases (disease blocks). The effect of chronAge on 
(standardised) risk factors appeared to vary by trait, whereas for diseases, it appeared that 
the effect of chronAge (on the hazard ratio scale) might be similar across diseases, with a 
consistent doubling of risk every 14 years. 
 
We tested for risk factor and disease associations with OCAA, using chronAge and sex as 
covariates. Results were then rescaled to be per year of chronAge effect by dividing the 
observed effect of OCAA by the effect of chronAge on the outcomes as identified at the 
previous step. This was taken trait-by-trait for risk factors, and a single effect for all disease 
groups and chapters: -0.0492 loge HR. 
 
Despite limited power for detecting OCAA-disease associations, 6/352 tests were 
statistically significant (FDR<10%) as were 31/88 OCAA-risk factor associations. We also 
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found evidence of enrichment of positive effects of OCAA on both risk factors (85%) and 
disease (74%), with 35% and 23% being nominally significant (one sided p<0.05), 
respectively. Across clocks, the inverse variance-weighted mean effect of one year of OCAA 
on risk factors/disease was the same as 0.45/0.46 years of chronAge (SE~0.01, note here 
and elsewhere ~ denotes indicative, see Methods for details). For risk factors, as might be 
expected, this was strongly influenced by an average effect of 1.23 years for Clinomics 
OCAA (0.16 without Clinomics). Interestingly, the mean effect across all diseases of one 
year’s DNAme Hannum/Horvath CpGs OCAA was similar to one year of chronAge (ratio: 
1.03/0.85, SEs ~0.18), but the effect on risk factors was much lower (ratio: -0.03/-0.01, SEs 
~ 0.06). Complete results are shown in Supplementary Table 5 and inverse variance-
weighted effects are shown in Supplementary Figure 7b.  
 
In general, only associations with the Clinomics OCAA passed FDR, however both DNAme 
OCAAs and the UPLC IgG Glycomics OCAA were nominally associated with eleven ICD10 
blocks, one more than Clinomics (Figure 5). In contrast, the PEA proteomics clock (r=0.93 
with chronAge) showed only one nominally significant disease:OCAA association. Looking at 
disease groupings, E70-E90 Metabolic disorders and J09-J18 Influenza and Pneumonia 
showed the most nominal associations across all OCAAs. Curiously, on the other hand, 
C34-C44 Melanoma and C51-59 Malignant Neoplasms of the female genital organs, showed 
generally negative associations with OCAAs. 
 
The greater statistical power for risk factors results in considerably more significant 
associations at FDR<10% (Figure 6). Once more, Clinomics, as might be expected, has the 
greatest number of significant associations, however NMR metabolomics and UPLC IgG 
Glycomics OCAAs are nearly as broadly predictive. Mega-omics, MS and NMR 
Metabolomics OCAAs show positive associations with all risk factors. It should be noted that 
while the Clinomics OCAA showed most significant FDR<10% associations with diseases 
and risk factors, its predictors (e.g. cholesterol, FEV1 and SBP) are often close to and 
designed to predict clinical endpoints and overlap with the risk factors considered here. 
Similarly, metabolite and lipid-based clocks contain cholesterol subfractions. All OCAAs 
were associated positively with BMI and total cholesterol. We found strong associations 
between OCAAs and the marker of inflammation CRP (often with effect sizes >1), meaning 
OCAA had a larger effect than chronAge. Overall, the averaged effect of OCAA on risk 
factors as a proportion of the effect on diseases was large for MS Fatty Acid 
Lipidomics/Clinomics/PEA proteomics (69%/230%/291%) suggesting they are directly 
tracking the risk factors we considered. Conversely, this proportion was small for Hannum 
CpGs/Horvath CpGs/UPLC IgG Glycomics (-3%/-1%/29%), suggesting they are prognostic 
of incident disease and therefore track more generalised ageing (Supplementary Figure 7a). 
 
We wanted to check if observed OCAA-health associations were driven by the associations 
of health with smoking and of OCAA with smoking. Our analysis fitting smoking status as a 
confounder suggests they were not (Supplementary Figures 8a & 8b). 
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Figure 5. Positive age acceleration associations observed with increased disease risk. 
Associations with rates of hospitalisation. +/* Association nominally/FDR<10% 
significant in the frequentist test that OCAA has a positive effect on outcomes. Beta: the 
relative effect of a year of OCAA to a year of chronAge on disease (initially measured in loge 
hazard ratios, effect sizes are unitless after division). A value of one indicates that a year of 
OCAA is equally as deleterious as a year of chronAge and is indicated in salmon colour. To 
facilitate reading, note the DNAme Horvath CpGs-BMI beta is 1.02 and the DNAme Hannum 
CpGs-C81-C96I beta is 1.00. Clock: the omics clock on which OCAA was measured. 
Disease group: the set of diseases (defined by ICD10 codes) which were tested for first 
incidence after assessment against the clock, already prevalent cases were excluded (Case 
numbers for each disease block in Supplementary Table 5). 
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Figure 6. Positive age acceleration associations observed with increased disease risk. 
Associations with disease risk factors. +/* Association nominally/FDR<10% significant in 
the frequentist test that OCAA has a positive effect on Risk factors. Beta: the relative effect 
of a year of OCAA to a year of chronAge on risk factor (effect sizes are unitless after 
division). A value of one indicates that a year of OCAA is equally as deleterious as a year of 
chronAge and is indicated in salmon colour. Total cholesterol, which showed a particularly 
large effect from MS lipidomics OCAA, is excluded here to aid visualisation (the effects on 
cholesterol can be seen in Supplementary Figure 9b). 
 

Comparison of predictive abilities of different OCAAs for risk factors and disease 

In principle, two OCAAs could have the same association effect size on disease, but one 
might be much more prognostic for the population as a whole than the other if it had much 
larger variation in its range. In order to determine which OCAAs could draw more meaningful 
distinctions between subjects in terms of health outcomes, we repeated the previous 
analysis using standardised OCAAs. We found that the standardised Clinomics OCAA 
showed the greatest predictive power, with an IVW-average effect across all risk factors of 
0.39 compared to the range of 0.05-0.12 for the other clocks, with Hannum and Horvath 
CpGs OCAA smaller still, at -0.014 and 0.018, respectively (SEs ~0.01, in all cases). 
Conversely, FEV1 was most predictable by standardised OCAA (0.20, SEs ~0.01, IVW-
averaged across clocks), whilst creatinine/reversed cortisol were least predictable 
(0.02/0.04, SEs ~0.01). 
 
Standardised OCAA effects on disease showed an even more uniform pattern 
(Supplementary Figure 7a): the IVW-average effect across diseases was between 0.11 (MS 
Metabolomics) and 0.24 (Clinomics), except for the 0.016 of PEA Proteomics (SEs ~0.04). 
Despite limited power, the disease group showing the most sensitivity to standardised OCAA 
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across clocks was J80-J84 (Other respiratory diseases principally affecting the interstitium; 
0.76, SE~0.16), perhaps consistent with the FEV1 finding. Although predictive of risk factors, 
Clinomics OCAA does not appear unusually predictive of disease. Lung function appears 
particularly sensitive to both ageing (Supplementary Figure 6b) and OCAA.  
 

Clocks built from few omics principal components are effective predictors of health outcomes 

Finally, we reduced dimensionality and assessed the underlying information about ageing 
being captured by different omics at the assay level, rather than simply the predictors 
selected for model inclusion. We constructed clocks using a few principal components (PCs) 
of omics measures as predictors and repeated the previous analyses with their 
(standardised) OCAAs, estimating chronAge (Supplementary Figure 10) and predicting 
health outcomes (Supplementary Figure 11a& 11b). The pattern was striking, the IVW-mean 
effect sizes across all risk factors of 3 PC OCAAs were more than double our standard 
OCAAs (Supplementary Figure 11a). For all OCAAs, bar DNAme-based, including more 
omics PCs in the clocks reduced their ability to estimate distinctions in risk factors. IVW-
mean effects on diseases were generally similar for the 3 PC and standard OCAAs, except 
for the PEA Proteomics OCAA, where 3 PCs- based clock outperformed the standard clock 
by a factor of 10. Overall, OCAAs derived from a few omic PCs appeared equally predictive 
as our standard OCAAs for diseases and more predictive for health risk factors. 
 

Discussion 

 
We have performed the most exhaustive comparison of different omics assays as potential 
biomarkers of age to date. We have shown firstly, it is possible to construct ageing clocks 
that produce highly accurate estimations of chronAge with a wide variety of omics 
biomarkers. Secondly, ageing clocks built using PEA proteomics, DNAme, UPLC IgG 
glycomics and clinical risk factors in ORCADES were able to estimate chronAge in 
independent populations. Thirdly, it is possible to achieve the same highly accurate 
estimation of chronAge using a substantial subset of core biomarkers from each assay. 
Despite finding only modest positive correlations between our OCAAs, we showed that 
different clocks overlap in the variation they explain in chronAge more than would be 
expected by chance if they were independently sampling from a latent set of complete 
predictors. We found associations of OCAAs with total cholesterol, Framingham Risk Score, 
C-reactive protein and systolic blood pressure. We found 6 statistically significant 
(FDR<10%) individual associations and strong evidence of enrichment of association of 
OCAA with incident disease collectively across our tests (20% were nominally significant 
p<0.05). We found more variation in OCAA predictiveness across risk factors, than across 
diseases. Overall, we estimated that one year of OCAA has an effect of 0.46/0.45 years of 
chronAge on risk factors/disease incidence and showed that OCAA based on clocks built 
using a few principal components of omics were as prognostic as those presented with all 
available features. 
 
The correlation of our PEA proteomics, DNAme, UPLC IgG glycomics OCAs and chronAge 
were similar to published models5,6,19,20. Unsurprisingly, DNAme-based clocks built in 
ORCADES were able to estimate age in both Scottish (Generation Scotland) and Estonian 
Biobanks (EBB), as the Hannum and Horvath epigenetic clocks have been used 
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successfully in numerous populations. We showed for the first time that clocks built from 
Olink PEA-based proteomics replicate (in EBB and Croatia-Vis), while clocks built using the 
SOMAlogic22 proteomics platform have been shown to replicate across populations 
previously. Our UPLC IgG glycomics clock also replicated in an independent population, 
mirroring the applicability of published GlycanAge measures19. Conversely, our NMR 
metabolomics and DEXA clocks had much lower correlation with chronAge in EBB and UKB. 
The success of these clocks appears to be study-specific: differences in lifestyle and 
environmental factors that change with age between the populations of the Orkney Islands 
and general populations in the UK and Estonia are a plausible cause. This finding serves as 
a warning as to the generalisability of ageing clocks to new populations.  
 
For a measure of BA to be clinically useful and efficient, effective age estimation based on 
as few predictors as possible is ideal. We substantially reduced the numbers of biomarkers 
from each assay that were included in our clocks and showed no dilution of performance 
across all of our clocks. Enroth et al.20 showed that this was possible with a protein-based 
clock, however, we reduced the number of proteins by a larger factor and achieved the 
same accuracy estimating chronAge. This high performance with a substantial subset of 
predictors has not previously been shown systematically across nine different types of 
biomarkers.  
 
The extremely high correlations with chronAge reported, such as the r = 0.97 of the Mega-
omics OCA, highlight an issue that has been discussed in prior work: that if enough 
biomarkers were included in the model it would be possible to perfectly estimate chronAge 
and, by definition, fail to detect (distinct) BA. Lehallier et al.22 showed that correlation 
between OCA and chronAge increases with the number of proteins included in the model. 
Further, it is possible to explain 100% of the variance in chronAge using DNAme data in 
large samples30. A perfect age predictor would give no information about variation between 
individuals of the same age and even those which are near perfect will have too little 
variation in the OCAA to be indicative of health status or outcomes beyond chronAge31. We 
found this trend in our results, that the most accurate estimators of chronAge: Mega-omics, 
PEA proteomics and MS metabolomics OCAAs were not strongly associated with 
subsequent hospital admissions, nor DNAme-based OCAAs with risk factors. Of course 
extremely accurate estimators of chronAge do have their uses, for example in a forensic 
context32, but are not useful in terms of BA. This does not mean the assays themselves 
cannot be used to estimate BA but highlights a limitation of training ageing clocks on 
chronAge. 
 
A useful BA must be an indicator of health status or outcomes beyond chronAge. We found 
DNAme-based OCAAs were better estimators of incident disease than risk factors, 
consistent with the known performance of Horvath’s epigenetic clock. Several groups have 
shown Horvath’s DNAme OCAA to be associated with subsequent all-cause mortality7,33–36 . 
Differences in Horvath’s OCAA between cases and controls have been found for numerous 
disease phenotypes33,37–46. In contrast, Horvath’s OCAA has been found not to be 
associated with common risk factors including: LDL cholesterol and CRP27, a finding we 
confirmed. We found that Clinomics and lipid based OCAAs were better at predicting risk 
factors than disease, whereas the opposite was true for DNAme and UPLC IgG Glycomics 
OCAAs. The similarity between the predictors in the Clinomics and lipid-based clocks and 
some of the risk factors could be driving these associations. In contrast, DNAme and UPLC 
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IgG Glycomics being prognostic of incident disease beyond chronAge suggests they are 
more likely to be capturing underlying BA.  
 
It is perhaps not surprising that the Clinomics OCAA showed the strongest evidence of 
association with disease - it used common clinical measures thought to be prognostic of 
health. Nonetheless, the pattern is a reassuring proof of concept. The overall enrichment of 
OCAA-disease and -risk factor associations, strengthens the case for the notion of BA, 
trackable through omics markers. Jansen et al.9 showed that their NMR Metabolomics 
OCAA was significantly higher in cases of metabolic syndrome and cardiometabolic disease 
than controls, however was not prognostic of incident disease. Our NMR Metabolomics 
OCAA was nominally associated (p<0.05) of several metabolic disease blocks, suggesting 
that in a more powered sample this relationship would be significant. Previously, it has been 
shown that GlycanAge is associated with risk factors19 and that IgG glycans (i.e not an 
OCAA, rather the glycan levels themselves) are effective predictors of incident type 2 
diabetes and cardiovascular events47–49. However, we are the first to show UPLC IgG 
glycomics OCAA to be prognostic of incident disease and highlight this is not simply due to 
tracking the risk factors we considered. 
 
As by definition, having a BA of +1 indicates that the individual has the same functional 
capacity and risk of age-related disease as the average individual that is one calendar year 
older than them, indicating the effect of true BA is the same as 1 year of chronAge. Our 
estimate that the mean effect of 1 year of OCAA on disease incidence is the same as 0.45 
years of chronAge is important. BA thus appears to be real and measurable and have 
effects of similar magnitude to chronAge, albeit our estimates are significantly diluted 
compared to chronAge, possibly due to OCAA capturing only some aspects of BA, reflecting 
the types of assay and tissue, rather than BA itself. Better measures of BA seem worthy of 
pursuit, as do interventions that can reverse well-measured BA. The negative association 
between Melanoma and other malignant neoplasms of skin (C43-C44) and OCAAs for many 
clocks leads us to suggest a less sedentary lifestyle is leading to lower OCAA, but also 
increased exposure to the sun. If replicated, this will highlight that skin BA and other BAs 
need not closely align, and we speculate this finding might also generalise across other 
organs. 
 
A strength of our work was the sheer number and range of assays and therefore omics 
ageing clocks whose performance we compared in the same individuals, whereas previous 
comparisons have been limited to DNAme-based clocks25,50,51 or DNAme, clinical risk factors 
and frailty measures52. We have tried to validate our omics ageing clocks trained in 
ORCADES in independent populations where available, to illustrate their wider applicability. 
A limitation faced by previous studies was the narrow age range of individuals in the training 
sample, for example Lee et al.’s epigenetic clock trained in a pregnancy cohort produced 
extremely accurate estimations of chronAge for individuals under 45 but underestimated age 
in older individuals53. Our clocks avoid this limitation due to the wide age range (16-100) of 
individuals in the ORCADES cohort.  
 
The novel assessment of excess overlap between clocks is a strength of this work, as it has 
not previously been shown that, across multiple different omics assays, OCAs overlap more 
than would be expected by chance if they were ISLSP, indicating these clocks are tracking 
more common rather complementary aspects of ageing. A further strength is the 
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regularisation of effect sizes - we have measured the effect of OCAA per effect of year of 
chronAge - giving a natural and understandable scale. Another strength is its scope, with 
many clocks tested against many age-related diseases. Of course, this is also a weakness, 
as it reduces power after compensation for multiple testing. Nonetheless, the essentially 
agnostic view taken of individual disease groupings and clocks does mitigate the risk of 
publication bias. 
 
A limitation of this work is the relatively small sample size, both in terms of the number of 
individuals with multiple omics assays and within that, the number of incident hospital 
admissions over the follow-up period. Due to the low number of deaths in our sample we are 
as yet unable to test for the association of OCAA on mortality, as in previous studies. As the 
omics data available for ORCADES is cross-sectional, we were unable to comment on the 
variation of OCAA within individuals over time. However, we were able to investigate the 
prognostic ability of single time point OCAAs on hospital admissions over a 10-year follow 
up. The nature of our sample, a population isolate, means there is potential for local factors 
to influence our results. We have shown this is not the case for several of our omics clocks’ 
accuracies (Supplementary Figure 2), as they were successfully replicated in additional 
populations, however, it could contribute to the poor replication seen for the DEXA and NMR 
metabolomics clocks. The use of hospitalisation as a measure of incidence is a limitation, 
particularly acute for diseases normally treated in the community such as type 2 diabetes 
and influenza. Nonetheless, we are likely to have captured the most severe cases and have 
tested whether this severity associates with OCAA and presumed frailty, giving rise to more 
severe experience of the disease. Secondly, the correlated nature of the assays and of the 
disease outcomes mean our tests have not been independent, although this means the FDR 
corrections have been conservative. A more powered study might also try to disentangle 
individual markers especially those retained in our core omics clocks and consider their 
biological plausibility as sitting on the causal pathway. 
 
Of course, association does not imply causation. Although the use of a prospective cohort 
has reduced the risk of reverse causation, undiagnosed cases (at baseline) might still have 
contributed to the effects we observe, although confounding where a latent set of underlying 
traits is influencing disease susceptibility and the biomarkers is perhaps more likely. 
Nonetheless, even in the absence of causation, OCAA does appear to often be a biomarker 
of disease and underlying BA.  
 
In conclusion, our work has strongly further evidenced the existence of BA as distinct from 
chronAge, whilst highlighting a substantial part of the OCAA is noise. The data also 
suggested there may be more than one type of BA, as measured by different clocks and 
giving rise to differing amounts of disease susceptibility, most strongly implied by our 
evidence that skin age and heart age may move in opposite directions. We also highlight 
that some OCAAs (e.g. PEA proteomics) may capture specific risks and consequently 
associate with health, whilst others (e.g. DNAme and UPLC IgG glycomics) may capture 
more generalised ageing. Our observation that clocks derived from few PCs of omics are 
less accurate in estimating chronAge but better able to predict risk factors, suggests that the 
search for BA should be pursued through salient features of biology. This supports the 
recent success of ageing clocks trained on all-cause mortality based measures2,54, 
DNAmePhenoAge2 and GrimAge54, which have been shown to be more prognostic of health 
and mortality outcomes than DNAme clocks trained on chronAge directly24,25,52,55. Similarly, 
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the mortality trained NMR Metabolomics measure from Deelen et al. is more prognostic of 
both 5- and 10-year all-cause mortality than a model of conventional mortality risk factors18. 
We therefore suggest that the focus of future research should continue to shift to clocks 
trained on mortality, or more ideally all-cause morbidity, that are prognostic of subsequent 
health outcomes rather than accurate chronAge estimators. 
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Methods 

Cohort Data 

Analyses were predominantly carried out using the Orkney Complex Disease Study 
(ORCADES)28, a population-based isolate cohort that is extensively characterised in terms 
of both traditional phenotypes, omics assays and mean 12 years of follow up via linked 
electronic health records (EHR). The additional cohorts, Croatia-Vis and Croatia-Korčula56,57, 
were used to validate omics ageing clocks trained in ORCADES. Croatia-Vis was used to 
validate a clock trained in ORCADES using a subset of proteins (those measured on the 
Olink CVDII, CVDIII and INFI panels) referred to as protein subset 1 and the UPLC IgG 
glycomics clock. Replication of the NMR metabolomics and UPLC IgG glycomics clocks 
trained in ORCADES was carried out in Croatia-Korčula. The Estonian Biobank58 (EBB) 
cohort was used to validate a clock trained using a subset of proteins (those measured on 
the Olink CVII, CVDIII, INF1 and ONCII panels) referred to as protein subset 2 as well as the 
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NMR Metabolomics clock. Both EBB and the Generation Scotland: Scottish Family Health 
Study (GS:SFHS)59, a family-based cohort comprising volunteers across Scotland, were 
used to assess two DNAme-based ageing clocks. Finally, the UK Biobank60 (UKB) was used 
to test the Clinomics and DEXA clocks trained in ORCADES. 

Omics Assays 

Dual X-ray absorptiometry (DEXA): Whole body imaging was performed on the Hologic 
fan beam DEXA scanner (GE Healthcare). Measures of body composition were derived from 
the DEXA scans using APEX2 software for bone, lean and fat tissue and APEX4 software 
for android, gynoid, visceral and lean fat mass content. 28 measures in the following broad 
categories: bone mineral density, bone mineral content, fat or lean mass percentages for 
head, trunk and limbs were selected for analyses. These were measures that did not use 
chronAge in their calculation and were also available in the UK Biobank. Measures were 
removed as outliers based on a z-score cut-off of 6 then pre-corrected for sex. Residuals 
were additionally subject to a threshold by removing outliers with a z-score cut-off of 3. 
 
DNA Methylation: The Illumina EPIC 850K array was used to measure DNA methylation 
levels in ORCADES. Quality control was carried out using the meffilQC pipeline61 and minfi 
package62. Samples were excluded as outliers if >1% of probes had a detection p-value > 
0.01, due to failure of sex concordance, if samples showed evidence of dye bias or failed 
median methylation signal z-score cut-off of 3. Probes were removed as outliers if the 
detection p-value was >0.01 in >1% of samples or had a bead count of <3 in at least 5% of 
samples. The preprocessNoob function in the “minfi” package was used for array 
normalisation to remove unwanted technical variation. M values were corrected for the 
technical covariates: plate number (as a random effect), season of venepuncture, year of 
venepuncture, plate position and 10 principal components of the control probes (as fixed 
effects) using GCTA-REML63. 
 
Instead of creating novel DNA methylation clocks when there are landmark clocks available 
in the literature, we constructed clocks based on Hannum and Horvath’s original epigenetic 
clocks, to compare with our other omics. As ORCADES used the Illumina EPIC 850k chip 
rather than the earlier 450k/27k chips used by Hannum and Horvath, our methylation clocks 
are subsets of Hannum and Horvath’s clocks. It has been shown that imputing probes that 
are absent from the 850k chip but present in the 450k/27k set leads to underestimation of 
both published ageing measures64. Thus, for our clocks named Hannum CpGs and Horvath 
CpGs we presented 62/71 and 333/353 of sites, respectively, that were present on the 850k 
chip to the penalised regression algorithm for model selection. Residuals from REML within 
a z-score threshold of 6 were then corrected for sex. 
 
NMR Metabolomics: The high throughput NMR metabolomics assay of EDTA plasma 
(Nightingale Health Ltd., Helsinki, Finland) quantified 225 metabolomics measures in molar 
concentration units. The measures include amino acids, ketone bodies, low molecular 
weight metabolites and numerous lipid and lipoproteins subclasses. In both ORCADES and 
Croatia-Korčula, metabolite measures were removed as outliers based on a z-score cut-off 
of 6, pre-corrected for sex and the use of statins as a binary variable. Residuals were 
additionally removed as outliers with a z-score cut-off of 3. 
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MS Fatty Acids Lipidomics: Shotgun lipidomics and liquid chromatography tandem mass 
spectrometry (LC-MS/MS) was used to quantify the molar concentrations of 44 fatty acids as 
described previously65. Fatty acid measures were removed as outliers based on a z-score 
cut-off of 6, pre-corrected for sex, box number, plate position and use of statins. 
 
UPLC IgG Glycomics: The glycan data have previously been described in detail by Kristic 
et al., for the ORCADES19, Croatia-Vis and Croatia-Korcula56,57 studies. Raw glycan 
measures were total area normalised and batch corrected using the “ComBat” function of 
the sva package66 in R. The normalised glycan measures were excluded as outliers based 
on a z-score threshold of 6 and pre-corrected for sex. 
 
PEA Proteomics: 1,102 proteins were measured using a proximity extension assay method 
(Olink Bioscience, Uppsala, Sweden)67 from EDTA plasma in 12 x 92-protein panels 
designated by the manufacturer: cardiovascular 2, cardiovascular 3, inflammation 1, 
metabolism, cardiometabolic, cell regulation, development, immune response, organ 
damage, oncology 2, neurology and neuro-exploratory. Measures for all twelve panels are 
available for 1,057 individuals in ORCADES, with subsets available in Croatia-Vis 
(inflammation 1, cardiovascular 2 and cardiovascular 3) and EBB (inflammation 1, 
cardiovascular 2, cardiovascular 3 and oncology 2). PEA proteomics-based OCAs were re-
derived using these subsets to allow comparison across populations. NPX values of proteins 
(on the log2 scale) including those non-missing below the lower limit of detection (LOD), 
were removed as outliers with a z-score cut-off of 6. These measures were then pre-
corrected for the following covariates via fixed effects linear regression: sex, season of 
venepuncture, time the plasma sample was in storage between collection and assay (days), 
plate number, plate row and plate column. 
 
Clinomics: This dataset consisted of 13 selected clinical measures that are routinely 
measured during visits with general practitioners and clinicians: albumin, fasting plasma 
glucose, calcium, uric acid, high density lipoprotein cholesterol, total cholesterol, 
triglycerides, height, weight, forced expiratory volume in 1 second (FEV1), and diastolic and 
systolic blood pressure. 
 
MS Metabolomics & MS Complex Lipidomics: Non-targeted metabolomic and lipidomic 
features were detected and quantified using Metabolon as described previously68. The HD4 
dataset comprised measures of 1143 biochemicals while the complex lipids dataset 
measured 1052 biochemicals, these were treated as two separate omics assays referred to 
as MS Metabolomics and MS Complex Lipidomics respectively. Measures were removed as 
outliers with a z-score cut-off of 6. These measures were then pre-corrected for the following 
covariates via fixed effects linear regression: sex, statin use, assay run day, plate number 
and plate row and plate column. 
 
EHR: The ORCADES cohort has record linkage to hospital admission records (Scottish 
Morbidity Records: SMR01). The first occurrence of any hospital admission with ICD10 
diagnosis, was taken as incidence. NHS Scotland records moved from ICD9 to ICD10 in 
April 1996, so diagnoses since ~12 years prior to assessment were captured. The disease 
groupings analysed included each ICD10 block within 5 Chapters thought a priori to 
associate with age II (Neoplasms - codes C) , IV (Endocrine, nutritional and metabolic 
diseases - codes E), IX (Diseases of the circulatory system - codes I), and X (Diseases of 
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the respiratory system - codes J). For Chapter II only C codes (malignant) were included in 
our analyses. Chapters as a whole were also analysed, as were all the diseases from these 
chapters simultaneously. Incident disease was defined as the time of first hospital admission 
with a diagnostic code recorded (in any position in the admission record) for any disease 
within the grouping being analysed. For each disease grouping, subjects with recorded 
admission prior to the date of venepuncture were then excluded entirely in the subsequent 
analysis, as already prevalent. 
 

Quality Control of Omics Measures 

Outliers were defined based on z-score thresholds that varied between omics datasets 
depending on the distributions of the raw measures. Omics measures were pre-corrected for 
known batch effects and covariates (specified above) using fixed effects linear regression or 
other specified methods. A second pass z-score threshold on the residuals was used to 
detect further outliers for a subset of assays and all missing values were removed. The 
residuals produced from covariate correction were then scaled and centred to have a mean 
of zero and a standard deviation of one to ensure that effect sizes of any variables included 
in the models were comparable. 
 

Clock Construction 

Per Omics Assay: The individuals in the ORCADES cohort were split into 75% training, 
25% testing. For the analysis comparing clock performance across omics platforms the 
testing 25% of samples were taken preferentially from the pool of individuals that possess 
measures for all of the omics platforms. Tenfold cross validation in the training sample was 
used to select the shrinkage parameter, λ, for the penalised regression that was estimated to 
produce the model with the minimum mean squared error. Models were constructed using 
three different procedures implemented using the glmnet69 and caret packages in R with 
chronAge at venepuncture as the dependent variable: i) least absolute shrinkage and 
selection operator (LASSO) regression ii) elastic net regression with an alpha of 0.5 iii) 
elastic net regression with alpha select using 10-fold cross validation in the training sample. 
We found no difference in performance between the three methods so construction using 
elastic net regression with an alpha of 0.5 was used throughout the analyses presented. 
This model was then used to estimate chronAge in the testing sample and an independent 
out of cohort sample if available. 
 
As stochasticity is present in the procedure, the variables selected for model inclusion will 
vary depending on the individuals selected to be in the training sample, clock construction 
was repeated 500 times and the features selected for inclusion and the correlation between 
chronAge and age estimated by the model were recorded to ensure that the model 
performance results presented here are representative and not an outlier due to individuals 
at extreme ends of distributions contributing to the training sample and rare model being 
used to draw conclusions (data not shown). 
 
Mega-Omics: model that was presented with all of the features from all of the omics 
platforms. The dataset itself was created by merging all of the corrected omics measures 
(residuals) after platform level quality control, again standardising all features to have a 
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mean of zero and standard deviation of one. The clock was created using the same 
construction procedure outlined above. 
 
Core Models: models were constructed per omics assay. The elastic net regression 
algorithm was presented with only those predictors that were selected for model inclusion in 
>95% of the 500 iterations of clock construction for the relevant omics platform. This 
reduced set of predictors then underwent clock construction as described above. 
 
Principal Component Clocks: To ensure that the differences in variance explained in 
chronAge by different omics clocks is not due to the discrepancy between the number of 
features available and hence the number of features selected for model inclusion across 
omics types but rather a genuine difference in the information about ageing captured by 
different omics; clocks were built using principal components (PCs) of the relevant omics 
platform as features. The first 3, 5, 10 and 20 PCs were extracted from the covariate 
corrected scaled and centred omics data at the platform level using the prcomp function in 
R. These PCs were then presented to the elastic net algorithm and clocks built. 
 

Correlation of OCAAs 

Pairwise Pearson correlations between 10 of our OCAAs were calculated, Mega-omics 
OCAA was excluded from this and all between clock comparisons as it contains predictors 
spanning multiple assays. 
 

Partitioning Variance Explained in ChronAge 

The unique variance in chronAge explained by each clock, ����, was calculated as the 
squared part correlation of chronAge (�) and age estimated by clock � while controlling for all 
of the other � clocks. Part correlations were calculated using the spcor.test function in the 
“ppcor” package in R70. The portion of variance in chronAge explained by all of the � clocks 
together, the �� from the following model: 
 

� � 	� 
 	��� 
 	���
. . . 	���  
 

Where � is chronAge and ��...� are age estimated by clocks 1 to �, was used to partition the 
total variance of chronAge further into that which remains unexplained by the 10 clocks 
(1 � ��) and that which is explained by overlapping clocks: 

1 � �1 � ��� ������
�

���

 

To gain a more detailed insight into the relationship between clocks we carried out pairwise 
comparisons. Following the same procedure as outlined above, the unique variance in 
chronAge explained by each clock in the pair is the squared part correlation of chronAge and 
age estimated by one clock while controlling for age estimated by the other clock in the pair. 
The variance remaining unexplained by either of the clocks was 1 � �� of a bivariate model. 
The overlap, calculated by subtraction, is specifically the variance in chronAge explained by 
both of the clocks in the pair. This is unlike overlap calculated in the previous step, where we 
were only able to state that this variance was not unique to a particular clock but unable to 
deconstruct further.  
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Assessing the Overlap between Clocks 

We assessed whether the combined variance in chronAge explained by pairs of clocks 
deviated from what would be expected by chance if both clocks were independently 
sampling from a latent set predictors (ISLSP) of chronAge. The combined variance in 
chronAge explained by both clocks together was calculated as the multiple �� from a 
bivariate model, with chronAge being the dependent variable and the estimated ages from 
the two clocks in the pair the independent variables. The variance explained in chronAge (��) 
by each clock (�) individually was the univariate �� from the regression of estimated age on 
chronAge. The expected variance in chronAge explained by two clocks by chance (�) was 
calculated as follows:  

� � 1� �1� ����1 � ��� 
The idea being that the variance in chronAge not already explained by the first clock is 
1 � ��. With the null hypothesis that the two clocks are independent samples from the latent 
set of complete predictors and thus explain partly overlapping information about age. The 
expected left unexplained after the addition of the second clock is thus �1 � ����1 � ���.  
 
To allow for the comparison of the deviation of observed variance explained in chronAge (�) 
from expected (�) across pairs of clocks, this deviation was re-scaled. As the magnitude of 
��  effects the possible range of values � could take. The theoretical minimum variance 
explained (���	) by two clocks is the variance explained by the larger of the two clocks alone 
(the second clock only providing information already captured by the first). The theoretical 
maximum (��
�) is �� 
 �� or 1 if �� 
 �� � 1 (the clocks are explaining entirely non-
overlapping variance). Comparisons containing clocks with high ��  will have a much smaller 
range of possible � than those with low ��  so directly comparing the magnitude of the 
deviation of observed from expected is not ideal. The results presented are on a scale of 
excess overlap calculated as follows: 

� � �
� � ���	

 

With a value of 0 meaning that the observed variance explained equals that expected by 
chance if the clocks were independent. A value of 1 denoting that no additional variance was 
explained with the addition of the second clock. Negative values are possible and mean that 
the two clocks overlap less than expected and track separate aspects of chronological 
ageing, but in practice, we see that the clocks always track more common aspects than 
would be expected under the null hypothesis, albeit to varying degrees. 
 

Association with health-related phenotypes & Incident Disease  

OCAAs were tested for association with health-related risk factors and age-related incident 
diseases, as measured by hospital admission.  
 
Association with chronAge: We first tested whether the risk factors and disease outcomes 
were associated with chronAge. For incident disease: time from assessment to incidence or 
to study end (the date when SMR01 records were extracted: December 2017, around ten 
years after assessment) was modelled using a Cox proportional hazard model71 and the 
Surv function in the “survival” package in R. Subjects with prevalent disease were excluded. 
The baseline hazard was dependent on time since assessment, and hazards ratios 
dependent on chronAge and sex. We used time since assessment as the determinant of 
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base hazard rather than chronAge, so that we could determine which groupings had 
stronger age-related effects and compare the effects of OCAA to those of chronAge. P-
values for association with chronAge (and later OCAA) were calculated using a one-sided 
test, with H1 being that chronAge increased risk. 
 
Association with OCAAs: with standardised risk factors (units of phenotypic standard 
deviation) were carried out using linear regression with chronAge and sex fitted as fixed 
effects covariates. To restrict the burden of multiple testing we only tested the association of 
OCAAs on risk factors or disease blocks which showed a statistically significant association 
(effect size >0) with chronAge at outset (Benjamini-Hochberg FDR<10%) and had >5 
incident cases (disease blocks). We tested the effect of OCAAs on each disease grouping 
using the same model as for chronAge, including chronAge and OCAA as effects. OCAA 
was not standardised but observed effect sizes were rescaled (divided) by the effect of 
chronAge, using the same model, enabling a comparison of the effect of one year's OCAA 
with one year's chronAge, with a value of 1 denoting the same effect. False discovery rate 
was again determined using the Benjamini-Hochberg method (FDR<10%). 
 
Across both risk factors and disease, we found that large estimated effects arose in the 
context of large SEs. To facilitate visualising the results we had most confidence in we 
applied a shrinkage method, imposing a prior assumption on the distribution of beta (mean 
0, SD 1) to the likelihood of our observed beta, shrinking resultant estimates with larger SEs 
more towards 0. 
 
Individual tests of association generally had limited power due to multiple testing and the low 
variance of OCAA (compared with chronAge). We therefore considered the results of each 
OCAA across multiple outcomes by inverse variance weighting (IVW) observed results for 
individual outcomes. The covariance amongst outcomes and predictors, mean that the 
independence assumption for meta-analysis (or sign testing) is violated. Whilst this should 
not bias estimates, their precision will be overstated. We consider these results to be 
descriptive, and not conformable to formal testing. We use “~” to denote SEs calculated 
under the violated independence assumption, but still consider these useful to give a sense 
of magnitude. Conversely, for the same reason, the formal tests we perform (FDRs) are 
likely to be conservative.  
 
We repeated these analyses with standardised OCAAs to compare the prognostic ability of 
different OCAAs at a population level, across risk factors and diseases and with our PC 
clocks OCAAs. 
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ALL

C
C15−C26 MNs of digestive organs

C30−C39 MN of respiratory and intrathoracic organs
C43−C44 Melanoma and other malignant neoplasms of skin

C51−C58 MNs of female genital organs
C60−C63 MNs of male genital organs

C64−C68 MN of urinary tract
C76−C80 MNs of ill−defined, secondary and unspecified sites
C81−C96 MN of lymphoid, haematopoietic and related tissue

E
E00−E07 Disorders of thyroid gland

E10−E14 Diabetes mellitus
E50−E64 Other nutritional deficiencies

E70−E90 Metabolic disorders
I

I05−I09 Chronic rheumatic heart diseases
I10−I15 Hypertensive diseases

I20−I25 Ischaemic heart diseases
I26−I28 Pulmonary heart disease and diseases of pulmonary circulation

I30−I52 Other forms of heart disease
I60−I69 Cerebrovascular diseases

I70−I79 Diseases of arteries, arterioles and capillaries
I95−I99 Other and unspecified disorders of the circulatory system

J
J09−J18 Influenza and pneumonia

J20−J22 Other acute lower respiratory infections
J40−J47 Chronic lower respiratory diseases

J60−J70 Lung diseases due to external agents
J80−J84 Other respiratory diseases principally affecting the interstitium

J90−J94 Other diseases of pleura
J95−J99 Other diseases of the respiratory system
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