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Abstract

The interaction between a consumer (such as, a predator or a parasitoid) and a resource (such as, a prey or a host)
forms an integral motif in ecological food webs, and has been modeled since the early 20th century starting from
the seminal work of Lotka and Volterra. While the Lotka-Volterra predator-prey model predicts a neutrally stable
equilibrium with oscillating population densities, a density-dependent predator attack rate is known to stabilize the
equilibrium. Here, we consider a stochastic formulation of the Lotka-Volterra model where the prey’s reproduction
rate is a random process, and the predator’s attack rate depends on both the prey and predator population densities.
Analysis shows that increasing the sensitivity of the attack rate to the prey density attenuates the magnitude of
stochastic fluctuations in the population densities. In contrast, these fluctuations vary non-monotonically with the
sensitivity of the attack rate to the predator density with an optimal level of sensitivity minimizing the magnitude of
fluctuations. Interestingly, our systematic study of the predator-prey correlations reveals distinct signatures depending
on the form of the density-dependent attack rate. In summary, stochastic dynamics of nonlinear Lotka-Volterra
models can be harnessed to infer density-dependent mechanisms regulating consumer-resource interactions. Moreover,
these mechanisms can have contrasting consequences on population fluctuations, with predator-dependent attack rates
amplifying stochasticity, while prey-dependent attack rates countering to buffer fluctuations.

I. INTRODUCTION

Consumer-resource dynamics has been traditionally studied using an ordinary differential equation framework
starting from the seminal work of Lotka and Volterra over a century ago [1]–[7]. The classical Lotka-Volterra model

dh(t)
dt

= rh(t)− ch(t)p(t) (1a)

d p(t)
dt

= ch(t)p(t)− γ p(t) (1b)

captures the dynamics of a predator-prey system, where h(t) and p(t) are the average population densities (number
of individuals per unit area) of the prey (i.e., the resource), and the predator (i.e., the consumer), at time t. Here r
represents the prey’s growth rate and h(t) grows exponentially over time in the absence of the predator. Predators
consume prey with rate c that we refer to as the attack rate, and each attacked prey leads to a new predator. Finally,
each predator dies at a rate γ . In addition to predator-prey systems, ecological examples of such consumer-resource
dynamics include host-parasitoid interactions that have tremendous application in biological control of pest species
[8]–[15]. In a typical interaction, parasitoid wasps search and attack their host insect species by laying an egg
within the body of the host. The egg hatches into a juvenile parasitoid that develops within the host by eating it
from the inside out. Once fully developed, the parasitoid emerges from the dead host to repeat the life cycle.

The steady-state prey and predator equilibrium densities corresponding to the Lotka-Volterra model (1) are given
by

h∗ =
γ

c
, p∗ =

r
c
, (2)

respectively. It turns out that this equilibrium is neutrally stable resulting in cycling population densities with a
period of 2π/

√
rγ (assuming perturbations around the equilibrium) [16], and such population cycles have fascinated

theoretical ecologists with several interpretations/extensions [17]–[19]. There is a rich body of literature expanding
the Lotka-Volterra model to understand how diverse processes can push the equilibrium towards stability or
instability [20]–[29]. For example, self-limitation in the prey’s growth in the form of a carrying capacity stabilizes
the equilibrium [16]. Interestingly, a wide class of two-dimensional consumer-resource models with an unstable
equilibrium result in a stable limit cycle [30], [31].
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In this contribution, we focus on generalizing (1) to

dh(t)
dt

= rh(t)− f (h, p)h(t)p(t) (3a)

d p(t)
dt

= f (h, p)h(t)p(t)− γ p(t) (3b)

that considers a density-dependent attack rate f (h, p), where f is a continuously differentiable function in both
arguments. A generalized attack rate encompasses a wide range of ecological mechanisms. At one end of the
spectrum are prey-dependent attack rates that capture nonlinear functional responses. For a Type II functional
response

f =
c1

1+ c1Thh
(4)

is a decreasing function of the prey density, where c1 > 0 is the attack rate at small prey densities and Th is the
handling time [32]–[34]. Basically, the total attack rate per predator f (h, p)h increases linearly with h at low prey
densities, but saturates to 1/Th at high prey densities. Similarly, a Type III functional response corresponds to a
sigmoidal function

f =
cmaxhq

1+ cmaxThhq+1 , q≥ 1 (5)

that initially accelerates with increasing prey density and then saturates to 1/Th. At the other end of the spectrum are
predator-dependent attack rates. For example, a decreasing attack rate with increasing predator density implies mutual
interference between predators [35]–[38], or aggregation of predators to a subpopulation of high-risk individuals
[39]–[43]. In contrast, cooperation between predators is reflected in f increasing with predator density.

In this contribution we provide analytical conditions for having a stable population dynamics in terms of
the sensitivity of f to prey/predator densities, thus combining the impact of different mechanisms into a single
generalized stability criterion. Furthermore, we consider a stochastic formulation of the model by allowing the prey’s
growth rate to follow a OrnsteinUhlenbeck random process that drives the deterministic predator-prey dynamics (3).
We systematically investigate how random fluctuations in the prey’s growth rate propagate to population densities
and uncover mechanisms that amplify or attenuate these fluctuations.

II. STABILITY ANALYSIS OF THE GENERALIZED LOTKA-VOLTERRA MODEL

Setting the left-hand-side of (3) to zero, the equilibrium population densities h∗ and p∗ of the generalized Lotka-
Volterra model are the solution to

f (h∗, p∗) =
r
p∗

, p∗ =
rh∗

γ
. (6)

We assume that the function form of f is such that (6) yields a unique non-trivial equilibrium. Before performing
a local stability analysis around the equilibrium, we define two dimensionless log sensitivities

fh := h∗
f (h∗,p∗)

∂ f (h,p)
∂h |h=h∗,p=p∗ , log sensitivity of the attack rate f (h, p) to the prey density

fp := p∗
f (h∗,p∗)

∂ f (h,p)
∂ p |h=h∗,p=p∗ , log sensitivity of the attack rate f (h, p) to the predator density

where h∗
f (h∗,p∗)

∂ f (h,p)
∂h |h=h∗,p=p∗ is the partial derivative of f with respect to h evaluated at the equilibrium. To be

biology realistic, we assume that f (h, p)p is an increasing function of the predator density that constrains fp >−1,
i.e., the decrease in f with increasing p cannot be faster than 1/p.

Linearizing the right-hand-side of (3) around the equilibrium yields the following Jacobian matrix

A =

[
−r fh − fpγ− γ

r fh + r γ fp
,

]
(7)

and stability requires a Hurwitz matrix whose eigenvalues have negative real parts [44], [45]. For a two-dimensional
system, the equilibrium is asymptotically stable, if and only if, the determinant of the A matrix is positive and its

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.01.429174doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429174
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3 4

-1

1

2

3

4

Unstable 
equilibrium

Lo
g 

se
n

si
ti

vi
ty

 o
f 
at

ta
ck

 r
at

e
to

 p
re

da
to

r 
de

n
si

ty

Stable equilibrium
(Complex eigenvalues)

Stable equilibrium
(Real eigenvalues)

Log sensitivity of attack rate
to prey density

Neutrally stable 
Lotka-Volterra equilibrium

Fig. 1: The black shaded region represents the region of stability for the equilibrium of the generalized Lotka-
Volterra model (3). The stability criterion (10) is plotted in terms of the log sensitivities of the attack rate f (h, p)
to the prey ( fh) and predator ( fp) densities. The yellow line within the stability region separates the regions of
negative real eigenvalue of the Jacobian matrix and complex eigenvalues with negative real parts. For this plot, the
prey’s growth rate is assumed to be r = 2 per unit time and γ = 1 per unit time.

trace is negative [44], [45]. This implies that the equilibrium obtained as the solution to (6) is asymptotically stable,
if and only if, both these inequalities hold

fp <
r fh

γ
, 1+ fh + fp > 0. (8)

The black shaded region in Fig. 1 shows the stability region as a function of the log sensitivities fp and fh, with
the neutrally stable Lotka-Volterra equilibrium corresponding to fp = fh = 0 on the edge of stability. Moreover, the
intersection of the two lines in Fig. 1 reveals

fh >−
1

1+ r
γ

(9)

as a necessary condition for stability. These stability conditions for continuous-time consumer-resource models are
analogous counterparts to recently developed stability conditions for discrete-time consumer-resource models [46],
[47].

It’s clear from the Fig. 1 that as reported in previous analysis [48], a Type II functional response with fh < 0 and
fp = 0 will lead to an unstable equilibrium. In contrast, fh > 0 and fp = 0 stabilizes the equilibrium. As discussed
earlier, fh > 0 arises in the initial phase of a Type III functional response where the predator attack rate accelerates
with increasing prey density. Interestingly, a Type II functional response ( fh < 0) can provide stability in a narrow
range if combined with other mechanisms, such as mutual interference between predators where fp < 0. Overall
these results show that an attack rate that increases with prey-density is sufficient to stabilize the equilibrium as
long as −1 < fp < r ∗ fh. Similarly, a predator-dependent attack rate with fh = 0 and −1 < fp < 0 is sufficient to
stabilize the equilibrium. Finally, we point out that the line(

fp−
r fh

γ

)2

=
4r(1+ fh + fp)

γ
(10)

divides the stability region into two parts – negative real eigenvalues of the Jacobian matrix below the line, and
complex eigenvalues with negative real parts above the line. With increasing r, the line shifts further to the left.
This separation within the stability region is relevant in the stochastic formulation of the model, where a stable
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equilibrium with complex eigenvalues of the A matrix can yield signatures of oscillatory dynamics in the presence
of noise.

III. STOCHASTIC FORMULATION OF THE GENERALIZED LOTKA-VOLTERRA MODEL

Having determined the stability regions of the deterministic model (3), we next turn our attention to the stochastic
formulation of this model. In this context, much prior work has studied demographic stochasticity arising at low
population abundances using Lotka-Volterra and spatial predator-prey models [44], [49]–[54]. Here, we focus on
environmental stochasticity that arises through randomness in the prey’s growth rate. Towards that end, we let the
prey’s growth rate r(t) evolve as per an Ornstein-Uhlenbeck (OU) process

dr(t) = γr (r∗− r(t))dt +σdw(t) (11)

where w(t) is the Wiener process and r∗ is the mean level of r(t). By using an OU process we capture memory
in growth-rate fluctuations, with parameters γr > 0 and σ > 0 characterizing the time-scale and magnitude of r(t)
fluctuations, respectively. These growth-rate fluctuations in turn drive population-density fluctuations through the
model

dh(t) = r(t)h(t)dt− f (h, p)h(t)p(t)dt (12a)
d p(t) = f (h, p)h(t)p(t)dt− p(t)dt. (12b)

Before describing mathematical tools for quantifying statistical moments of population densities, we point out
that our approach of incorporating environmental stochasticity is different to other works that have considered
either seasonal deterministic variations in r(t) [44], [55] or have added memoryless Brownian noise terms to the
deterministic population dynamics [56]–[59].

To obtain the time evolution of the statistical moments of r(t), h(t) and p(t) corresponding to the nonlinear
stochastic dynamical system (11)-(12) we use the following result. For any continuously differentiable function
ψ(r,h, p), its expected value evolves as

d〈ψ(r,h, p)〉
dt

=

〈
∂ψ

∂ r
γr (r∗− r)+

1
2

∂ 2ψ

∂ 2r
σ

2 +
∂ψ

∂h
(rh− f (h, p)hp)+

∂ψ

∂ p
( f (h, p)hp− p)

〉
, (13)

and moment dynamics is obtained by simply using a monomial

ψ(r,h, p) = rm1hm2 pm3 , m1,m2,m3 ∈ {0,1,2, . . .} (14)

in (13) [60]. Throughout the manuscript we use 〈 〉 to denote the expected value operation. For example, taking
m1 = 1 or 2 with m2 = m3 = 0 yields the time evolution of the first two statistical moments of r(t)

d〈r〉
dt

= γr (r∗−〈r〉) (15a)

d〈r2〉
dt

= 2γr
(
r∗〈r〉−〈r2〉

)
+σ

2 (15b)

that result in the following steady-state mean and variance

lim
t→∞
〈r〉= r∗ (16a)

σ
2
r := lim

t→∞
〈r2〉−〈r〉2∗= σ2

2γr
, (16b)

respectively. Similarly, to derive the mean dynamics of the prey’s population density we use m2 = 1, m1 = m3 = 0
to obtain

d〈h〉
dt

= 〈rh〉−〈 f (h, p)hp〉, (17)

where the right-hand-side now consists of higher-order moments. This problem of unclosed moment dynamics,
where the time evolution of lower-order moments depends on higher-order moments has been well described for
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Fig. 2: Noise in the fluctuations of population densities as determined by (25) plotted for increasing fh for fp = 0.
Stochastic realizations of the prey’s growth rate, population densities of the prey and the predator are shown for
fh = 0.5 (left) and fh = 10 (right). Note that for large values of fh fluctuations in the predator density remain
pronounced even though fluctuations in the prey density are minimal. For this plot, r̂∗ = 1/3, γ̂r = 6, CV 2

r = 0.75

nonlinear stochastic systems, and often arises in the modeling of biochemical and ecological processes [15], [61]–
[77]. Typically, different closure schemes are employed to approximate moment dynamics and we use one such
approach known as the Linear Noise Approximation (LNA) [78]–[82]. In essence, assuming a stable equilibrium
(h∗, p∗) in the deterministic formulation as given by (replacing r by r∗ in (6))

f (h∗, p∗) =
r∗

p∗
, p∗ =

rh∗

γ
, (18)

then for small fluctuations in r(t), h(t), p(t) around their respective equilibriums, the model nonlinearities can be
linearized as

rh≈ rh∗+ r∗h− r∗h∗ (19a)

f (h, p)hp≈ r∗h∗
(

1+(1+ fh)
h−h∗

h∗
+(1+ fp)

p− p∗

p∗

)
. (19b)

Moment dynamics is then derived after replacing these linear approximations in place of their nonlinear terms in
(13) resulting in a closed system – the time derivative of a second-order moment now only depends on moments
of order up to two. More specifically, if we collect all the first and second-order moments within the vector

µ = [〈r〉,〈h〉,〈p〉,〈r2〉,〈h2〉,〈p2〉,〈rh〉,〈rp〉,〈hp〉]T , (20)

then it’s time evolution is given by a linear time-invariant system

dµ

dt
= â+Aµ µ (21)
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for some â and matrix Aµ . Solving this linear system at steady-state quantifies the magnitude of fluctuations in the
population densities.

IV. RESULTS AND DISCUSSION

In the previous section, we described a LNA-based approach to quantify the statistical moments of population
densities. Here we present some of the key results and insights from the analysis of moments. We quantify noise
in the random processes r(t), h(t), p(t) using the square of their respective coefficient of variations

CV 2
r := lim

t→∞

〈r2〉−〈r〉2

〈r〉2
(22a)

CV 2
h := lim

t→∞

〈h2〉−〈h〉2

〈h〉2
(22b)

CV 2
p := lim

t→∞

〈p2〉−〈p〉2

〈p〉2
. (22c)

Solving (21) in in Mathematica [83] yields the following analytical expressions for the noise in the prey and the
predator population densities (normalized by the noise in the prey’s growth rate)

CV 2
h

CV 2
r
=

r̂∗
(
(γ̂r− fp) f 2

p + fh f 2
p r̂∗+ γ̂r(1+ fh + fp)r̂∗

)
(1+ fh + fp)( fhr̂∗− fp)(γ̂r(γ̂r− fp)+(1+ fh + γ̂r fh + fp)r̂∗)

(23a)

CV 2
p

CV 2
r
=

r̂∗(1+ fh)
2(γ̂r− fp + fhr∗)

(1+ fh + fp)( fhr̂∗− fp)(γ̂r(γ̂r− fp)+(1+ fh + γ̂r fh + fp)r̂∗)
, (23b)

respectively, and they depend on four dimensionless parameters - the sensitivity of the attack rate to the prey density
( fh), the sensitivity of the attack rate to the predator density ( fp), the prey’s average growth rate and the time-scale
of fluctuations in r(t) normalized by the predator’s death rate

r̂∗ =
r∗

γ
, γ̂r =

γr

γ
. (24)

Recall from (10) that the stability of the deterministic equilibrium constrains fh and fp in the stability region of Fig.
1 which ensures positivity of noise levels. Moreover, as one gets closer to the Lotka-Volterra model ( fh→ 0 and
fp→ 0), the system approaches the stability boundary leading to (CV 2

h →∞ and CV 2
p →∞) in the LNA framework

of noise derivation.
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Fig. 3: Noise in the fluctuations of prey density CV 2
h as determined by (23) plotted as a function of fp. Noise is

minimized at an intermediate value of fp and stochastic realizations of the prey and predator densities are shown
for three different values of fp. For this plot, r̂∗ = 2 , fh = 0.5, σ = 1 and γ̂r = 1.
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Fig. 4: Pearson’s correlation coefficient between the predator and the prey population densities as predicted by (31)
for varying levels of fp with fp < 0 ( fp > 0) driving a positive (negative) correlation. Sample trajectory paths are
shown for fp = 1 and fp =−1. Other parameters taken as r̂∗ = 2, fh = 0.6 and γ̂r = 1.

For an attack rate that only depends on the prey’s density ( fp = 0), (23) reduces to

CV 2
h

CV 2
r
=

γ̂r r̂∗

fh

(
γ̂r

2 + r̂∗+ fhr̂∗(1+ γ̂r)
) (25a)

CV 2
p

CV 2
r
=

(1+ fh)(γ̂r + fhr̂∗)

fh

(
γ̂r

2 + r̂∗+ fhr̂∗(1+ γ̂r)
) (25b)

and fluctuations in population densities monotonically decrease with increasing dependence of the attack rate on
the prey’s density (Fig. 2). Interestingly, while

lim
fh→∞

CV 2
h

CV 2
r
= 0 (26)

the noise in the predator’s abundance approached a non-zero limit illustrating noise propagation of growth-rate
fluctuations to the predator density via the prey.

lim
fh→→∞

CV 2
p

CV 2
r
=

1
1+ γ̂r

. (27)

Our analysis further shows that when r̂∗ < 1, then CV 2
p >CV 2

h . In contrast, when r̂∗ > 1, then CV 2
p <CV 2

h for small
value of fh, and CV 2

p >CV 2
h beyond a critical value fh. One observation from the equilibrium analysis in (18) is

that for a prey-dependent attack rate, h∗ is independent of r∗ implying that if the prey’s growth rate is chosen from
a static distribution then it will not create any fluctuations in the preys’ density. This can be seen in (25) where in
the limit

lim
γ̂r→0

CV 2
h = 0. (28)

However, as p∗ is linearly dependent of r∗

lim
γ̂r→0

CV 2
p =CV 2

r . (29)

While fluctuations in population densities monotonically decrease with increasing fh, the impact of a predator-
dependent attack rate is quite different with noise levels varying non-monotonically with fp (Fig. 3). This effect can
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be understood in term of the stability region in Fig. 1, where for a given fh > 0 stability requires −1− fh < fp < r∗ fh,
and increasing fp on either side puts the system closer to the stability boundary amplifying random fluctuations.
This results in a scenario where fluctuations in population densities are minimized at an intermediate value of fp.

We next investigate the predator-prey Pearson’s correlation coefficient

ρ := lim
t→∞

〈hp〉−〈h〉〈p〉√
〈h2〉−〈h〉2

√
〈p2〉−〈p〉2

. (30)

The moment dynamics (21) results in the following closed-form expression

ρ =−
fp
√

γ̂r + fhr̂∗− fp√
(γ̂r− fp) f 2

p + fh f 2
p r̂∗+ γ̂r(1+ fh + fp)r̂∗

(31)

highlighting an interesting result - while a negative dependence of the attack rate ( fp < 0) on the predator density
leads to positive predator-prey correlations, a positive dependence fp > 0 leads to negative correlations (Fig. 4).
Moreover, predator-prey density fluctuations are predicted to be uncorrelated for a prey-dependent attack rate. To
understand this result, one can derive from (18) the following log sensitivities of the equilibrium densities to r∗

r∗

h∗
dh∗

dr∗
=−

fp

1+ fp + fh
,

r∗

p∗
d p∗

dr∗
=

1+ fh

1+ fp + fh
. (32)

Thus, when fp > 0, the prey’s equilibrium density decreases with increasing r*, while the predator’s equilibrium
density always increases with r∗. These opposing responses of equilibrium densities intuitively explain the negative
correlation seen for fp > 0. In contrast, when fp < 0, both equilibrium densities increase with r∗ and manifest in a
positive correlation in the stochastic model. Recent work in host-parasitoid discrete-time models with a random host
reproduction rate has also identified contrasting correlations depending on the mechanism stabilizing the population
dynamics [84].

In summary, we have developed a novel stability criterion for a generalized Lotka-Volterra model with a density-
dependent attack rate. (Fig. 1). These result reveal that a Type II functional response can stabilize the equilibrium
if combined with mechanisms involving predator inefficiency that puts the system in the black shaded region
corresponding to fh < 0 and fp > 0. Moreover, stability arises quite robustly for a Type III functional response when
fh > 0 as long as fp is small enough to be in between −1− fh and r fh. This stability is also reflected in the stochastic
model where density fluctuations monotonically decrease with increasing fh for a prey-dependent attack rate (Fig. 2).
However, predator-dependent attack rates can amplify stochasticity as fp gets close to the stability boundary on either
side of the x-axis in Fig. 1. Finally, we have shown that population density correlations may contain signatures on
stabilizing mechanisms at play with no correlation in predator-prey densities implying a prey-dependent attack rate
(Fig. 4), a negative correlation implying predator cooperation ( fp > 0), and a positive correlation implying mutual
interference between predators ( fp < 0). Future work will expand these results to consider demographic stochasticity
by explicitly modeling probabilistic birth-death events. It will also be interestingly to consider competition between
two or more consumers, and also look at apparent competition between different prey species attacked by a common
predator [85], [86]. Along these lines, new results have recently been developed in the discrete-time framework
[46], [87].
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