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Abstract 
Metalloenzymes are 40% of all enzymes and can perform all seven classes of enzyme 
reactions. Because of the physicochemical similarities between the active sites of 
metalloenzymes and inactive metal binding sites, it is challenging to differentiate between them. 
Yet distinguishing these two classes is critical for the identification of both native and designed 
enzymes. Because of similarities between these two types of metal binding sites, finding 
physicochemical features that distinguish active and inactive metal sites can indicate aspects 
that are critical to enzyme function. In this work, we develop the largest structural dataset of 
enzymatic and non-enzymatic metalloprotein sites to date. We then use a decision-tree 
ensemble machine learning model to classify metals bound to proteins as enzymatic or non-
enzymatic with 92.2% precision and 90.1% recall. Our model scores electrostatic and pocket 
lining features as more important than pocket volume, despite the fact that volume is the most 
quantitatively different feature between enzyme and non-enzymatic sites. Finally, we find our 
model has overall better performance in a side-to-side comparison against other methods that 
differentiate enzymatic from non-enzymatic sequences. We anticipate that our model’s ability to 
correctly identify which metal sites are responsible for enzymatic activity could enable 
identification of new enzymatic mechanisms and de novo enzyme design.   
 
Introduction 
Enzymes are biological catalysts. They are known to increase reaction rates up to one million 
fold and facilitate reactions at biological conditions that would otherwise require high 
temperature and pressure. As of January 2021, 269,905 enzyme sequences1 have been 
identified with 6,544 different reactions2 and 108,391 protein structures3. These enzymes are 
classified by the Enzyme Commission (EC) with EC numbers categorizing each reaction4.  
Despite the importance and prevalence of enzymatic research, the ability to distinguish enzyme 
from non-enzyme sites remains an unsolved, challenging task. 
 
Multiple physicochemical properties have been shown to be important predictors of catalytic 
function. Deviations in theoretical titration curves are able to identify active site residues 
responsible for Brønsted acid–base chemistry.5,6 Bioinformatic studies have revealed that 
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catalytic residues often lie in the largest surface-accessible cleft7 that is closest to the protein 
centroid8. More recent work has shown that enzymes tend to have a network of amino acids that 
serve as a pathway for energy transfer.9,10 Though these descriptive properties are helpful in 
enzyme site identification, they have low predictive value.  
  
An appealing strategy for predicting if a protein or site is enzymatic is to use machine learning. 
Machine learning generalizes important trends from training data, which can be used to make 
future predictions on proteins with few or no homologs. Machine learning-based methods have 
won the last two CASPs11-13, a competition for de novo structure prediction, demonstrating 
machine learning effectiveness of predicting protein characteristics on previously unstudied 
proteins. To date, there are two main types of machine learning algorithms related to enzyme 
prediction, enzyme function predictors which mostly use sequence-data and catalytic residue 
predictors which mostly use structure-data. 
 
Machine learning methods that predict enzymatic function do so by producing EC numbers.14-20 
Due to the variety of enzyme functions, EC number predictors benefit from using multiple 
machine models, one of which predicts if a sequence is enzymatic or non-enzymatic, the next 
predicts the enzyme class, the next the enzyme subclass, etc.15,17 However, by taking a 
sequence level approach these algorithms miss critical active site information. A recent study 
demonstrated that machine learning EC number predictors and homology-based tools were 
rarely capable of distinguishing between native sequences and sequences where residues 
closest to the active site, eleven residues on average, were mutated to alanine.16  
 
An alternative to enzyme function prediction is enzyme active site prediction. Unlike the layered 
models required for EC number prediction, methods attempting to label catalytic residues output 
residue-based, binary, enzymatic or non-enzymatic predictions.21-24 When identifying residues 
responsible for a particular class of enzymatic function, structure-based features describing the 
3D neighborhood have shown success.25,26 Methods attempting to identify catalytic residues 
more generally, regardless of enzymatic function, benefit from combining sequence-based 
features that encapsulate the large amount of available data, such as conservation information, 
with structural-based features that describe the local environment.27 These methods train on 
datasets using all enzyme residues, labeling only the few residues responsible for catalytic 
activity as positives. Such imbalanced datasets result in low precision. In addition, comparing 
active site residues to protein surface and protein core residues may not predict catalytic activity 
so much as the existence of a pocket, as there are large differences in residue local 
environment unrelated to catalytic activity. 
 
To address the challenges of differences in local environments, we focused on the metal ions of 
metalloproteins. Metals – whether enzymatic or not - often lie in pockets with unusual 
electrostatic properties.28,29 The residues required for coordinating metals30 are the same 
charged and polar amino acids commonly used for catalytic activity31. There are currently 
53,987 crystal structures that are annotated to be metal-binding by metalPDB32. Considering 
that approximately 40% of enzymes are metalloenzymes33, the overlap with the 108,391 
structures with enzyme annotations leads to the creation of enzymatic and non-enzymatic target 
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classes with a relatively low level of imbalance compared to residue-based datasets of 
enzymatic and non-enzymatic residues. 
 
In this work, we create a homology-based pipeline that identifies metalloproteins and labels the 
metal binding sites as enzymatic or non-enzymatic. The pipeline also removes proteins where 
the sequence is similar or metal binding site is similar to prevent bias and overfitting during 
machine learning. We then calculate structure-based features describing the environment of the 
metal binding sites, focusing on important catalytic properties. We use an agnostic machine 
learning strategy, training and optimizing several machine learning algorithms with different 
feature sets. The best model as determined by cross-validation and was evaluated on a holdout 
test-set, on which it achieved a 92.2% precision and of 90.1% recall and identified enzymatic 
sites that were incorrectly labeled by our homology-based pipeline. We also examine the 
importance of the features used by our top model. Finally, we compare the performance of 
similar tools on our test-set, and find that our top model, using only structure-based 
physiochemical features, is overall superior to both enzyme function predictors and catalytic 
residue predictors.  
 
Results 
Data characteristics 
Metalloprotein crystal structures were queried from RCSB (Research collaboratory for structural 
bioinformatics) and filtered for quality (Fig1A, see methods for more details). Sites were defined 
as the area around a metal atom. Metal atoms in the same crystal structure file within 5 Å of 
each other were grouped as the same site. Sites were divided into two sets. Sites from 
structures deposited prior to 2018 were placed in the dataset, used for algorithm optimization, 
model selection, and training the final model. Sites from structures deposited in 2018 or later 
were separated to form a holdout test-set, T-metal-site (Supplemental File sites.csv), which was 
only used to evaluate the final model.  
 
Each site was labeled as enzymatic or non-enzymatic via a computational pipeline (Fig. 1B 
further details in methods). Briefly, we identified metalloproteins that were homologous to 
enzymes in the manually curated Mechanism and Catalytic Site Atlas (M-CSA) database34. For 
further enzymatic evidence, we required that homologs met one of two conditions: associated 
EC number or an “ase” suffix in structure classification or molecular name. Finally, homologs 
were aligned with their respective M-CSA entries to check for structural homology and to label 
any sites adjacent to catalytic residues as enzymatic. Any remaining sites on homologs with 
enzymatic sites were labeled non-enzymatic. By finding homologs to the M-CSA proteins and 
then removing those with structural similarity we were able to identify 12,691 metal ions located 
at catalytic sites, 1,089 of which were non-redundant, a nearly three-fold increase from the 316 
metal ligand containing M-CSA entries (as of August 2019). Sites that were part of proteins that 
were not homologous to entries in the M-CSA and lacked all of the previously mentioned 
enzymatic evidence were classified as non-enzymatic. Because of the importance of correctly 
identifying enzymatic and non-enzymatic sites, any site that had some but not all of the 
enzymatic characteristics within our pipeline were discarded.  
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Biologically redundant data has shown to negatively impact machine learning models.35 Having 
similar data in both the training and testing set can also lead to inflated performance 
evaluations. To prevent these issues, similarity within and between the test-set and dataset was 
reduced by filtering out sites with sequence or structural similarity.  
 
Our dataset used for ML is composed of 3,465 sites from 2,626 different PDBs; 24% of the sites 
are enzymatic (Supplementary file sites.csv). The test-set, T-metal-site, which is mutually 
exclusive from the dataset is composed of 520 sites from 404 different PDBs; 31% of the sites 
are enzymatic.  Both sets contain sites distributed among the six major EC classes (Figure S1) 
excluding the translocases a class added to the EC after the start of this project.  
 

Figure 1. Workflow for dataset generation. (A) The numbers on each arrow represent the 
number of entries present at that step; numbers of enzymatic sites are in green, non-
enzymatic sites are in blue, and not enzymatically labeled entries are in black. The final 
numbers are representative of the end of the computational pipeline. (B) Computational 
labeling of sites as enzymatic/non-enzymatic via homology expansion of M-CSA (Mechanism 
and Catalytic Site Atlas) (see methods for more detail). 
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Because our test set is differentiated from our dataset by date of structure deposition, we 
assessed the two sets for covariate shift. Though advancements in crystallographic capabilities 
and changes in research funding can affect the propensities of proteins deposited in the PDB 
over time, no covariate shift was detectable between our final dataset and temporal test-set (see 
supplementary methods). 
 
Feature analysis 
In an attempt to create a machine learning model that differentiates based on physicochemical 
information, we used physicochemical features, including those previously mentioned to 
describe catalytic activity. However, we do not use features such as amino acid composition, 
conservation information, and secondary structure assignment21,22 in order to avoid biasing any 
algorithm towards a specific fold. Moreover, metalloenzymes can be highly promiscuous with 
activity dependent on the identity of the metal bound36,37 and assigning the correct metal can be 
tricky in a crystallized structure38; therefore, we also avoid using the bound metal’s identity. 
 
In order to pass relevant, catalytic activity information to the machine learning algorithms, we 
developed a feature set with features from five categories –(1) Rosetta energy terms, (2) pocket 
geometry information, (3) terms describing the residues that line the pocket, (4) electrostatic 
terms, and (5) coordination geometry terms (Figure 2A). Because Rosetta energy terms are 
residue-based and our features are site based, different versions of the Rosetta energy term 
category were made by using two methods of aggregating each energy term—average or 
sum—and two methods of spatially defining the space around the sites—surrounding – shells 
(0-3.5Å, 3.5-5Å, 5-7.5Å, and 7.5-9Å) or spheres (0-3.5Å, 0-5Å, 0-7.5Å, and 0-9Å) (Figure S2). In 
total, we used 391 features from the five categories (Table ST1), though the features were not 
all used simultaneously during machine learning. To efficiently search the feature space, 67 

Figure 2. Relative size of feature categories and feature similarity distributions. (A) 
Distribution of features used for training. The four groups of Rosetta terms each include 84 
features calculated in one of four ways – the mean or average of residues within four shells 
or spheres – for a total of 294 unique Rosetta category features since the first shell and 
sphere are the same. (B-C) The kernel density estimations of feature similarity between 
enzymatic and non-enzymatic sites for each Rosetta calculation method (B) and the other 
four feature categories (C). 
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combinations of feature sets ranging in size from 4 to 181 features were evaluated during model 
selection (Table ST2).  
 
To quantify the differences in feature values for enzyme and non-enzyme sites, we calculated 
the similarity between the enzymatic and non-enzymatic site values using a Jaccard index for 
discrete features and the percentage area of overlap between the kernel density estimates of 
the two feature curves for continuous features (see methods and Figure S3). Both methods lead 
to a scale where one is entirely the same between enzymatic and non-enzymatic feature-value 
distribution and zero is entirely different between enzyme and non-enzyme feature-value 
distribution. The Rosetta energy terms category that used sum sphere calculations had the most 
dissimilar features as demonstrated by having more points farther to the left (Figure 2B fourth 
row). The sum calculation magnifies differences in features by not considering effects on a per 
residue basis and the sphere calculation considers more residues. Because catalytic sites tend 
to be closer to the protein centroid, more residues overall contribute to van der Waals and 
solvation terms and sum sphere calculations are especially dissimilar. In the electrostatics 
category (Figure 2C first row), we find that the features farthest to the left are those that 
describe the deviations in the shape of theoretical titration curves for ionizable residues beyond 
the first shell. In the pocket category (Figure 2C second row), the volume term is substantially 
more dissimilar than all other terms in that category.  In the lining category (Figure 2C third row), 
the most dissimilar features are those with describing the number and volume of residues in the 
pocket lining. No geometry features (Figure 2C fourth row) show particularly high dissimilarity 
between enzymatic and non-enzymatic sites.   
 
Machine learning model optimization and selection 
To learn and then predict enzymatic and non-enzymatic sites, we selected fourteen 
classification algorithms from python scikit learn that span a variety of popular machine learning 
methods –support vector machines (SVMs), decision-tree ensemble methods, naive Bayes, 
nearest neighbors, a neural network, linear and quadratic discriminant analysis (see supplement 
for brief explanations). 
 
Various scoring metrics are used to evaluate binary classification models. Imbalanced data 
(more non-enzymatic sites than enzymatic sites) can skew some of these metrics. For example, 
our dataset is 76% non-enzymatic sites. Therefore, we could achieve an accuracy of 76% by 
predicting non-enzymatic for all of our dataset. In order to prevent the imbalance of our dataset 
from biasing our evaluation metrics we used the Matthews correlation coefficient (MCC, 
equation SE1)39 that is less biased towards the imbalanced set. MCC values are on the [-1,1] 
interval, where any model predicting exclusively enzymatic or exclusively non-enzymatic would 
have an MCC of zero. The imbalance in our data could also produce an inflated recall, or 
percent of catalytic sites correctly identified, by over-predicting enzymatic sites without much of 
an effect on accuracy and true negative rate, or percent of non-enzymatic sites correctly 
identified. To avoid such over-predicting, we also prioritize precision, which is percent of 
catalytic site predictions that are correct. 
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When a model learns the details of a training set too well it can negatively impact the model 
performance on new data. This is called overfitting. Using our hold-out test-set and nested 
cross-validation (CV)(Figure S4) allowed us to use different data for model optimization, model 
selection, and model evaluation. During the inner CV, we optimized each algorithm for a specific 
feature set. We tested four different scoring metrics for optimization: accuracy, precision, MCC, 
or a multi-score combination of accuracy, MCC and Jaccard index. In total, 3,752 models were 
created (14 algorithms x 67 feature subsets x 4 optimization scoring metrics). We used the 
results from the outer CV to select the best of these models. However, 3,274 of the models 
used different “optimal” versions of the machine learning algorithm during the outer CV. To 
eliminate any inflated metrics that may have come from this, we re-ran the outer CV using only 
the most frequently selected version of the algorithm for each model and discarded all models 
where large deviations persisted (Methods and Figure S5). 
 
We graphed our remaining 1,668 model performances by algorithm type (Figure 3), optimization 
metric (Figure S6), Rosetta feature calculation method (Figure S7), feature category exclusion 
and feature set size (Figure S8). The only emerging trends were based on machine learning 
algorithm type. The neural network (neural network, Figure 3 tan) and decision-tree ensemble 

Figure 3. Outer CV performance by algorithm. (A) Each point represents the results for a 
specific model. Points are colored according algorithm used and grouped by classifier type; 
support vector machines (SVMs) are purples, decision-tree ensemble methods are blues, 
linear models are reds, discriminant analysis are greens, no grouping for naive Bayes, nearest 
neighbor, and neural network. Better performing classifiers should be close to the upper right 
corner. The X denotes our top model (extra trees with AllMeanSph feature set). (B) Zoomed in 
view of boxed region in A. 
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methods (extra trees, gradient boosting, and random forest, Figure 3 blues) perform most 
favorably for our prioritized metrics, MCC and precision. SVMs and linear models (logistic 
regression, ridge, and passive aggressive Figure 3 purples) had the highest recall (Figure S9). 
However, the relatively low precision of the SVM and linear models indicates that these high 
recall values are the result of over-predicting sites to be enzymatic. 
 
Top model evaluation 
The top model in our model selection was an extra-trees algorithm using all feature categories 
with mean, sphere calculations for Rosetta terms. We named this model Metal Activity Heuristic 
of Metalloprotein and Enzymatic Sites (MAHOMES) (Figure 3 ‘X’). In addition to having the best 
precision relative to MCC, MAHOMES was also surprisingly stable. Three out of the four 
optimization strategies selected the same hyperparameter set on all seven CV folds, indicating 
that MAHOMES performance is not an overfit optimistic evaluation. MAHOMES was evaluated 
on the T-metal-site test-set (2018-2020 structures) where it achieved slightly higher 
performance metrics than its outer CV performance (Table ST3). The performance still falls 
within projected deviation, as observed on different test folds during outer CV, supporting the 
validity of the reported performance metrics.  
 
We manually inspected the sites misclassified by MAHOMES. This included 27 of the 564 non-
enzymatic sites misclassified as enzymatic (false positives) and 17 of the 185 enzymatic sites 
misclassified as non-enzymatic sites (false negatives) (Table ST4). Manual inspection of these 
sites in the literature revealed that ten of the 27 sites that had been labeled by the pipeline as 
non-enzymatic but as enzymatic by MAHOMES were actually correctly predicted by MAHOMES 
and incorrectly identified by the pipeline (Table ST4 green). All ten cases in which MAHOMES 
correctly predicted sites misclassified by the pipeline were sites which lacked MCS-A homologs 
EC numbers, and an “ase” suffix. Eight of the sites were for proteins that had not been 
structurally resolved before and had no homologs in M-CSA. The two sites bound to proteins 
that had previously been solved were both bound to sonic hedgehog proteins. Though the zinc 
domain of sonic hedgehog proteins was previously thought to be a pseudo-active site, more 
recent research indicates that it is responsible for metalloprotease activity40,41. In addition to the 
ten mislabeled sites, we were unable to definitively determine the correct label for four of 27 the 
false positive sites because they are not well characterized by the literature (Table ST4 yellow). 
We recalculated the T-metal-site performance metrics by changing the ten pipeline mislabeled 
sites to be true positives and excluding the four false positives we could not definitely label 
(Table 1).  
 
Feature importance 
Since MAHOMES is a decision-tree ensemble algorithm, it is capable of producing relative 
feature importance for classification (Table ST5). By graphing feature importance against our 
previously calculated similarity, we find that MAHOMES did not find features with high similarity 
to be useful in differentiating enzymatic and non-enzymatic sites (Figure 4). However, lower 
similarity did not always translate to higher feature importance. For example, the lowest 
similarity in this feature set was volume, with a similarity of 39%, meaning it is quantitatively the 
most useful feature, supporting previous reports of its utility for describing enzymatic active 
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sites7. However, volume was only the 13th most important feature for enzyme classification. So, 
MAHOMES finds twelve other features to be more valuable for differentiating enzymatic activity 
despite having more similar values for enzymatic and non-enzymatic sites. For example, the 
feature of the distance between the center of the active site and protein centroid8, is the ninth 
most important feature for discrimination despite a 57% feature similarity to be more important 
for differentiating enzymatic and non-enzymatic sites. 
 

The most important feature for 
MAHOMES is an electrostatic feature 
derived from the shape of the theoretical 
titration curve of local ionizable amino 
acids. Specifically, it is the average of the 
second moment of the theoretical titration 
curve derivative for second shell residues 
(3.5Å-9Å) from the metal site. This 
feature was implemented due to the 
previous findings that residues at active 
site have higher deviation from the 
Henderson-Hasselbalch equation than 
other ionizable residues5,6,23,42,43. The 
features of the averages of the third and 
fourth moments for second shell 
ionizable residues, while still important, 
were less critical, ranking tenth and 
nineteenth respectively. The 
electrostatics of the residues responsible 
for coordinating the metal ions (first shell) 
are more similar between the 
metalloenzyme and non-enzymatic 
metalloprotein sites (Table ST1) than in 
the second shell and this is likely 
preventing these descriptors from being 
as important. The other four of the top 
five features are pocket lining terms 

describing the number and total volume of amino acids lining the pocket.   
 
Although MAHOMES found the previously mentioned features to be the most helpful for 
predicting enzymatic activity, they are not solely responsible for enzymatic activity. During the 
outer CV, which evaluated 3,465 predictions, an extra trees model excluding the electrostatic 
category only made six more incorrect predictions than MAHOMES (three enzymatic and three 
non-enzymatic). Another extra trees model excluding the pocket lining category correctly 
identified two more non-enzymatic sites than MAHOMES, but it also identified fourteen fewer 
enzymatic sites.  
 

Figure 4. Feature similarity with respect to 
feature importance. Each point represents a 
feature and is colored according to the feature 
domain. The y-axis is the similarity calculation for 
the enzymatic and non-enzymatic feature values 
(see methods for more detail). The x-axis is the 
features importance for MAHOMES (see 
methods for more detail). The dashed line 
indicates the feature importance of volume. See 
ST3 for values and feature names. 
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Table 1: Comparison of MAHOMES performance to similar tools that make enzymatic and 
non-enzymatic predictions. Above the bold line are enzyme function predictors evaluated on a 
comparable set to MAHOMES, below the line are enzyme site predictors previously tested on 
the independent, holdout T-124 set24. True positive, true negative, false positives and false 
negatives for the MAHOMES and the three enzyme function predictors in Table ST6. 

Method Predictions by Evaluation set Accuracy Precision Recall 
MAHOMES 
(this paper) 

metal binding 
site 

corrected  
T-metal-site 94.2% 92.2% 90.1% 

DeepEC16 sequence T-metal-seq 69.9% 59.6% 90.5% 
DEEPre44 sequence T-metal-seq 90.1% 81.3% 100.0% 
EFICAz2.545 sequence T-metal-seq 90.8% 88.4% 90.0% 

PREvaIL 21 residue T-124 set 96.8% 14.9% 62.2% 
CRHunter 22 residue T-124 set 98.6% 28.6% 48.8% 
CRPred 24 residue T-124 set 97.3% 14.7% 50.1% 
 
Benchmarking with other methods 
Since no alternative method uses metal-binding sites as input, we adjusted the corrected T-
metal-site test-set to be a sequence test-set (T-metal-seq) to compare the performance of 
MAHOMES to other methods. The 516 metal sites in the corrected T-metal-site test-set are on 
only 400 proteins that were unambiguously metalloenzymes or non-enzymatic metalloproteins. 
So the T-metal-seq test-set consisted of those 400 unique sequences (Supplemental file T-
metal-seq.csv). Sequences were labeled as enzymatic or not enzymatic as described in the 
methods. Using T-metal-seq, we benchmarked the performance of MAHOMES against three 
enzyme function predictors (Table 1); DeepEC16, DEEPre17,44, and EFICAz2.545. MCC is 
sensitive to the magnitude of imbalance, so it was not used as a performance metric due to the 
different levels of imbalance in the corrected test-set and sequence test-set. 
 
DeepEC16 predicts enzymatic function using three independent convolutional neural networks 
which only usea  protein sequence as input. The first neural network makes a binary enzymatic 
or non-enzymatic prediction. We only evaluated the performance of the first neural network 
since the second and third neural networks make third and fourth level EC number predictions. 
DeepEC had a similar recall to MAHOMES, but was by far the lowest of the evaluated methods 
for accuracy, and precision.  
 
Similar to DeepEC, DEEPre17,44 also uses deep learning to predict enzymatic function. DEEPre 
is a level-by-level predictor, meaning it has a machine learning model for every split in the EC 
hierarchy for EC numbers that it is capable of predicting. We only evaluate its level zero model, 
which is responsible for making enzyme or non-enzyme predictions. In addition to the 
sequence, DEEPre uses some features mined from the sequence data, including predicted 
solvent accessibility, predicted secondary structure, and evolutionary information. The 
evolutionary information includes the detection of any Pfam functional domains and a position-
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specific scoring matrix for the whole sequence produced by BLAST+. DEEPre had a remarkable 
100% recall, identifying all enzyme sequences including the ones mislabeled by our pipeline. 
However, it over-predicted the number of enzymatic sequences by 23%, resulting in a lower 
precision and accuracy than MAHOMES. 
 
The final sequence-based enzyme function prediction tool evaluated on our sequence test-set 
was EFICAz2.545-47. EFICAz2.5 combined homology detection, sequence similarity, 
conservation information, Pfam functional domains, the PROSITE database to generate four 
independent predictions and two predictions made by SVMs. These six outputs are combined 
using a tree-based classification model which outputs an EC number. EFICAz2.5 was very 
consistent across all evaluation metrics. Although MAHOMES had the highest precision and 
true negative rate, EFICAz2.5’s came in a close second relative to DeepEC and DEEPre.  
 
Discussion  
Feature importance 
Many of the features of most importance to MAHOMES are similar to features previously 
described for determining active sites. Our most important electrostatic features are modeled on 
previous electrostatic features5,6,23,42,43, but have subtle differences. Both use calculations of the 
moments for the theoretical titration curve first derivative. The previous work identifies active site 
residues by looking for clusters of residues with statistically significant deviations. We find the 
averages of deviations for ionizable residues in the area beyond the coordinating residues 
(3.5Å-9Å) identifies metalloenzyme catalytic sites over sites that only bind metals. We find that 
the coordinating residue theoretical titration curves are more similar between enzyme an non-
enzyme, likely because both our enzymatic and non-enzymatic sites are coordinating metals. 
The differences beyond the first shell likely indicate a networks of amino acids which serve as a 
pathways for energy transfer48 which have been found for a number of types of enzymes9. In 
addition, we also find the second moment to be most predictive whereas other studies find the 
third and fourth moment to be most predictive6. Further investigation will be needed to 
determine the origin of this difference. 
 
Our volume feature, modeled on a previous study7, was the most dissimilar feature between 
enzymatic and non-enzymatic sites but was far from the most important feature for activity 
prediction. In contrast, a feature of distance between the center of the active site and protein 
centroid, also modeled on previous work8, was 1.5 times as similar between classes as the 
volume feature but was a more important feature for activity prediction. 
 
The second to fifth most important features are pocket lining features describing the number 
and volume of side chains and backbones lining the pocket. In all four of these features the 
enzyme dataset has more volume and more amino acids. There are two possible explanations 
for the importance of these feature. The first is that it may indicate that surface area of the 
pocket is superior to volume of the pocket in predicting enzymatic activity. The second is that 
because of the movement and flexibility known to be critical to enzyme function9 the amino 
acids lining the pocket are a better proxy for true volume of the pocket than the volume 
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calculation itself. Further research may help deconvolute these two possibilities to better explain 
what about pocket surface is most predictive of enzyme activity.   
 
MAHOMES in comparison to catalytic residue predictors 
Though catalytic residue predictors use structure-based features and therefore may be more 
comparable to MAHOMES, we were unable to directly benchmark MAHOMES performance 
against any catalytic residue predictors22, 49, 50 21 24 due to lack of availability of either the model 
or the methods for implementation. Models such as these which train on very imbalanced 
datasets (an enzymatic to non-enzymatic ratio of ~1:124) result in misleadingly low precision 
and misleadingly high accuracy. Precision is the percent predicted enzymatic sites that were 
correct, when the number of correct enzyme sites is low compared to the total possibilities, this 
number will always be low. Conversely, accuracy, which is the percent of predictions the model 
correctly predicts, will be very high for an imbalanced set. For example, a 99.2% accuracy may 
appear to represent a successful predictor, but could be achieved with only non-enzymatic 
predictions. A more equitable comparison to MAHOMES would be recall. CRPred24, 
CRHunter22, and PreVAIL21 were all evaluated on the T-12424 dataset. Because the common 
dataset contains a similar number of enzymatic sites as our test-set, recall—the percent 
enzymatic residues that were correctly identified—is a more equitable comparison. These 
models report recalls ranging from 48.8% to 62.2% whereas MAHOMES scored 90.1% on 
recall. We did not compare another catalytic residue predictor, POOL23,49 because they did not 
use the same independent, holdout test-set. 
 
As measured by difference in recall MAHOMES can correctly identify 1.3 times more catalytic 
sites on enzyme structures than the best of these three catalytic residue prediction methods. 
Moreover, where MAHOMES predicts nine out of every ten enzymatic predictions correct, 
catalytic residue predictors are only correct for one or two out of every six enzymatic 
predictions.  We anticipate that MAHOMES relative success is due both to training on more 
similar sites and to less imbalance of the training set. By training on negative sites that were 
also in pockets and also coordinated metals MAHOMES was able to assign feature importance 
based on characteristics that were particular to enzyme activity. In addition, MAHOMES training 
set was up to 40 times more balanced than the catalytic residue predictor datasets.  
 
MAHOMES in comparison to enzyme function predictors 
Side-to-side comparisson with our test-set demonstrated that MAHOMES also had overall better 
performance at predicting enzymatic activity for metalloproteins than sequence-based enzyme 
function prediction tools. The one exception is the 100% recall by DEEPre which was better 
than MAHOMES 90.1% recall. This is a reflection of DEEPre over-predicting enzymatic sites, as 
indicated by its lower precision (81.3%) which is the percent of predicted enzymes that were 
correctly identified. The other neural network model, DeepEC, though less successful than 
DEEPre had a similar problem of over-predicting enzymatic sites. DeepEC scored a 90.5% 
recall but only a 59.6% precision. Conversely, MAHOMES had a more balanced performance 
with a 92.2% precision and 90.1% recall. EFICAz2.5, the most homology-based predictor, 
showed that not all EC number predictors suffer from enzymatic over-predictions with a 90.0% 
recall, 88.4% precision, but it was still outperformed by MAHOMES for all performance metrics.  
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Differences in what features each tool used indicate what can be used to successfully make 
enzymatic and non-enzymatic predictions. DeepEC relies heavily on deep learning, passing 
only the protein’s sequence to its predictor with no other processing or features. DeepEC’s 
fourth-place performance indicates that relying on sequence alone requires even more training 
data to allow for deep learning to extrapolate important features from the sequence. The other 
two sequence-based methods generate evolutionary information from the sequences which is 
combined with machine learning. Their large training sets, 44,316 sequences for DEEPre and 
220,485 sequences for EFICAz2.5, provided ample data to allow for successful enzymatic and 
non-enzymatic predictions via homology and conservation.  

MAHOMES structure-based, physiochemical features led to predictions by features specific to 
catalytic activity, allowing MAHOMES to outperform DEEPre and EFICAz2.5 even though it was 
trained with only 7.8% and 1.6% the amount of data respectively. We anticipate that MAHOMES 
success over enzyme function classifiers was due to the use of structural features which are 
more sensitive to small differences of the active site. Though structural data is less available, it 
is more predictive of enzyme function than homology.  

MAHOMES ability to correctly detect enzymatic activity should make it especially useful to 
problems where methods reliant on homology are not applicable. For example, MAHOMES may 
be used for eliminating poor de novo metalloenzyme designs prior to experimental testing. 
Another use-case could be detecting when a mutation eliminates enzymatic activity. As more 
datasets become available, we anticipate that the MAHOMES approach will be able to be 
refined and deployed in future protein design and catalytic-site prediction pipelines.   
 
Materials and Methods 
Metalloprotein ion site data 
For the purposes of our study, we focused on protein structures that contain residues codes 
with one or two of the following metals: iron, copper, zinc, manganese, magnesium, 
molybdenum, nickel and cobalt (residue codes of interest are FE, FE2, FES, FEO, CU, CU1, 
CUA, MG, ZN, MN, MO, MOO, MOS, NI, 3CO, CO).  
 
RCSB3 was queried to find the list of crystal structures containing a residue code of interest. 
Structures with nucleotide macromolecular types were removed. Crystal structures with a 
resolution greater than 3.5Å were removed to ensure high-quality feature calculations. 
Structures with more than 40 sites were removed as those indicated large complex structures 
such as virus particle and ribosomes. Protein chains with less than 20 residues were removed 
to avoid polypeptides. For cross-referencing and to eliminate as many de novo proteins or 
immunoglobulins as possible, we also removed protein chains that did not have a UniProtKB 
accession number1.  
 
For uniform handling of mononuclear and polynuclear metal sites, we defined a site as the area 
around metal atoms of interest attached to the same protein chain within 5 Å of each other. 
Because homology detection was determined by chain, sites that were within 4 Å of a residue 
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from another chain were indicative of a possible multi-chain metal-binding site and were 
removed. Additionally, the few sites with more than four metal atoms, such as metal storage 
proteins, were removed to allow for more uniform feature calculation methodology. Sites within 
10 Å of mutated residues were removed to avoid studies that identified catalytic residues 
through loss of activity mutations.  We split the sites into a dataset and a test-set – the dataset 
consisted of protein structures resolved prior to 2018; the holdout test-set, T-metal-site, 
consisted of protein structures resolved in 2018 or later. 
 
Computational labeling of sites as enzymatic and non-enzymatic 
The Mechanism and Catalytic Site Atlas (M-CSA) contains manually annotated reaction 
mechanisms with a representative PDB structure for each entry34. A few M-CSA entries are 
undesirable for our study, such as those requiring heme cofactors or dimerization. Additionally, 
a few M-CSA entries’ catalytic residues were missing metal coordinating residues or included 
unwanted residues, such as those with steric roles. We performed our own manual annotation 
to adjust the data we used in these cases (Table ST7). To expand the coverage of the M-CSA 
data, potential sequence homologs were detected for each M-CSA entry using PHMMER51 with 
a cutoff E-value of 10-6 and a database of sequences in the PDB. E-values take into account 
database prevalence, leading to the addition and removal of detected homologs when using 
updated versions of the PDB. Hence, two versions of the PDB are used to allow for updating 
homolog detection for the test-set (currently PDB as of May 21, 2020) without affecting the 
homologs detected in the dataset (PDB as of May 17, 2019). Homologs of the undesirable M-
CSA entries were removed from the dataset and test-set. To avoid labeling non-enzymatic 
homologs, like pseudo-enzymes, we discarded homologues that did not meet at least one of the 
following requirements; an associated EC number, a PDB classification containing “ase”, or a 
PDB Macromolecule Name containing “ase”. 
 
For further support of enzymatic evidence and identification of the homolog’s active site 
location, each remaining homolog was aligned to its respective M-CSA representative, using 
TM-align52. We chose to use a TM-score of 0.40 or greater to represent structural homology, 
and discarded all aligned homologs below that cut-off. All sites that met all previous 
requirements and aligned within 5 Å of a catalytic residue listed in the M-CSA entry were 
labeled as enzymatic. For chains containing enzymatic sites, unlabeled sites were labeled as 
non-enzymatic. To create our non-enzymatic set, sites that were not M-CSA sequence 
homologues, had no associated EC number, no “ase” in the PDB classification, and no “ase” in 
the PDB Macromolecule Name were labeled non-enzymatic. Remaining unlabeled sites in the 
dataset and test-set were removed at this point. 
 
The non-enzymatic metal binding sites comprise a number of types of proteins some of which 
may be better suited for the negative dataset than others. The most frequent types of proteins 
are classified as transcription, transport, signaling, and binding (proteins, DNA, RNA, sugar, or 
membrane). Metal transport and signaling proteins are likely to only have pockets large enough 
to fit the metal ions. Conversely, proteins that bind other proteins, DNA, RNA, sugar, or 
membranes will have ligand pockets that more closely resemble the pockets of enzymes which 
bind substrates of various sizes. Additionally, the non-enzymatic metal ions that do not 
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contribute to the protein function are likely to either be of structural importance or crystal 
artifacts. The metals bound as crystal artifacts are likely to be bound at the surface and bound 
less tightly than metalloenzymes.  
 
Removal of redundant sites 
There are many redundant protein structures—proteins that are highly homologous or identical 
proteins with different ligands. To prevent redundancy from biasing our training toward one 
particular protein we implemented the following method of intra-set redundancy removal. First, 
we removed proteins that were sequence redundant. We removed all but one instance of 
identical sequences. Then sequence homologs were assembled and clustered using PHMMER 
taking from the PDB on the dates mentioned and using an E-Value of 10-20. This homolog 
collection and clustering were executed independently for the dataset and test-set. Next, we 
removed site redundancy. Chains within a cluster were aligned using TMalign and sites that 
aligned within 5 Å with a ≥ 0.50 TMscore were checked for local similarity. We defined local site 
similarity as the Jaccard index of residue identities within a 3.75 Å radius for two sites. Sites 
were removed if they had a local similarity greater than 0.80.  Due to high preprocessing 
computational costs, sites that had already undergone relaxation were selected when possible. 
Otherwise, we used the following priority to keep the more favorable site: 1) catalytic site, 2) no 
other ligands present, 3) no other sites within 5 Å to 15 Å, 4) no mutations in PDB, 5) crystal 
structure resolution. 
 
Evaluating machine learning models on the same data used to train and optimize them can lead 
to overfitting, inflated metrics. The temporal separation of the test-set and dataset prevents the 
same structure from being in both sets.  However, the aforementioned redundancy of protein 
structures, different structures of the same protein, or closely related homologs can still lead to 
reporting an inaccurately high machine learning performance. To remove structurally similar 
sites, we used an all against all method to compare the residue identities within a 6.0Å radius of 
all remaining sites, removing sites with greater than 0.80 similarity.  
 
Further data processing 
The pipeline described above displayed catalytic identification errors with electron transport 
proteins, kinesins and NTPases, in part because they were inconstantly labeled in the training 
dataset. In order to prevent further errors, we removed electron transport proteins and kinesins 
as identified by PDB classification or molecular name. To remove all ATPase and GTPase sites, 
we removed all Mg sites within 10 Å of a nucleic acid-phosphate ligand that were labeled non-
enzymatic. 
 
Finally, when the structures were relaxed using Rosetta (see Supplement for RosettaScripts 
inputs), 728 sites with loosely bound metals—often the result of crystal artifacts—that moved 
more than 3 Å during relaxation were removed from the dataset and test-set.  Also, 179 sites 
were removed due to failure to complete feature calculations. 
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Features 
Five feature categories were calculated on the relaxed structures – Rosetta energy terms, 
pocket void, pocket lining, electrostatics, and coordination geometry (Figure 2A; Table ST1). To 
prevent outlier values from affecting the models, all features were scaled (normalized) using sci-
kit’s RobustScaler prior to machine learning. The scaler was fit to the 20th and 80th quantile of 
the dataset and used to transform the dataset and test-set. 
 

1. Rosetta energy terms 
Rosetta feature values were assigned to all sites using all the terms in the energy function 
beta_nov1653. Rosetta assigns a value for each term to each residue. We used the sum or the 
mean of the per-residue Rosetta energy terms as features, calculating terms in spheres and in 
shells using the cutoffs 3.5Å, 5Å, 7.5Å and 9Å. This results in 21 features per cutoff and 84 
features per calculation method. The different groups of Rosetta terms were never included 
together in any model.  
 

2. Pocket void terms 
Rosetta’s pocket_measure application54 was executed on all individual sites, using the residue 
closest to the site center to anchor the grid. This maps the pocket to a 0.5Å-interval grid. Using 
these pocket grid points, we determined the city block distance from site center to the center of 
the pocket opening. Volumes were calculated by Rosetta and depth was taken as the distance 
between pocket opening and site center.  
 
To quantify the shape of the pocket, we took three slices of pocket points (bottom, middle, and 
top) and projected them into 2D space after rotating the pocket so that the z-axis runs from site 
center to center of the pocket opening. For each slice, we calculated the farthest distance 
between two points, the area formed by a 2D slice that encompassed all points, the distance 
from the origin to the center of the ellipse that encompasses the convex hull, and the two radii of 
the ellipse. These calculations result in 20 features.  
 

3. Pocket lining terms 
The grid produced by Rosetta’s pocket_measure also allows us to identify and describe the 
residues that line the pocket. Residues were split into backbone-only—where exclusively 
backbone atoms are adjacent (within 2.2 Å) to a pocket grid point—and sidechain—where any 
sidechain atom of a residue is adjacent to a pocket grid point; adjacent sidechain and backbone 
atoms of the same residue are included in this group). We then calculated the average, 
minimum, maximum, skew, and standard deviation of the hydrophobicity for the side chain 
residues using two different scales-- Eisenberg55 and Kyte-Doolittle56. We also calculated the 
occluding volume of the pocket as the sum of the van der Waals volume of the sidechains in the 
pocket which allowed us to determine the total volume of the pocket without sidechains and the 
Leonard Jones volume of that pocket occupied by sidechains. Finally, we calculated the surface 
area of the pocket walls by summing the solvent-accessible surface area for any sidechain-
adjacent residue. This resulted in 16 features.  
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4. Electrostatics 
Our electrostatics features are based on the use of theoretical titration curves by 
THEMATICS5,23 which showed that the theoretical pKa curves of ionizable side chains deviate 
from expected Henderson-Hasselbach behavior42. We used bluues57 to calculate our theoretical 
titration curves for all ionizable residues (see supplement for command line options), which is a 
generalized Born solution to the Poisson-Boltzmann equation rather than a finite difference 
solution and therefore quickly calculates the electrostatics for our dataset.  
 
We calculated the mean and max of the second, third and fourth central moments of the 
theoretical titration curves for all residues in two shells. The first shell included residues with an 
α-carbon atom within 3.5 Å of the site center; the second shell included residues with an α-
carbon atom between 3.5-9 Å of the site center; the shells are labeled “Inside” and “Outside”, 
respectively. Each scaler of feature, the second, third and fourth central moments, was also 
used to calculate an environmental feature43. For a scaler feature x and a site center s, the 
corresponding environmental feature was calculated using: 

𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) =
∑ 𝑤𝑤(𝑟𝑟)𝑥𝑥(𝑟𝑟)𝑟𝑟
∑ 𝑤𝑤(𝑟𝑟)𝑟𝑟

 

where r is an ionizable residue with a distance d(r,s) < 9Å from the site center, and the weight 
w(r) is the 1/d(r,s)2. 
 
Bluues57 also provides information about the pKa shift from an ideal amino acid to the amino 
acid pKa in the context of neighboring ionizable residues. Because pKa shifts are observed in 
catalytic residues58-60, we include the minimum and maximum of these values for the same two 
shells as the central moments described above. We also calculated the residuals for the 
deviation of the theoretical titration curve from a sigmoidal curve; we similarly calculated the 
mean and max of these values in the two shells as described above. Residues adjacent to 
active sites often rank among the most destabilizing (positive) ∆Gelec values of a protein61; we 
use the solvation energies calculated by bluues as a proxy and rank all residues from highest to 
lowest solvation energies. Residue ranks are then split into five bins to avoid length-dependent 
ranks; destabilizing ranks run from highest to lowest solvation energies while stabilizing ranks 
were assigned from lowest to highest solvation energies. We then calculated the mean and max 
in the two shells as well as the environmental rank as described above. Overall, there are 37 
electrostatic features.  
 

5. Coordination geometry  
FindGeo62 and CheckMyMetal63,64 are both webservers that provide information about the 
coordination geometry of bound metals in crystal structures. We added functionality to 
FindGeo’s python portion to calculate features from CheckMyMetal. FindGeo compares the 
coordination of a metal atom in a PDB to a library of 36 idealized geometries and, in addition to 
the name of the coordination geometry, determines whether the geometry is irregular, regular, 
or distorted. For each site, we record which of the 36 geometries are present. However, these 
features are not used in training because assignments were diverse enough that it lead to 
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problems of sparse data. Instead we recorded coordination number based on the 36 ideal 
geometries and determined whether the geometry included a vacancy.  
 
We also recorded the numbers of nitrogen, oxygen, sulfur, and other atoms coordinating the 
metals in each site. Both the total number of coordinating atoms and the average number per 
metal are included as features. We calculated the overall charge on the site from the FORMUL 
lines of the PDB. Four terms from CheckMyMetal are also calculated – the sum of the angular 
deviation from the ideal geometry, the maximum single angle deviation, the bond valence 
(which is the sum of the individual valences), and the normalized bond valence. Perfect 
geometries are defined to have a normalized bond valence of 1. These features all attempt to 
describe how far from physically ideal the metal binding site is. In total there are 24 coordination 
geometry features.  
 
Feature similarity 
We calculated feature similarity for discrete features – those that can take fewer than 21 unique 
values - using the Jaccard similarity between the proportions observed in the enzymatic and 
non-enzymatic sites. In this case, the Jaccard similarity is equal to the sum of the minimum 
values divided by the sum of the maximum values. For example, if 50% of the non-enzymatic 
sites have regular geometry and 50% do not, and 75% of the enzymatic sites have regular 
geometry and 25% do not, the Jaccard similarity is (0.5+0.25)/(0.5 + 0.75) = 0.6.  
 
We calculated feature similarity for our continuous features, as the overlap coefficient which is 
the area under the minimum of two curves or the shared area of two curves. First, we fit a kernel 
density estimator (KDE) to the enzymatic values and to the non-enzymatic values. The KDEs 
were evaluated at 210+1 data points equally spaced from the minimum and maximum values of 
the feature across the whole training set. Then, Romberg integration was used to calculate the 
area under the minimum of the two evaluated KDEs.  
 
Machine learning 
We selected fourteen classification algorithms65 readily available in Python66 that cover a variety 
of popular methods for machine learning – linear regression, decision-tree ensemble methods, 
support vector machines (SVMs), nearest neighbors, Bayesian classification, and simple neural 
networks. A hyper-parameter search space of eight to twelve hyperparameter sets was selected 
for each algorithm (see supplemental for algorithms and search space). The algorithms require 
or greatly benefit from normalizing the features values. We used sci-kit’s RobustScaler with the 
20th and 80th quantiles to limit the effect of outliers during scaling. The scaler was fit to the 
dataset and used to transform both the dataset and test-set. Due to the imbalance of target 
classes (more non-enzymes than enzymes), the dataset was randomly under-sampled at a ratio 
of three non-enzymatic sites to one enzymatic site. 
 
A nested cross-validation strategy was used for model optimization to avoid overfitting and bias. 
Each inner loop used GridSearch with StratifiedShuffleSplit (in the python scikit-learn 
package66) and was optimized four times for each of four scoring terms – accuracy, precision, 
MCC, or a multi-score combination of accuracy, MCC and Jaccard index. An outer loop used a 
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stratified k-fold cross validation. The most frequently selected hyperparameter set during the 
outer cross validation was considered optimal for the model. The dataset was under-sampled 
once prior to model optimization. 
 
In total, we examined 3,752 machine learning models (14 algorithms x 67 feature sets x 4 
optimization terms). For model selection, we re-ran the outer cross validation using only the 
optimal hyper-parameter set. During stratified k-fold cross validation, the data is divided into k 
groups (k = 7), each with the same number of positive and negative entries. All except for one of 
the groups are used to train a model and left out group is used to evaluate that model. This is 
repeated k times, leaving out a different group each time, and the performance is averaged. Our 
random-sampling, and some of the machine learning algorithms that require random sampling, 
are susceptible to differences in the machines on which they are executed. In order to produce 
more reliable performance evaluations for model selection, we repeated each iteration of the 
outer cross validation ten times when we re-ran it. During each repetition, a new random seed 
was passed to the machine learning algorithm and used to under sample the training folds. 
Since we used k=7, the reported outer cross validation results are the average of 70 different 
models (7 folds, each with 10 different random seeds). 
 
The second run of the outer cross validation resulted in a much higher performance deviation 
for the different folds (figure S5), supporting that a large number of models had overfit 
evaluations due to changing hyperparameter sets during the initial outer cross validation. To 
avoid selecting a model that only performed well for specific data, we filtered the results to keep 
models that met several conditions: Accuracy standard deviation <= 6.5%, True Negative Rate 
standard deviation <=9%, and MCC standard deviation <= 0.11. Only 1,668 of 3,752 models 
considered met these requirements (Supplemental Figure S4). Our top model was an extra-
trees algorithm using all feature categories with mean, sphere calculations for Rosetta terms 
because it had high MCC, high precision, and converged on the same optimal extra trees 
algorithm for three of the four optimization metrics.  
 
A holdout test-set was used for our final performance evaluation of the selected top model. 
Similar to the second outer cross validation run, we repeated the predictions ten times. Each 
repetition used a new random seed for the extra tree’s algorithm and a different random under-
sampling the non-enzymatic dataset sites. If the average of the ten predictions was < 0.5 the 
site was classified as non-enzymatic if the average was ≥ 0.5 the site was considered 
enzymatic. 
 
Finally, we used the scikit-learn ExtraTreesClassifier feature importance to output the impurity-
based feature importance. This feature importance is calculated based on how much each 
feature contributed to the reduction of the Gini criterion for the extra trees model. During each 
repetition, the output impurity-based feature importance was normalized relative to the largest 
value, giving feature importance between 0 and 100. The results from the ten repeated runs 
with different random sampling were averaged to give the final feature importance (Table ST5). 
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DeepEC, DEEPre, and ENZYMAz2.5 method evaluations 
After removing the inconclusive false positives from the test-set, the set contained 516 sites on 
400 unique sequences. The sequences were used for testing sequence-based classifiers for 
metrics comparison. Because sequences could contain both positive and negative metal binding 
sites, sequences were labeled as enzymatic if they met at least one of the following criteria: an 
associated EC number, an “ase” suffix in structure classification or molecular name, or 
previously identified to be enzymatic by manual inspection. Sequences that did not meet any of 
the previous criteria were labeled as non-enzymatic. The sequence test-set contained 170 
enzymatic sequences and 230 non-enzymatic sequences.  
 
EFICAz2.5 was download from https://sites.gatech.edu/cssb/eficaz2-5/. We used it to make a 
prediction for all 400 sequences in the sequence test-set. Predictions containing "No EFICAz 
EC assignment" were considered non-enzymatic and all other predictions were considered 
enzymatic. DeepEC was downloaded from 
https://bitbucket.org/kaistsystemsbiology/deepec/src/master/. DeepEC was only able to make 
predictions for the 396 sequences that were less than 1000 residues in length. The output 
“enzyme_prediction.txt” file was used for the performance evaluation. Finally, the 393 
sequences that had between 50 and 5000 residues were uploaded to webserver link provided in 
DEEPre’s publication, http://www.cbrc.kaust.edu.sa/DEEPre/index.html. The prediction was 
considered non-enzymatic if the first digit was ‘0’ and enzymatic for all other first digits. 
 
Data Availability: The dataset and T-metal site are available in the supplementary file sites.csv. 
T-metal-seq is also available in the supplemental file T-metal-seq.txt. 
 
Code Availability: Code that can be used to concatenate the features and run MAHOMES on 
them will be placed on GitHub upon publication. 
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