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ABSTRACT 10 

Autoimmune diseases are a major cause of mortality1,2. Current treatments often yield 

severe insult to host tissue. It is hypothesized that improved “precision medicine” therapies will 

target pathogenic cells selectively and thus reduce or eliminate severe side effects, and 

potentially induce robust immune tolerance3. However, it remains challenging to systematically 

identify which cellular phenotypes are present in cellular ensembles. Here, we present a novel 15 

machine learning approach, Signac, which uses neural networks trained with flow-sorted gene 

expression data to classify cellular phenotypes in single cell RNA-sequencing data. We 

demonstrate that Signac accurately classified single cell RNA-sequencing data across diseases, 

technologies, species and tissues. Then we applied Signac to identify known and novel immune-

relevant precision medicine candidate drug targets (n = 12) in rheumatoid arthritis. A full release 20 
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of this workflow can be found at our GitHub repository 

(https://github.com/mathewchamberlain/Signac). 
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INTRODUCTION 5 

The heterogeneity of autoimmune diseases complicates the discovery of new treatments. 

Similar symptoms can be associated with distinct immune phenotypes, and conversely, the same 

immune phenotypes can give rise to different symptoms. Rheumatoid arthritis (RA) is a 

prototypic example, where symptoms can vary and affect different organ systems not only across 

patients, but also longitudinally in the same patient4,5. Although knowledge of the immune 10 

phenotypes and their contributions to the disease profile would greatly enhance our ability to 

target pathogenic pathways in autoimmune diseases and in cancer, it is difficult to identify even a 

single cellular phenotype in vivo6–8, and therefore it remains unclear what is the immune 

composition of diseased tissues and how do cells contribute to the overall disease profile. 

Due to their ability to identify cellular phenotypes in diseased tissue with single cell 15 

resolution, single-cell RNA sequencing (scRNA-seq) technologies are now mainstream in drug 

discovery and disease research9. However, cellular phenotypes are not identified from single cell 

data alone10. Instead, single-cell data analysis is typically a labor-intensive, project-specific and 

subjective process, such that two groups observing the same data will often arrive at a different 

set of conclusions11. The key analytical challenges of single-cell data analysis are how to map 20 

single-cell observations to known immune phenotypes in a consistent fashion independent of the 

scientist interpreting the experiment and how to efficiently identify disease-associated cellular 

phenotypes. 
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In this study, we filled this gap by developing a robust, efficient and scalable machine 

learning algorithm, Signac, which (a) accurately and consistently maps single-cell identities to a 

detailed hierarchy of known immune phenotypes; (b) identifies novel cell populations and (c) 

surfaces known and novel drug targets from single cell data. Overall, our approach converts 

scRNA-seq data into an objective readout that can be used for the study of immune cells across 5 

diseases, technologies, species and tissues12. 

Our approach differs from all existing automatic annotation methods (Table 1) as it is the 

only method that; (a) reliably classifies single cell data from any technology or tissue without 

any tissue- or technology-specific training11; (b) was validated with CITE-seq and with flow 

cytometry data; (c) uses both single cell and bulk gene expression reference data, allowing it to 10 

“learn from experience”; (d) discovers potentially novel cellular populations in single cell data; 

(e) identifies rare cellular phenotypes (a known limitation of other methods)13; (f) differentiates 

cell types that are highly similar to each other, like T cell subsets (a known limitation of other 

methods)11,13; (g) classifies individual cells instead of clusters of cells12,14; (h) classifies non-

human data to help study under-represented model organisms that lack sufficient reference 15 

data11,13; (i) is integrated with popular software packages SPRING and Seurat for ease of use12,15; 

and (j) outperformed all other pre-trained methods in benchmarking data from peripheral blood 

mononuclear cells (PBMCs) that were sequenced with seven different technologies (10X v2, 

10X v3, CEL-Seq2, Drop-seq, InDrop, Smart-seq2 and Seq-well)16. We attribute these 

differences to the novelty of our method: a neural network-based hierarchical classification 20 

trained with bulk sorted reference data which does not require pre-defined marker genes and can 

learn from the single cell data that it classifies. To summarize, its detailed immunological 
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classification and its extensive ability to learn and refine cell type representations make our 

algorithm unique among existing solutions. 

Table 1: Comparison of cell type annotation methods 

Name (version) Method Reference 
data source 

Trained prior 
to inter-dataset 
classification11 

Unknown 
cell types 
allowed 

CITE-seq 
validated 

FACs 
validated  

Inter-dataset 
performance†  

scVI17 
(0.3.0) 

Neural network Single cell Yes No No No Poor 

Cell-BLAST18 
(0.1.2) 

Cell-to-cell 
similarity 

Single cell Yes Yes No No Poor 

Garnett19 (0.1.4) Elastic net 
multinomial 
regression 

Single cell Yes Yes No No Poor 

SCINADE
20 (1.1.0) Bimodal 

distribution 
Single cell Yes No No No Good 

 
SingleCellNet21 
(0.1.0) 

Random forest Single cell Yes No No No Good 

CHETAH22 
(0.99.5) 

Correlation 
(hierarchy) 

Single cell Yes Yes No No Poor 

scmapcell23 
(1.5.1) 

KNN 
classification 
with cosine 
similarity 

Single cell Yes Yes No No Good 

scID24 (0.0.0.9000) Fisher’s linear 
discriminant 

Single cell Yes Yes No No Good 

SCINA20 pre-
trained (1.1.0) 

Bimodal 
distribution 

Single cell No Yes No No Poor 
 

Moana SVM with 
linear kernel 

Bulk No No No No Poor 

Garnett pre-
trained11,19 (0.1.4) 

Elastic net 
multinomial 
regression 

Single cell No Yes No No Poor 

DigitalCellSorter25 
(e369a34) 

Voting based 
on markers 

Marker-
based 

No No No No Poor 

Signac 
(2.0.7) 

Neural network Bulk and 
single cell 

No Yes Yes Yes Good 

†Defined for all methods except Signac previously11; we used the same metric here (see 
Methods: Benchmarking Signac against other annotation methods; Supplemental dataset 1) 5 
 

RESULTS 

A novel approach for immune cell identification (Signac) 

To annotate cellular phenotypes in single-cell transcriptomic data, we developed a novel 

approach, Signac, which used machine learning to classify each cell in unlabeled scRNA-seq 10 
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data according to a detailed hierarchy of immune phenotypes (Fig. 1A-B). Our approach is based 

on an ensemble of neural network classifiers that were trained on a reference dataset of gene 

expression profiles for purified, sorted cell types derived from flow-sorted cells generated by the 

Human Primary Cell Atlas (HPCA)26. First, we identified gene markers that distinguished each 

level of the cell type hierarchy (Fig. 1A) by performing differential gene expression analysis 5 

with the HPCA data and by performing meta-analysis of previously established gene markers 

(Supplemental Figure 1; see Methods: Establishing the HPCA reference data gene markers for 

training Signac; Supplemental Dataset 2)26–28. This established a set of gene markers, but it left 

open the question of how to use them to identify cells in scRNA-seq data. We reasoned that this 

task could be accomplished with machine learning29. However, the HPCA data contains as few 10 

as two samples for each sorted cell type population (Supplemental Figure 1), which is too few 

for machine learning methods that typically require hundreds or thousands of samples26,30. To 

address this problem, we bootstrapped the HPCA data and then used the bootstrapped data to 

train an ensemble of n = 100 neural network classifiers to make cell type classifications (Fig. 1C; 

see Methods: Establishing a predictive model for cellular phenotypes using the HPCA reference 15 

data; Supplemental Figure 1). 

To validate our approach, we generated predictions for flow-sorted gene expression data 

that were not used in the analysis described above and instead originated from the Encode and 

Blueprint Epigenomics consortia, which used a different sequencing technology (RNA-seq) than 

the HPCA data (microarray)26,31,32. We observed 100% accuracy in the classification of B-cells, 20 

mononuclear phagocytes, neutrophils, CD8 T-cells, CD4 T-cells, NK-cells, plasma cells, T 

regulatory cells and nonimmune cells (Supplemental Figure 2; see Methods: Signac 
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classification), supporting the idea that our approach can classify diverse cell types in different 

data sets26. 

However, single cell data are distinct in many ways from the HPCA, Blueprint and 

Encode data described above26,31,32. For example, single cell data are sometimes composed of 

cell types for which flow-sorted data are unavailable, and may exhibit single cell technology-5 

specific artifacts, like dropouts and doublets10,27,33–35. To address these concerns, we developed 

methods for learning gene expression-based representations of cell types from single cell data, 

for imputing missing gene expression values, and for leaving cells unclassified if they did not 

conform to a known cellular phenotype (Fig. 1D). 

Signac reliably distinguishes immune cells from non-immune cells in a variety of peripheral 10 

tissues 

A fundamental requirement of automated immune cell type classification is the ability to 

distinguish immune cells from the cells of the host tissue at the infiltration site. Our approach 

succeeded in separating immune from nonimmune cells in data from three mixed tissue 

experiments deriving cells from human kidney, synovium, and lung, generated with either plate-15 

based (Fig. 2A-B) or droplet-based technologies (Fig. 2C). These data were visualized with 

SPRING, a two-dimensional force-layout embedding that we used for interactive exploration of 

single-cell gene expression data (see Methods: Single cell data pre-processing)15,36. Signac 

also correctly rejected the non-immune label in data derived from human peripheral blood 

mononuclear cells (PBMCs; Fig. 2D)37, indicating accurate immune and nonimmune cell-20 

classifications in peripheral tissues as well as in blood. 

Signac accurately classified cell types in distinct tissues, technologies and diseases 
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Next, we applied Signac to annotate cellular phenotypes for the synovium and the 

PBMCs data introduced above. Unlike typical scRNA-seq data, these data contain simultaneous 

protein expression data for each individual cell measured with cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq) for the PBMCs data and with flow 

cytometry for the synovium data33,37. To validate the cell type classifications generated by 5 

Signac, we determined to what extent Signac, which uses only transcriptional information, 

labeled cellular phenotypes that were consistent with the expected lineage-specific protein 

expression data. 

Using only transcriptional data, Signac identified several distinct cellular phenotypes in 

PBMCs that were consistent with the expected protein expression data: CD19+ B-cells, 10 

CD19+CD25+ memory B-cells, CD19+CD25-CCR7+ naïve B-cells, CD14++CD16- classical 

monocytes, CD14+CD16++ nonclassical monocytes, CD3+ T cells, CD45RA+CD4+ naïve T-cells, 

CD45RO+CD4+ T memory cells, CD4+TIGIT+FOXP3+ T regulatory cells, CD45RO+CD8+ T 

effector memory cells, CD56+CD3- NK cells, CLEC10A+ dendritic cells (DCs), MZB1+ plasma 

cells and CD56+CD3- NK cells (Fig. 3A-C; additional examples Supplemental Figure 3). 15 

Furthermore, well-known gene markers for these cell types were identified here with an 

unsupervised and unbiased analysis that identified immune marker genes (IMAGES) from single 

cell data (see Methods: Identifying IMAGES in scRNA-seq data; Fig. 3B; Supplemental Figure 

4). 

Although this demonstrated the accuracy of Signac in one tissue, it remained unclear to 20 

what extent Signac classified cells in other biological contexts. Since the immune composition of 

synovium is known to be distinct from that of blood, it was advantageous to next study data from 

the Accelerating Medicines Partnership (AMP), which isolated cells from human joint synovial 
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tissues and performed flow cytometry in addition to scRNA-seq7,33. The proteins observed in this 

study were well-established lineage-specific markers for four distinct cell types: CD45+CD3+ T 

cells, CD45+CD3-CD19+ B cells, CD45+CD14+ monocytes and CD45-CD31-PDPN+ 

fibroblasts33, which allowed us to compare flow cytometry labels established previously to those 

generated by our approach (Fig. 3D)33. Signac, using only the transcriptional measurements for 5 

each cell, identified 98.2% of the flow cytometry labels (95% C.I. [98.0%; 98.5%], p-value < 

0.001, two-sided binomial test, n = 8,334 cells). Encouraged by this result, we compared Signac 

to another cell type annotation tool, SingleR, which uses pairwise correlations between reference 

transcriptomes and single cell data to make cell type classifications11,26,27. Signac outperformed 

SingleR in every cell type category, but most notably fibroblasts, the only nonimmune cell type 10 

in the data (Fig. 3E; see Methods: Comparing Signac to SingleR)26,27,38. Furthermore, Signac 

outperformed SingleR at low sequencing depths in immune cell type classification, generating 

accurate classifications with as few as 200 unique genes detected per cell (95.2% average recall; 

95% C.I. [76.2%; 99.9%], p-value < 0.001, two-sided binomial test; n = 21 cells; Supplemental 

Figure 5), demonstrating that Signac was robust and classified cell barcodes at low sequencing 15 

depths. Next, we turned our attention to the ability of Signac to classify cellular phenotypes that 

extended beyond the flow cytometry panel (Fig. 3D) to the deepest level of Signac annotations 

(Fig. 1A), resulting in new cell type annotations for the synovial cells (Fig 3F)33. To help 

validate these annotations, the IMAGES identified here were consistent with well-established 

gene markers for molecular phenotypes, like FOXP3 in T regulatory cells (Fig 3G; 20 

Supplemental Figure 6)28, which suggested that Signac had made accurate cellular phenotype 

classifications. However, we note that CD19 transcript was detected in only 46.9% (n = 734 / 
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1,564) of the flow-sorted CD45+CD3-CD19+ B cells, which demonstrates the importance of 

using more than one gene marker to identify cellular phenotypes in scRNA-seq data. 

Altogether, this demonstrated that Signac accurately labeled cellular phenotypes in two 

distinct experiments deriving cells from either blood (Fig. 3A) or synovium (Fig. 3E), from 

either healthy (Fig. 3A) or diseased samples (Fig. 3E) and using either droplet-based (Fig. 3A) 5 

or well-based (Fig. 3E) technologies. 

Signac learned and reliably classified rare CD56bright NK cells across tissues 

Next, we challenged Signac to learn a gene expression-based representation of a rare cell 

type from single cell data. To explore this idea, we studied a cellular phenotype that is 

increasingly important in the study of autoimmune diseases and cancer, the CD56bright NK 10 

cells39–44. To identify this population, we followed a strategy typically used in flow cytometry; 

we defined CD56bright NK cells with CD16 and CD56 protein expression in the CITE-seq data 

from PBMCs described above (Fig. 4A-B)39. To help validate that these cells were CD56bright 

NK cells, we noted that these cells (a) were identified using CD56 and CD16 protein expression 

data similar to flow cytometry45; (b) expressed known gene markers of CD56bright NK cells, such 15 

as CCL5-, GZMB-/H-/K+, KLRC1+, PRF1-, SELL+ and XCL1+ that were identified here with an 

unbiased, unsupervised approach that compared NK cells to CD56bright NK cells (Fig. 4C; n = 31 

marker genes detected; see Methods: Differential gene expression analysis; Supplemental 

Dataset 3)45–48; (c) were a minority subset of the NK cells that were detected (n = 12 CD56bright 

NK cells out of 939 NK cells; 1.3%; 95% C.I. [0.7%; 2.2%]; two-sided binomial test), consistent 20 

with the expected rarity of CD56bright NK cells in human blood45; and (d) the marker genes (n = 

31) identified here were statistically enriched for a chemokine receptor pathway that includes 
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CCL5, CCR7, XCL1 and XCL2 (see Methods: Gene set enrichment analysis), which is a known 

functional molecular phenotype of CD56bright NK cells in human blood45.  

Next, we sought to identify these cells in tissues that lacked protein expression data by 

performing additional training with the CD56bright NK cells serving as reference data for the 

Signac approach (Fig 1C; see Methods: Establishing a predictive model for CD56bright NK cells 5 

from CITE-seq PBMCs). We used the “NK cell model” and classified additional single cell data 

from other tissues and technologies, which revealed that the CD56bright NK cells were a 

conserved molecular phenotype that appeared with consistent abundance and with universal 

expression of eight marker genes across data derived from kidney and blood: CAPG+, CST7-, 

FCGR3A- (CD16-), FGFB2-, GZMB-, IL7R+, PRF1-, TCF7+ (Fig. 4D-F). Altogether, this 10 

demonstrated that Signac learned a rare cell type from single cell data and then identified 

molecularly similar cells in other contexts33,49. 

Unclassified cells are mostly doublets; classified cells are mostly singlets 

 Next, we studied the behavior of Signac in the context of doublets, which are well-known 

artifacts in single cell data, by analyzing scRNA-seq data from human PBMCs that were 15 

analyzed previously in a study of in silico doublet detection using Scrublet (Supplemental 

Figure 7; see Methods: Doublet detection in scRNA-seq PBMCs)50. We found that every 

cellular barcode annotated as unclassified by Signac was classified as a doublet by Scrublet, 

whereas cells classified as either cell types or as novel cell type populations were mostly singlets, 

demonstrating that Signac accurately discerned known and novel cellular phenotypes from single 20 

cell artifacts. 

Signac identified conserved IMAGES across distinct tissues, technologies and diseases 
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Next, we turned our attention to characterizing the stunning diversity of cellular 

phenotypes in the human immune system. To help identify a universal molecular profile of 

immune cell phenotypes, we determined to what extent IMAGES were conserved in a trans-

human study of single cell gene expression data across human donors (Fig 5A). To help validate 

the performance of Signac, we note that in contrast with data from kidney, lung and skin, Signac 5 

did not detect a single macrophage in PBMCs from any human sample, consistent with the idea 

that differentiation from monocytes occurs in tissue and not in blood (Fig. 5B; synovium data 

were excluded from this analysis because those cells were flow-sorted prior to sequencing)33,51. 

Next, we identified IMAGES for each human sample using the deepest Signac annotations (Fig. 

1A), and then pooled them to identify IMAGES that were highly conserved (universal markers) 10 

across human samples and phenotypes, revealing known and novel gene markers (Fig. 5C; 

Supplemental dataset 4; see Methods: Identifying IMAGES in scRNA-seq data). 

Signac identified conserved and distinct gene expression patterns across species 

Next, we challenged Signac to classify single cell data from model organisms for which 

flow-sorted datasets were generally lacking. We performed scRNA-seq of cynomolgus monkey 15 

PBMCs from three donors. Remarkably, Signac performed cell type classification without any 

species-specific training by mapping homologous gene symbols from monkey to human prior to 

classification (Supplemental Figure 8; see Methods: Cross-species classification of single cell 

data from cynomolgus monkey PBMCs with human reference data). 

Disease biology surfaced from single cell data with Signac  20 

Next, we identified therapeutic opportunities for RA using single cell data. Together with 

clinicians, we hypothesized that the ideal treatment for RA would engage pathogenic immune 

cells precisely, and thereby prevent or reduce side effects and insult to host tissue, perhaps even 
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eliminating the need for continuous treatment3. Although we have demonstrated that we can 

identify pathogenic immune phenotypes precisely with single cell data using Signac, finding a 

potential gene target was challenging because we lacked information about the expression of 

each gene in immune cells elsewhere in the body, risking the very off-target effects that we 

sought to avoid, and cross-tissue comparisons are notoriously difficult due to unintended 5 

technical artifacts (“batch” effects)12,52. 

Here, we identified n = 24 genes as potential drug targets for RA on the basis that these 

genes were (a) in the initial pool of drug target candidates (see Methods: Establishing an initial 

pool of drug target candidates); (b) IMAGES for CD8+ effector memory T or naïve B cells in 

biopsies from RA synovium; and (c) not IMAGES for T regulatory cells in synovium (RA and 10 

OA), PBMCs (healthy and NSCLC), lung (NSCLC, sarcoidosis, ILD, IPF and healthy), kidney 

(lupus nephritis, renal carcinoma, healthy), or skin (healthy, atopic dermatitis lesions and non-

lesions). Altogether, these genes were expressed specifically in pathogenic cellular phenotypes 

and not in T regulatory cells, and, compared to the initial pool of drug target candidates, the 

potential drug targets identified here were significantly enriched for therapeutic targets that were 15 

either in clinicals trials or FDA approved already for an immune condition, consistent with our 

expectations that robust immune cell phenotype classification surfaces immune-relevant 

therapeutic targets (Figure 6A-B)3,33,36,53.  

Finally, we demonstrate that in matched samples taken from either blood and lung from 

humans diagnosed NSCLC, there was strong correlation in the composition of CD8+ T cells in 20 

blood and lung cancer, suggesting that blood-based biomarkers using these cellular phenotypes 

may someday supplant the need for lung cancer tissue biopsies (Figure 6C). 

DISCUSSION 
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The ability to uniformly and accurately identify known immune cell types in single cell 

data is a bottleneck for the application of single cell technology in pre-clinical and clinical 

studies of autoimmune disease and cancer. There are a number of technical challenges in the 

development of a cell type classification algorithm, stemming from the diversity of gene 

expression across tissues and diseases, the relative paucity of unique gene expression-based 5 

markers for each cell category and the high number of dropout measurements inherent to single 

cell transcriptomic data. Here, we demonstrated that our approach was robust to tissue, disease 

status, sequencing depth, sequencing technology and even performed well with closely related 

species for which training data was not readily available. Our approach was originally trained on 

transcriptional data from sorted bulk samples, but also used single cell data to refine 10 

representations of existing categories and learn new ones. Importantly, it also flagged potentially 

novel cell types for expert curation. However, the typical single cell experiment offers only a 

limited view of the human immune system as a typical experiment only analyzes the micro-

environment of a single tissue, leaving unobserved the vast and rich complexity of immune cells 

in the body. To overcome this challenge, we analyzed immune cells in different biological 15 

contexts and in samples from different humans to reveal conserved and distinct IMAGES, and 

then we used this information to find potential immune-relevant precision drug targets from 

single cell data. 

Current therapies for autoimmune diseases and cancer disrupt immune homeostasis, and 

sometimes give rise to new autoimmune syndromes or harmful immunosuppressive side effects3.  20 

Several new cell types have been identified recently with single cell technologies like CITE-seq, 

ATAC-seq and spatial transcriptomics. However, it remains unclear to what extent these cell 

types represent evidence of conserved cellular phenotypes that can be observed in other assays, 
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or phenotypes that are unique to a given experimental protocol or observation method. As 

several high-profile projects strive to create an atlas of human cells, it is becoming increasingly 

important to learn gene expression-based cell type representations from these technologies to 

identify them when and where they appear in other assays. 

In a typical workflow that studies the molecular identity of cells, one typically compares 5 

populations or clusters of cells, in which cells derived from distinct human samples are pooled 

together to form a group. Although this is useful for identifying broad patterns of similar cells, 

this also diminishes or eliminates the detection of sample heterogeneity (i.e., patient 

stratification), in which subsets of patient cells are enriched for a particular molecular identity. 

Several technologies, like gene expression-based biomarkers and cell type deconvolution 10 

algorithms like CIBERSORT, require well-established gene expression-based signatures for cell 

types, and thus it behooved us to identify gene signatures by studying individual samples first, 

and then pooling the results to identify conserved and distinct gene signatures, which we 

performed in Figure 5. Notable, all cell types were identified with the same unsupervised 

approach described above (Signac) without any changes to parameters or special considerations 15 

for any individual tissue or sample.  

It is conventionally thought that machine learning methods require similar data types to 

train and to classify data. Here, we trained our models with data from microarray experiments 

with cellular ensembles and then used these models to classify single cell data from diverse 

tissues, accurately classifying synovial fibroblasts in single cell data despite using human 20 

foreskin fibroblasts in the HPCA dataset26. We believe that this work opens the door to a new 

wave of machine learning approaches that will integrate disparate data and create more uniform 

and complete pictures of cell biology. 
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METHODS 

Benchmarking Signac against other annotation methods 

 To benchmark Signac against other annotation methods, we accessed the “PbmcBench” 

data – a resource of 19,792 human PBMCs sequenced across seven different technologies with 

cell type labels generated for each cell previously – from 5 

https://doi.org/10.5281/zenodo.3357167 on February 5, 202111. Next, we classified scRNA-seq 

data from each of the seven technologies with Signac (v2.0.7) in R with the default parameters. 

Median F1 scores were computed as described previously11. Good inter-dataset classification 

performance (Table 1) was defined as having an average median F1-score > 0.75, as described 

previously11. 10 

Establishing the HPCA reference data gene markers for training Signac  

To establish a reference dataset, we used the HPCA consortium data26, which comprised 

of 713 microarray samples annotated to 157 cell types, processed as described previously27 

except that all genes that encoded for ribosomal proteins and mitochondrial transcripts were 

removed, all samples derived from bone marrow biopsies were removed, and we used a subset of 15 

genes that were identified as exhibiting cell type-specific gene expression previously (what 

remained was n = 10,808 genes and n = 544 samples corresponding to 113 annotated cellular 

phenotypes)28. The data as well as the cell type annotations for the HPCA reference data were 

accessed in R from the SingleR R package (v0.2.0)27. 

To establish a set of gene markers for cell types using these data, we performed 20 

differential gene expression analysis comparing samples annotated as different cell types 

according to the cell type hierarchy (Fig 1A) and identified n = 5,620 genes that were 

significantly (p-value < 0.05, Wilcoxon-rank sum test; log-fold change > 0.25) differentially 
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expressed using the Seurat package (v3.2.0) in R with the default settings, except that we used 

relative-count normalization instead of log normalization. This approach yielded no significantly 

differentially expressed genes for comparisons between memory and naïve B cells, plasma cells 

and B cells, memory and naïve CD4 T cells, T regulatory cells and CD4 memory T cells, 

memory and naïve CD8 T cells, and effector memory CD8 T cells and central memory CD8 T 5 

cells; in these cases we used n = 1,171 genes identified previously, which we accessed with the 

xCell package (v1.1.0) in R27. Altogether, the marker genes used here are available in 

Supplemental Dataset 2. 

Establishing a predictive model for cellular phenotypes using the HPCA reference data 

To establish a predictive model for cellular phenotypes, the HPCA reference data 10 

(processed as described above) were split into disjoint subsets according to the cell type 

hierarchy (Fig. 1A; Supplemental Figure 1). At each level of the hierarchy, the marker genes 

were bootstrapped by random resampling with replacement across samples annotated as 

belonging to the same cell type, resulting in n = 1,000 bootstrapped samples of each marker gene 

in each cell type population. We introduced noise to each bootstrapped marker gene by sampling 15 

from a random normal distribution with mean and standard deviation set by the mean and 

standard deviation of the bootstrapped genes, and then we performed max-min normalization 

across genes. 

Next, we constructed n = 100 neural networks in R using the neuralnet package (v1.44.2) 

with the neuralnet function with the default settings except that the linear.output parameter which 20 

was set to false. Neural networks were trained with the bootstrapped reference training data after 

taking the intersection of the genes in the training data and the target data54. Neural network 

hyperparameters were validated using the caret package (v6.0-86) in R for immune and 
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nonimmune cell type classification, which yielded the default neuralnet settings, which were 

subsequently used for all neural network models.  

Signac classification 

 Cell type labels were generated according to the maximal probability derived from the 

average of an ensemble of neural networks (n = 100) trained with the HPCA reference data as 5 

described above. For single cell data, any individual cell barcode was labeled “Unclassified” 

when it exhibited large (2 standard deviations greater than the mean) normalized Shannon 

entropy within four nearest neighbors of the KNN network computed with immune and main cell 

type labels (Fig 1A). A user-set threshold was introduced such that any cell barcode with 

maximal average probability less than the threshold were labeled “Unclassified” – herein this 10 

threshold was not used (set to zero). In single cell data, any cell barcodes labeled “Unclassified” 

that significantly (p < 0.01, hypergeometric test) populated a Louvain cluster were amended a 

“potential novel cell type” label (Supplemental Figure 7). 

K-nearest neighbor smoothing 

 To reduce classification errors of cell barcodes labeled by Signac, we constructed k-15 

nearest neighbor (KNN) graphs as described previously15, and after classification of immune, 

nonimmune and major cell types as described above (See Methods: Signac classification), the 

broad label for each cell barcode was assigned to the most frequent label of itself and of the 

nearest neighbors for immune cell type and major cell types (Fig 1A). 

Single cell data pre-processing 20 

 Unless stated otherwise, all scRNA-seq data analyzed here started from unfiltered count 

data. First, we removed all cell barcodes that expressed fewer than 200 unique genes and fewer 

than 500 counts. Next, we removed all cell barcodes with abundant (greater than 20% of the 
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single cell library size) mitochondrial gene expression. Within this subset of cell barcodes, we 

removed all genes with zero detected counts, we removed all genes that were encoded for 

mitochondrial and ribosomal transcripts, and then library sizes were normalized to the mean 

library size of all cell barcodes. This procedure resulted in n = 8,920 cells in the synovium (Fig 

2A), n = 4,941 cells in the kidney (Fig 2B), n = 42,844 cells in the lung (Fig 2C) and n = 7,902 5 

cells in the CITE-seq PBMCs (Fig 2D). In the case of CITE-seq data (Fig 2D; Fig 3A), these 

same steps were performed only after setting aside the protein expression data. Protein 

expression data from CITE-seq were normalized with CLR normalization in R using the Seurat 

package (v3.2.0)12. Generation of a two-dimensional force-layout embedding was performed as 

described previously in Python with Jupyter notebooks that are available on our web-server15.  10 

Establishing an initial pool of drug target candidates 

To establish an initial set of genes, we limited our analysis to genes that were druggable, 

associated with genetic evidence, or already approved by the FDA for an immunological 

condition as an established immune-relevant gene target. We accessed genes associated with 

genetic evidence from the GWAS catalog (version 1.0_e98_r2020-03-08) for any of the 15 

following immune conditions: rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, 

giant cell arteritis, sarcoidosis, psoriasis, vitiligo, Crohn's disease, ulcerative colitis, systemic 

lupus erythematosus, cutaneous lupus erythematosus, lupus nephritis in systemic lupus 

erythematosus", Sjögren's syndrome, idiopathic pulmonary fibrosis, limited cutaneous systemic 

scleroderma, type 1 diabetes, celiac disease, asthma, chronic obstructive pulmonary disease, 20 

chronic rhinosinusitis with nasal polyps, atopic dermatitis, eosinophilic esophagitis, and peanut 

allergy. This yielded n = 2,326 unique genes. Next, we accessed all genes associated with genetic 

evidence and immune-relevant genes in clinical trials or approved by the FDA as those identified 
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previously H. Fang et al., yielding n = 720 and n = 216 genes, respectively55. We identified 

genes expressed on the cell surface as those annotated as being a receptor, transmembrane 

protein, exhibiting peripheral expression, secreted or integrin with CellPhoneDB accessing the 

“protein_cureated.csv,” yielding n = 971 genes56. All total, this yielded n = 3,304 genes, which 

are provided with annotations in the Signac R package (v2.0.7).  5 

Establishing a predictive model for CD56bright NK cells from CITE-seq PBMCs 

 To learn a gene-expression based representation of CD56bright NK cells from single cell 

data, we first identified used CITE-seq to identify these cells with protein expression data (Fig 

4A-B). Second, we defined a set of gene markers for the CD56bright NK cells (p-value < 0.05, 

Wilcoxon-rank sum test; log-fold change > 1) with differential gene expression analysis that 10 

compared the CD56bright NK cells to the non-CD56bright NK cells in the CITE-seq data. 

Differential gene expression analysis was performed with the Seurat package (v3.2.0) in R using 

the FindMarkers function with the default settings which resulted in n = 31 marker genes. Third, 

we took a subset of the CITE-seq expression matrix corresponding to the n = 31 marker genes, 

performed KNN imputation (Fig. 1D), and then bootstrapped the single cell data as described 15 

above (Fig 1C). Lastly, neural network model training and subsequent classification was 

performed as described above (Fig. 1), except now each cell classified as “NK” using the HPCA 

reference data were further classified as CD56bright NK cells and non-CD56bright NK cells with the 

new neural network models. This workflow was executed by the SignacLearn function in R with 

the Signac (v2.0.7) package. 20 

Cross-species classification of single cell data from cynomolgus monkey PBMCs with human 

reference data 
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As described previously in our single-cell optimization study9, cryopreserved monkey 

PBMCs were thawed (2 vials at a time) in a 37oC water bath for 1-2 minutes until a small crystal 

remained. Cryovial was removed from the water bath and cell solution was transferred to a fresh, 

sterile 2 ml Eppendorf tube using a wide bore pipet tip. The cryovial was washed with 0.04% 

BSA/PBS and the solution was transferred to the Eppendorf tube. Sample was centrifuged at 5 

150 rcf, 5 min, at room temperature (RT). Supernatant was carefully removed, and sample was 

washed with 1 ml of 0.04% BSA/PBS using wide bore pipet tip. Sample was re-centrifuged 

using the same conditions mentioned above. The cells were washed one more time for a total of 

3 washes. After the final wash, cells were resuspended in 1 ml of 0.04% BSA/PBS and counted 

using manual hemacytometer and trypan blue. If the viability was found to be lower than 75%, 10 

the sample was subjected to a “clean-up” step using Dead Cell Removal kit (Miltenyi Biotec, 

Catalog #130-090-101). Cells were washed again and resuspended in 500 ul of 0.04% BSA/PBS 

and counted. Volume was adjusted to 1 million cells per ml of 0.04% BSA/PBS solution. After 

the cell volume was adjusted to 1 million per ml (or 1000 cells per ul), protocol for 10X 

Genomics 5’ v1 gene expression library preparation was used. 10,000 cells were targeted per 15 

sample. Quality of uniquely-indexed libraries was determined on the 2100 Bioanalyzer 

instrument (Agilent) using High Sensitivity DNA kit (Agilent, Catalog # 5067–4626) and 

quantified using Kapa library quantification kit (Kapa Biosystems, Catalog # KK4824 – 

07960140001) on the QuantStudio 7 Flex Real-Time PCR system. The libraries were diluted in 

10 mM Tris-HCl buffer and pooled in equimolar concentration (2 nM) for 20 

sequencing. Sequencing was performed on Nextseq2000. Sequencing depth and cycle number 

was as per 10X Genomics recommendations: Read 1 = 26 cycles, i7 index = 8 

cycles, Read 2 = 98 cycles, and we aimed for a sequencing depth of 35,000 reads per cell.  
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 Reads were aligned to the cynomolgus monkey genome which was built from the fasta 

file for M. fascicularis (v5.0) with the CellRanger (v3.1.0) mkref command with the default 

settings. After mapping, the “raw_feature_bc_matrix.h5” files generated by CellRanger were 

used for subsequent analysis in R. To map gene annotations, the M. fascicularis gene symbols 

were mapped to human gene homologs using annotations from the 2019 ensemble archive of the 5 

M. fascicularis genome and the 2019 ensemble archive version of the homo sapiens genome 

with the getLDS function in biomaRt (v2.38.0) in R. Next, we used a subset of the data 

corresponding to only counts mapped to genes that had a homologous human gene pair (n = 

17,365 genes remained). When multiple M. fascicularis genes were homologous to a single 

human gene, any counts mapped to those genes were summed and reported as a single mapped 10 

gene with the homologous human gene symbol, resulting in n = 16,854 unique genes. Each cell 

barcode was then filtered as described previously (See Methods: Single cell data pre-processing), 

and then classified with Signac (v2.0.7) in R using the Signac function with the default settings.  

Comparing Signac to SingleR 

 To compare Signac to SingleR, we used the SingleR package (v0.2.0) in R and classified 15 

the synovium data with the SingleR function with the default settings, with the “ref_data” 

parameter set to the HPCA reference data attached to the SingleR package (Fig 2D-E; 

Supplemental Figure 5)27. We compared these results to Signac; we used the Signac package 

(v2.0.7) in R with the Signac function with the default settings.  

Differential gene expression analysis 20 

 Unless stated otherwise, differential expression analysis was performed with the 

Wilcoxon rank-sum test with an adjusted p-value cutoff (< 0.05), and a log-fold change cutoff (> 

1) in R with the Seurat package (v3.0.2) in R using the FindMarkers function. 
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Gene set enrichment analysis  

 Gene set enrichment analysis was performed in R with the ReactomePA package 

(v1.26.0) in R using the enrichPathway function with the default settings with thresholds of 0.05 

to the adjusted p-value and 0.05 to the FDR57.  

Identifying IMAGES in scRNA-seq data 5 

 To identify immune marker genes (IMAGES) in single cell data, we identified genes that 

were significantly differentially expressed (p-value < 0.05, Wilcoxon-rank sum test; log-fold 

change > 0.25) in a “one verse all” comparison only among single cell transcriptomes that were 

annotated as immune cell phenotypes by Signac (v2.0.7) in R. Differential expression testing was 

performed with the Seurat package (v3.2.0) in R using the default settings. 10 

To identify conserved IMAGES (Fig. 5), we performed the IMAGE analysis described 

above, except that it was performed within each human sample that had at least n = 200 detected 

immune cells, resulting in n = 178,929 immune cell barcodes across n = 114 human samples 

deriving cells from n = 18 distinct disease-tissue phenotypes corresponding to PBMCs (healthy, 

four stages of NSCLC), kidney (healthy, lupus nephritis and renal carcinoma), lung (healthy, 15 

IPF, four stages of NSCLC), and skin (heathy, atopic dermatitis from lesions and non-lesions) 

biopsies; all from previously published single cell studies33,36,58–61. The IMAGES for each human 

sample were pooled together, and then we reported the top genes (n = 100; Fig. 5C) for each 

cellular phenotype corresponding to the most fractional appearance of each gene as an IMAGE 

across distinct human donors. 20 

Doublet detection in scRNA-seq PBMCs  

 To classify doublets in PBMCs, we used Scrublet (v0.2.1) in python with the Scrublet 

and scrub_doublets functions with parameters set previously in the orginal Scrublet study50. The 
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scRNA-seq data from PBMCS were accessed from 10X genomics 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k). To 

generate visualizations (Supplemental Figure 7), we used Seurat v3.2.0 in R with the default 

settings for each function: CreateSeuratObject, NormalizeData, FindVariableFeatures, 

ScaleData, RunPCA, FindNeighbors, FindClusters, RunUMAP and FindMarkers. To annotate 5 

cellular phenotypes (Supplemental Figure 7), we used Signac (v2.0.7) in R with the Signac 

function with the default settings, which was applied directly to the Seurat object using KNN 

edges identified with the FindNeighbors function. 

KNN Imputation 

 To impute gene expression values, the total number of genes detected in each cell was set 10 

to the diagonal of a cell-by-cell matrix 𝑊!!. Next, we established cells with direct and higher k-

degree connections in the KNN network from the adjacency matrix 𝐴!! and from  𝑘"# powers of 

𝐴!!, forming a KNN network-based imputation operator 𝐷!! which was weighted by the total 

number of genes detected in each cell, and normalized such that each row sums to two: 

𝐷!! = 𝑰 +
∑ 𝐴!!$𝑊!!$

1
2 +∑ ∑ 𝐴!!$𝑊!!$! ,

 15 

 
The imputed expression matrix 𝐸%!&   is then computed directly by operating on the 

observed expression matrix 𝐸%!. Here, we set k = 1 to use gene expression values within first 

nearest neighbors in the KNN network, resulting in the imputed gene expression matrix: 

𝐸%!& = 𝐸%!𝐷!! 20 
 
Data and software availability 

All data reported here are publicly available. The kidney and the synovium (Fig. 2) 

datasets were downloaded via ImmPort (accession codes SDY997 and SDY998, April 2019 
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release) from the AMP consortium33. The PBMCs CITE-seq data (Fig. 3) and healthy control 

data (Fig. 5) were downloaded from the 10X website (https://support.10xgenomics.com/single-

cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3 and 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3). The 

blood (Fig. 6) and lung (Fig. 6) NSCLC data sets were downloaded from the NCBI GEO 5 

depository (accession number GSE127465)36 . All software used in this study is available on the 

GitHub page for Signac (https://github.com/mathewchamberlain/Signac).  
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Figure 1: Conceptual overview of the Signac approach. A, Classification hierarchy. 10 

Dendrogram displays the hierarchy of cellular phenotypes that are classified by Signac: immune 

(teal) and nonimmune (carrot orange), major immune cell phenotypes (mononuclear phagocytes 

“MPh”; B cells and T/NK cells) and functional/terminally differentiated cellular phenotypes 

(rows). B, Signac conceptual overview (theoretical data). Signac takes as input scRNA-seq 

data for which the cellular phenotype is unlabeled (left; n = 10 cell barcodes, grey circles). Next, 15 

Signac applies neural networks trained with pure, sorted reference data which results in labeled 
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scRNA-seq data (teal; immune, carrot orange; nonimmune). The scRNA-seq data represented 

here are in a dimensionality-reduced plot (axes) where distances correspond to transcriptional 

similarities between cells (e.g., UMAP, t-SNE or PCA). C, Concept for training neural 

network classifiers by bootstrapping a reference dataset (theoretical data). Heatmap (left) 

shows the expression (red indicates high gene expression, blue indicates low gene expression) of 5 

genes (n = 3, rows) across samples (n = 3, columns) in theoretical flow-sorted gene expression 

reference data of two pure cell type populations, A and B. Feature selection (black arrow) 

identifies a single gene that is correlated with A and B. This marker gene is bootstrapped (black 

arrow) by resampling from A and B separately, yielding a training data set for that gene, with a 

balanced number of bootstrapped samples from cell population A (n = 1,000 samples) and B (n = 10 

1,000 samples). Next, neural network classifiers (n = 100) are trained (black arrow) on the 

training data set, yielding an ensemble of neural network classifiers (NNAB) that can be used to 

identify cell types A and B. D, Example workflow (theoretical data). Signac takes as input 

scRNA-seq expression data (left; expression matrix 𝐸%! with 𝑖 = 1,… ,𝑚	gene rows and 𝑗 =

1,… , 𝑛	cell columns) for which the cell type identity of each cell is unknown (gray circles). In 15 

step 1, a subset of the genes is imputed (arrow) using the imputation operator 𝐷!! (see Methods: 

KNN imputation) yielding 𝐸$!′. Next, an ensemble (n = 100) of neural network classifiers 

(NNAB; black box) are applied to the imputed expression matrix 𝐸$!′, yielding for every cell a set 

of probabilities (one for each classifier) that the cellular phenotype is either phenotype A (PA) or 

B (PB). In step 2, these probabilities are then averaged and reported as a single probability, 20 

corresponding to the probability matrix Pjk, and then each cell (circle) is amended a label (teal, 

carrot orange) corresponding to the maximal probability of Pjk. Alternatively, a cell (circle) 

remains unclassified (light gray circle) if the maximal probability is below a user-set threshold. 
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In step 3, after initial classification of cell types, KNN networks (black lines indicate network 

edges) are used to correct broad cell type assignments corresponding to immune and nonimmune 

cells and the first level of the cell type hierarchy (Fig 1A); each cell is assigned to the majority of 

itself and its first-degree neighbors in KNN networks. Classification continues until the deepest 

cell types in the hierarchy (Fig 1A), resulting in a vector of cell type labels xj. In step 4, novel 5 

cell types are identified using Louvain clustering to identify theoretical Cluster X (3 cells, black 

box); if cluster X is statistically enriched (two sample t-test, p-val < 0.01) for unclassified cells 

(top) or exhibits statistically significant normalized Shannon entropy in Signac labels (bottom), 

then Cluster X is flagged as a potential novel cellular population “N” (purple), yielding novel 

cell type labels (right). In step 5, the cell type labels are used for downstream analysis (listed). In 10 

step 6, scRNA-seq data is now used as a training data set to learn novel cell types (e.g., Novel 

population “N”) from scRNA-seq data, by developing neural network models that can 

distinguish novel cell populations (N) from other cell populations (B). Finally, this new model 

can be applied to other single cell data sets, yielding new classifications (step 7). 
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Figure 2: Signac reliably distinguishes immune and nonimmune cells in peripheral tissues.  

A, Signac classifications were consistent with PTPRC expression in CEL-Seq2 data from 5 

synovium. Two-dimensional visualization (left; SPRING plots) of single-cell transcriptomes (n 

= 8,920) in synovium biopsies (n = 26). Each cellular transcriptome (dot) was colored by Signac 

classifications; immune (teal), nonimmune (carrot orange) or unclassified (grey) cellular 

phenotypes. Single-cell gene expression plot (right) for a representative immune cell-type-
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enriched gene. B, Signac classifications were consistent with PTPRC expression in CEL-

Seq2 data from kidney. See the caption for Fig 2A, except these visualizations correspond to 

single-cell transcriptomes (n = 4,941) from kidney biopsies (n = 36). C, Signac classifications 

were consistent with PTPRC expression in 10X data from lung. See the caption for Fig 2A, 

except these visualizations correspond to single-cell transcriptomes (n = 42,844) from lung 5 

biopsies (n = 18). D, Signac correctly rejected the nonimmune labels in blood. See the 

caption for Fig 2A, except these visualizations correspond to single-cell transcriptomes (n = 

7,902) from PMBCs (n = 1).  
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Figure 3: Validating Signac with single-cell protein expression data from PBMCs and 

synovium. A, Two-dimensional visualization of Signac-classified CITE-seq PBMCs 

transcriptomes. SPRING plot visualization as-depicted previously (Fig 2D) except with deeper 

Signac annotations for cell types. B, Dot plot of top IMAGES expressed in CITE-seq PBMCs 

in cellular phenotypes labeled by Signac. Dot plot shows the percentage (size) of single-cell 5 

transcriptomes within a cell type (y-axis) for which non-zero expression of marker genes was 

observed (x-axis). Color displays the average gene expression (red indicates more expression) in 

each cell type category. C, Heatmap of protein expression in CITE-seq PBMCs in cellular 

phenotypes labeled by Signac. Color shows the scaled protein expression data (rows’ yellow is 

higher expression; purple is lower expression) across single-cell transcriptomes (columns). 10 

Annotation bar indicates the cell type assigned by Signac (i.e., Fig 3A-B). D, Two-dimensional 

visualization of synovium single-cell transcriptomes with cell types identified by FACs (left) 

and Signac (right). SPRING plot visualization as-depicted previously (Fig 2A) except with cell 

type labels determined by FACs (left), where each single-cell transcriptome is colored by the 

label assigned to it with flow cytometry (T cells, teal; fibroblasts, green; empty, grey; B cells, 15 

purple and monocytes, yellow). On the right, the same data are plotted the same way, except with 

labels generated with Signac. E, Bar plot of Signac and SingleR performance in cell type 

classification with synovium. Bar plot shows each flow-sorted cell type category (x-axis), and 

the performance of Signac (red) and SingleR (blue) in recalling the flow cytometry labels (error 

bars correspond to 95% confidence intervals, two-sided binomial test). F, Two-dimensional 20 

visualization of synovium single-cell transcriptomes identified by Signac. G, Dot plot of top 

IMAGES expressed in single-cell transcriptomes from synovium in cellular phenotypes 

labeled by Signac. See caption for Fig. 3B. 
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Figure 4: CD56bright NK cells were learned from CITE-seq data and then classified in 

PBMCs and kidney data. A, Scatter plot of protein expression in CITE-seq data revealed a 

population of CD56bright NK cells (red; box). Scatter plot shows the CD56 and CD16 protein 

expression for NK cells (dots). B, Two-dimensional visualization of the CITE-seq PBMCs 5 

single-cell data. SPRING plot visualization as-depicted previously (Fig. 3A) except annotating 

just the NK cells (purple) and the sub-population of NK cells identified in Fig. 4A as CD56bright 

NK cells (red). C, Dot plot of top NK cell markers expressed in CITE-seq PBMCs. Gene 

expression patterns across NK cell types; size of each dot indicates the percentage of single-cell 

transcriptomes within each cell populations (x-axis) for which non-zero gene expression (y-axis) 10 

was observed. Color displays the average gene expression (red indicates more expression) across 
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single cell transcriptomes detected in each category. D, Dot plot of top NK cell markers 

expressed in 10X PBMCs. See the caption for Fig 4C, except these n = 17 marker genes were 

identified by classifying the CD56bright NK in n = 4,784 single-cell transcriptomes from a 

different human sample and then performing differential expression analysis (resulting in n = 77 

gene markers). The n = 17 plotted here were markers in both the CITE-seq and 10X data. E, 5 

CD56bright NK abundance bar plot in healthy blood, healthy kidney and lupus nephritis 

kidney. Each bar is the ratio of single-cell transcriptomes classified as CD56bright NK cells 

divided by all NK cells within each tissue (error bars are 95% C.I.; two-sided binomial test). 

These results were derived from n = 4,784 healthy PBMCs from one donor (10X), n = 7,902 

healthy PBMCs from one donor (CITE-seq data described above), n = 501 healthy kidney cells 10 

from 8 biopsies, and n = 4,440 lupus nephritis kidney cells from 28 biopsies. F, Upset plot 

reveals the number of NK cell markers that are shared across single cell data from blood 

and kidney. Dark circles in the matrix (below) indicate sets that are part of the intersection. Bar 

plot (top) is ordered left-to-right by the largest intersecting set size; each number (top) indicates 

the number of marker genes belonging to that set. Bar plot (left) shows the number of marker 15 

genes identified in each data set (purple).  
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Figure 5: Systematic identification of conserved immune cell phenotypes with trans-human 

single cell gene expression study. A, Overview of the approach (example workflow with 

theoretical data). Cells were extracted from humans (n = 15) representing four distinct 

biological phenotypes (colors: healthy blood, red; healthy lung, dark green; diseased lung, light 5 

green; kidney, teal), each from an individual human donor (n = 15). ScRNA-seq was performed 

for each donor individually followed by read mapping, normalization, filtering, immune cell 

classified by Signac, and then IMAGES were identified for each donor (arrow). Scatter plot 

displays the percentage of the four phenotypes (y-axis) and the percentage of the donors (x-axis) 
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for which a gene (each dot is a unique gene) was identified as an IMAGE (colors indicate the 

phenotypes for which the gene was an IMAGE). Legend (right) shows the possible 

combinations. B, Bar plot shows the average immune cell type composition of blood and 

organ samples classified by Signac. The percentage of immune cells (y-axis) of each cellular 

phenotype (x-axis) classified by Signac. Results were average across donors; error bars were 5 

determined using the standard error of the mean. C, Scatter plot revealed conserved IMAGES 

for T regulatory and T CD8 effector memory cells. Scatter plot as depicted in Fig 5A. Each 

dot is a conserved IMAGE. Average log2 fold-change (colors) and p-values (size) were 

computed across human donors. 
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Figure 6: Disease biology surfaced from single cell data with Signac. A, Overlap of drug 

targets and IMAGES identified here with enrichment score. The initial set of genes (teal) 

contained n = 216 clinical targets in 3,304 genes (orange). We identified n = 24 RA-specific 

IMAGES (purple) and this set was enriched for clinical targets. B, Volcano plot shows the 5 
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IMAGES for the n = 24 potential target genes in RA. Scatter plot shows the IMAGES 

identified here colored by clinical targets (purple) and genes that were in the initial set of genes, 

but not clinical targets (teal). C, Scatter plot reveals the correlation between blood and lung 

composition in matched NSCLC samples. Each dot is a donor for which a sample was taken 

from blood (y-axis) or lung (x-axis); axes correspond to the percentage of each phenotype among 5 

T cells classified by Signac.  
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Supplemental Figure 1: Overview of the HPCA reference data. A, Number of samples bar 

plot for each annotated cell type. Bar plot indicates the number of samples (y-axis; numbers) 

for each cellular phenotype (x-axis) that was in the HPCA reference data set. B, Number of 

samples bar plot for the “nonimmune” cellular phenotypes. Bar plot as depicted in 5 

Supplemental Figure 1A for the n = 91 samples in the “nonimmune” cell type category. C, 

Principal component analysis (PCA) plots revealed that the HPCA reference data and the 
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bootstrapped training data were separable by immune and nonimmune gene markers. PCA 

plot (left) shows a gene expression sample (each dot) from the HPCA reference data that is either 

labeled as immune (red) or nonimmune (teal) based on the classification hierarchy established 

here and the annotated cell type established experimentally (Fig. 1A). PCA was performed on 

the marker gene that were determined by differential gene expression analysis comparing the 5 

samples annotated as immune and nonimmune. After bootstrapping (arrow); PCA was performed 

with the same marker genes, except with data that was bootstrapped from the immune and 

nonimmune samples. We note that the structure in the PCA plot prior to bootstrapping was 

largely removed, consistent with the view that bootstrapping generated what can be thought of as 

composite or as average immune and nonimmune gene expression samples. 10 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.01.429207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 2: Neural networks robustly classified validation data from the 

Blueprint and Encode consortia. A, UMAP plots show that cellular phenotypes were 

accurately classified by Signac. In the scatter plot (left), each dot is a sample of pure cell type 

gene expression data that was amended labels for cellular phenotypes (colors; see legend). The 

data represented here are in a two-dimensional embedding (axes), in which distances correspond 5 

to transcriptional similarities between samples (closer samples are more similar); we determined 

this embedding with UMAP. Cellular phenotype labels (colors) were established either by the 

Blueprint and Encode consortium (left) with empirical measurements or by our computational 

approach (right). B, Heatmap shows that distinct immune cell phenotypes were accurately 

classified by Signac. Heatmap displays the fraction of the samples within each cellular 10 

phenotype category (axes) that were accurately classified by our approach (scale bar; red is more 

accurate; blue is less accurate). C, Venn diagram shows that Signac accurately identified the 

transcriptomes of nonimmune cellular phenotypes despite never being trained to recognize 

them. Venn diagram depicts the nonimmune cellular phenotypes that were specific to the HPCA 

reference data (left; red), that were shared between the HPCA reference and the Blueprint and 15 

Encode data (middle; purple), and that were distinct to the Blueprint and Encode data (right; 

blue). 
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Supplemental Figure 3: Protein expression SPRING plots validated the cellular phenotypes 

classified by Signac for the CITE-seq PBMCs data. Each SPRING plot (i-ix) displays the z-

score transformed CLR normalized protein expression (colors) generated for each individual cell. 5 
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Supplemental Figure 4: IMAGES identified from immune phenotypes in CITE-seq PBMCs 

single cell transcriptomes. A-I, Volcano plots demonstrate the IMAGES identified in each 

cell population. Each scatter plot depicts the statistical association (y-axis) and the average fold-

change of IMAGES (each dot is a unique gene) for immune cell phenotypes. Colors (red) 5 

indicate IMAGES that passed the thresholds applied to the fold-change and adjusted p-values. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.01.429207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 5: Signac accurately recalled flow cytometry labels with few genes 

detected. A, Cumulative recall scatter plot showed that Signac outperformed SingleR as a 

function of genes detected in immune cell transcriptomes. Plot depicts the cumulative recall 

(y-axis) of immune cell type labels. The labels were originally determined by flow cytometry (T 

cell, B cell or monocyte). Recall of these labels was calculated cumulatively as a function of the 5 

number of genes detected (x-axis) by either Signac (red) or SingleR (teal). Fibroblasts were 

omitted from this analysis due to broad misclassification by SingleR. Scatter plot, bottom depicts 

the number of single cell transcriptomes (n) as a function of genes detected. Error bars (top) are 

95% C.I.s determined by two-sided binomial testing. B, Inset shows stronger Signac 

performance at low genes detected. Scatter plot (top) depicts the p-value for the two-sided 10 

binomial test and showed that Signac (red) outperformed SingleR (teal) at low sequencing 
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depths. Scatter plots (middle; bottom) are close-ups of Supplemental Figure 5A for data with 

less than 300 genes detected. 

Supplemental Figure 6: IMAGES identified from immune phenotypes in synovium single 

cell transcriptomes. A-I, Volcano plots demonstrate the IMAGES identified in each cell 

population. Each scatter plot depicts the statistical association (y-axis) and the average fold-5 

change of IMAGES (each dot is a unique gene) for immune cell phenotypes. Colors (red) 

indicate IMAGES that passed the thresholds applied to the fold-change and adjusted p-values. 
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Supplemental Figure 7: Signac-generated “unclassified” PBMCs were all identified as 

doublets (Scrublet), novel and classified cell type populations were mostly singlets. A-I, 

Volcano plots demonstrate the IMAGES identified in each cell population. A, UMAP plot 

displays the cell type annotations of Signac for PBMCs (left), and the same data but with 

doublets classified by Scrublet (right). Each cell barcode (n = 8,381 from one human donor) 5 

was classified by Signac (left), and then doublet labels were amended to each cell with Scrublet 

(right; red); see Methods: Signac classification. B, Bar plot reveals that unclassified cells were 

entirely composed of doublets, whereas novel cell populations and classified cells were 

mostly composed of singlets. Each bar shows the percentage (y-axis) of each cell type (x-axis) 

that is a doublet (teal) or a singlet (red). Error bars correspond to 95% confidence intervals, two-10 

sided binomial test. C, IMAGE expression dot plot shows that unclassified cells and novel 

cluster 2 were doublet-like, whereas novel cluster 2 and 3 were singlet-like and enriched for 

known platelet and hematopoietic stem-cell gene markers. Dot plot shows the percentage 

(size) of single-cell transcriptomes within a cell type (y-axis) for which non-zero expression of 

marker genes was observed (x-axis). Color displays the average gene expression (red indicates 15 

more expression) in each cell type category. Novel cluster 1 was enriched for IMAGES that were 

typically enriched in either B cells or T cells, but not both (i.e., these cells expressed both 

CD79B and TRAC), consistent with the view that these cells were doublets. Novel cluster 3 

images (GNG11+ TUBB1+) suggested platelet-like cells, and novel cluster 2 images (CD34+ 

SPINK2+) suggested hematopoietic stem cell-like cells.  20 
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Supplemental Figure 8: Signac accurately classified primate PBMCs without any species-

specific training. A, SPRING plot for PBMCs from cynomolgus monkey donor 3003. B, 

SPRING plot for PBMCs from cynomolgus monkey donor 3004. C-D, IMAGE expression 

dot plot shows that Signac classifications for immune phenotypes were consistent with 5 

known gene markers. E, SPRING plot for PBMCs from cynomolgus monkey samples that 

were enriched for T cells during sequencing. See Methods: Cross-species classification of 

single cell data from cynomolgus monkey PBMCs with human reference data. F, IMAGE 

expression dot plot shows that Signac classifications for immune phenotypes were 

consistent with T cell type enrichment assay. 10 
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