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Figure 1: Pancreatic ductal adenocarcinoma infiltrating the duodenal mucosa. A) Hematoxylin & 
Eosin (H&E) staining of pancreatic ductal adenocarcinoma (PDAC) cells that have invaded and 
integrated into the duodenal mucosa. N: non-neoplastic duodenal epithelium, PDAC_mu: region of 
PDAC cells within the mucosa, PDAC_submu: region of PDAC cells in the submucosa. Scale bar: 1 
mm. B) Representative immunohistochemistry (IHC) for SMAD4 in a PDAC with genetic loss of SMAD4 
shows intestinal villi lined by SMAD4-negative PDAC cells (asterisks) compared to adjacent small 
intestinal epithelial cells positive for SMAD4 expression (arrowheads). Scale bar: 250 µm, applies to 
(B)–(I). All IHC counterstained with Hematoxylin. Multiplex staining combinations are indicated in 
panels, text color denotes color of chromogen used to visualize protein expression. C) Representative 
image of p53 IHC in a PDAC with accumulation of p53 protein due to TP53 mutation; note regions of 
p53-positive cells (PDAC cells, asterisks) adjacent to p53-negative cells (intestinal epithelial cells, 
arrowheads). D) and E) H&E staining of PDAC cells in the submucosa: (D) is the same tumor as in (B), 
(E) is the same tumor as in (C). F) and G) Quadruple IHC for the indicated proteins illustrating D2-40 
overexpression as a marker for desmoplasia in the submucosa (G), but absent in the mucosa (F); note 
that in these quadruple stainings, brown marks both D2-40 (stromal) and p53 (epithelial), and red marks 
both caldesmon (stromal) and maspin (epithelial); asterisks indicate stroma. H) IHC for the lamina 
propria marker, CD146, shows preserved expression in areas of intraepithelial tumor integration. I) IHC 
for another lamina propria marker, WT1, also shows preserved expression; dotted lines in (H) and (I) 
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represent approximate border between PDAC cells and enterocytes; (B)–(I) present representative 
staining of n ≥ 10 cases. J) Comparison of overall survival in the current cohort of patients with duodenal 
infiltration vs. patients included in a previously published cohort operated on for PDAC at the same 
center (15), and vs. patients from The Cancer Genome Atlas (TCGA) PAAD dataset. Initial patient 
numbers and log-rank p given in panel.  K) Volcano plot showing significant findings in red (higher in 
mucosa) and blue (higher in submucosa out of a total of n = 12 markers included in analysis as indicated 
in the text. Data based on results from Wilcoxon matched-pairs signed rank test, multiple test correction 
with two-stage step-up (ref. 16), fdr < 0.05. L) Representative images of the indicated markers showing 
significant differential expression in mucosal vs. submucosal tumor cells. Scale bar: 250 µm, applies to 
all images in (L); representative staining of n ≥ 15 cases. Note that multiplex IHC was performed for 
some markers (e.g. Ki67 together with vimentin in the left panel), but not all markers were included in 
quantitative analysis (see Methods for details).  
 
 
Discussion 
 
The integration of PDAC cells into the duodenal mucosa leads to a quantifiable 

phenotypic shift towards intestinal differentiation. Location-dependent morphological 

changes are accompanied by a loss of basal-like markers in favor of classical markers, 

corresponding to a switch towards a less aggressive molecular phenotype (2–4, 6). 

Interestingly, mucosal PDAC cells were cycling (Ki67+ve), suggesting the uncoupling 

of differentiation from proliferation. Together, the data define a real-life endpoint of the 

phenotypic plasticity of PDAC cells in humans. Although conjectural, they strongly 

support a model in which basal-like vs. classical tumor subtypes are tightly influenced 

by microenvironmental cues. The consistency of this phenomenon suggests that this 

and similar cohorts displaying duodenal invasion can be invaluable for deciphering the 

molecular underpinnings of PDAC subtype emergence orchestrated by the 

microenvironment. 

 

Material and Methods 
Patients 

Patients were identified by a retrospective search in the pathology archive database 

of the Karolinska University Hospital, Huddinge, Sweden, and through routine 

diagnostic pathology. Cases in which infiltration of PDAC cancer cells into the small 

intestine was described in the pathology report or for which the participating 

pathologists (CFM, Béla B, LS) noted this phenomenon were selected and 

systematically reassessed based on available Hematoxylin and Eosin staining and 

routine immunohistochemistry (IHC). Patients operated on between 2008 and 2020 

were considered. Clinical data were obtained by retrospective chart review. A total of 

n = 20 patients in whom PDAC cells had infiltrated the entire thickness of the duodenal 
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wall were included. All patients (n = 8 females, n = 12 males, aged 64–82 years, 

median age 71.8 years) underwent resection according to Whipple at the Karolinska 

University Hospital, Stockholm, Sweden between 2008 and 2020. 

 

Other Cohorts 

A local cohort of histologically confirmed PDAC cases that underwent Whipple’s 

procedure between 2008 and 2016 has been described previously (15). This cohort 

was curated to remove patients overlapping with the current cohort, leaving n = 29 

patients for comparison. The Cancer Genome Atlas (17) PAAD cohort was accessed 

via https://portal.gdc.cancer.gov/ and curated to remove neuroendocrine tumors, 

leaving n = 177 cases for survival analysis. Statistical analyses were performed with 

GraphPad prism v9.0.0. The study was approved by the responsible ethical review 

boards. 

 

Serial multiplex quantitative immunohistochemistry 

smq-IHC (Figure 2) was performed as described previously (15). Antibodies are 

detailed in Table 1. Formalin-fixed paraffin-embedded (FFPE) samples were cut to a 

thickness of 4 µm and stained on an automated stainer (BOND-MAX, Leica 

Biosystems, Germany) as part of the diagnostic routine in a clinically accredited 

histology lab. Staining procedures have been described previously (15). All antibodies 

(Table 1) were extensively validated for clinical use. For all antibody stainings, at least 

n = 10 cases were included for the final assessment based on staining quality and 

availability. For all quantified stainings (Figure 1K and L), statistics are based on the 

evaluation of at least n = 15 matched mucosa/submucosa pairs. 

Figure 2: Schematic of serial multiplex quantitative immunohistochemistry (smq-IHC). Serial sections are 
stained with different antibody combinations. IHC of SMAD4 and p53 guides identification of tumor regions. Carefully 
matched regions of serial sections are evaluated, while SMAD4/p53 sections are continuously used to navigate.  
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 antigen full name main target cell clone dilution pretreatment manufacturer, cat nr 

Caldesmon Caldesmon Smooth muscle cells (18) H-CD 1:300 H2 Dako-M3557 

CD146 Cluster of 
differentiation 

146 

Lamina propria stroma, pericryptal 
mesenchymal cells (19) 

UMAB154 1:100 H2 Origene-UM800051 

CD34 Cluster of 
differentiation 34 

Fibrocytes/non-myofibroblastic 
stromal cells of the  

lamina propria (20, 21) 

QBEnd/10 1:50 H2 Dako-M7165 

CK7 Cytokeratin 7 PDAC cells (pan PDAC marker) (22) RN7 1:200 H2 NCL-L-CK7-560 

CK17 Cytokeratin 17 PDAC cells (15), basal-like type (2, 3) E3 1:25 H2 NCL-CK17 

CK20 Cytokeratin 20 cells with intestinal differentiation 
(23), classical type (2, 3)  

PW31 1:25 H2 NCL-L-CK20-561 

D2-40 Podoplanin desmoplastic stroma (24) D2-40 1:50 H2 Dako-M3619 

vimentin Vimentin stromal cells,  
cells undergoing EMT (25, 26) 

V9 1:1500 H1 Dako-M0725 

MUC1 Mucin 1  PDAC cells (27) Ma695 1:50 H1 NCL-MUC1 

MUC2 Mucin 2 intestinal goblet cells (28), PDAC 
cells of classical type (2) 

Ccp58 1:100 H2 NCL-MUC2 

MUC5AC Mucin 5AC PDAC cells (15), classical type (2) CLH2 1:50 H2 NCL-MUC-5Ac 

MUC6 Mucin 6 PDAC cells, pancreatic 
differentiation (15) 

CLH5 1:50 H2 NCL-MUC-6 

NGFR Nerve growth 
factor receptor 

(p75) 

Pancreatic stroma (29) “Polyconal” 1:200 H2 Atlas-HPA004765 
 

CEA(-m) Carcinoembryonic 
antigen - 

monoclonal 

PDAC cells (15) 11-7 1:400 H2 Dako-M7072 

CA125 Cancer-antigen 
125 

PDAC cells (15) OV185:1 1:100 H2 NCl-L-Ca125 

CA19-9 Cancer-antigen 
19-9 

PDAC cells (30) CA241:5:1:4 1:400 H2 NCL-L-CA19-9 

Maspin Maspin PDAC cells (31)  EAW24 1:50 H2 NCL-Maspin 

WT1 Wilms tumor 1 
(WT1 

transcription 
factor) 

cells of the intestinal  
lamina propria (32) 

6F-H2 1:100 H2 Dako-M3561 

CDX2 caudal type 
homeobox 2 

intestinal epithelial cells (33), PDAC 
cells of classical type (2)  

AMT28 1:25 H2 NCL-CDX2 

p53 tumor protein 
p53 

p53 protein (34) Do-7 1:300 H1 NCL-L-P53-D07 

Ki67 marker of 
proliferation Ki-

67 

proliferating cells (35) MIB-1 1:150 H2 Dako-M7240 

SMAD4 Mothers against 
decapentaplegic 

homolog 4 

SMAD4 protein (36) B-8 1:300 H2 Santa Cruz-sc-7966 

Chromogranin 
A 

Chromogranin A enteroendocrine cells (37) 5H7 1:100 H1 NCL-CHROM-430 

 
Supplementary Table 1. Antibodies used in this study. Pretreatment “H1”: Bond Epitope Retrieval Solution 1, 
citrate, 20 minutes, ”H2” = Bond Epitope Retrieval Solution 2, EDTA, 20 minutes; NCL: Novocastra/Leica. 
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