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Abstract 
With advancing age, declines in the executive control of attention are accompanied by shifts in 
the functional topology of brain networks. However, there is increasing recognition of the 
considerable individual variability in the extent and types of attentional deficits that older adults 
exhibit, with results from neuroimaging investigations paralleling behavioral heterogeneity. 
Emerging computational methods leverage whole-brain functional connectivity to predict 
individual-level behaviors. These approaches are well-suited to the cognitive aging context, as 
they may elucidate configurations of functional connections that best explain group- and 
individual-level differences across older adults. Two independent samples of neurologically and 
psychiatrically healthy older adults were used to separately derive a predictive model of 
attentional control and test the model’s external validity. Here we show that despite challenges 
posed by heterogeneity in these aging samples, select functional connections carried meaningful 
variance, allowing for successful prediction of attention in a novel sample of older individuals. 
 
Keywords: predictive modeling, connectome, functional connectivity, neuroimaging, cognitive 
aging, attention 
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1. Introduction 

Age-related cognitive declines have far-reaching ramifications for older adults, a sector 

of the population that is rapidly growing from 55.7 million in 2016 to a projected 104.6 million 

by the year 2050 (U.S. Census Bureau, 2017). Even for those without clinical impairments, 

poorer cognitive function is associated with difficulties completing daily activities (Cahn-Weiner 

et al., 2000; Tucker-Drob, 2011), reduced quality of life (Netuveli et al., 2006; St. John & 

Montgomery, 2010), and increased mortality (Johnson, Lui, & Yaffe, 2007). These downward 

trends in cognition are thought to be explained by deficits in the executive control of attention, or 

the ability to select task-relevant information while inhibiting interfering information (Hasher & 

Zacks, 1988). Attentional control serves as a fundamental building block for many higher-order 

cognitive abilities that are implicated in daily functioning, thus representing a key area of interest 

in cognitive aging research. Importantly, within-person declines in attentional processes follow 

diverse trajectories over time (Goh et al., 2012, 2013), resulting in considerable individual 

variability in the magnitude and types of attentional deficits exhibited by older adults. Further, 

these deficits are not always evident in overt errors, and may instead manifest as compensatory 

strategy shifts observed only at the neural level (Lustig & Jantz, 2015). Thus, information 

represented in the brain’s functional architecture is of particular relevance to developing brain-

based markers of attentional control in older adults.  

Aging is known to have a prominent effect on the functional topology of the brain, 

characterized by reductions in the selectivity and specificity of neural recruitment. Older adults 

exhibit broad decreases in segregation between functional networks as well as disconnection 

within many networks (Liem et al., 2019). Changes in connectivity among canonical networks 

implicated in attentional control, such as the frontoparietal, salience, dorsal attention, and default 
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mode networks, begin to appear as early as middle-age (Siman-Tov et al., 2017), and are 

observed across normal aging, mild cognitive impairment, and Alzheimer’s disease (Dennis & 

Thompson, 2014; Esposito et al., 2018; Sheline & Raichle, 2013). Age-related deficits in 

attentional performance have been linked to certain functional alterations, including decreased 

integrity of the default mode (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008), 

frontoparietal (Geerligs, Renken, et al., 2015), and salience networks (Hausman et al., 2020; 

Onoda et al., 2012), as well as loss of segregation between the default mode network and the 

dorsal attention (Avelar-Pereira et al., 2017) and frontal executive control networks (Ng et al., 

2016). However, the majority of previous studies have relied on select, a priori regions or 

canonical networks, likely missing critical variance represented across multiple neural systems.  

In the last five years, there is growing recognition that complex cognitive constructs, such 

as attention, are an emergent property of functional interactions distributed across the whole 

brain. Thus, methods capitalizing upon connectome-wide patterns of connectivity may yield 

more comprehensive models of brain-behavior relationships that can be used to create 

informative predictive models (Woo et al., 2017). This study employed one such method, 

connectome-based predictive modeling (CPM; Shen et al., 2017), which uses cross-validation to 

identify functional networks that are predictive of behaviors of interest. CPM overcomes several 

limitations of previous approaches by employing a data-driven analysis that is not constrained to 

specific regions or networks and developing models that are informed by each individual’s 

unique connectivity features. This technique is thus particularly well-suited to the aging context, 

allowing us to move beyond brain-behavior associations to building models from brain features 

that predict cognition in previously unseen individuals.   
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Early application of CPM identified a model from task-based functional connectivity that 

captured significant variance in sustained attention performance in young adults using leave-one-

out internal cross-validation (saCPM; Rosenberg, Finn, et al., 2016). This model generalized to 

several independent datasets, predicting attention-deficit/hyperactivity disorder symptoms in 

children from resting-state data (Rosenberg, Finn, et al., 2016) and predicting performance on 

multiple tasks of attention measuring inhibition and executive control from task-based data 

(Rosenberg et al., 2018; Rosenberg, Zhang, et al., 2016). These findings demonstrate that the 

CPM approach can yield markers of attentional ability that are generalizable across tasks and 

samples. In our work, we examined whether the saCPM model could further generalize to an 

aging sample, and demonstrated successful prediction of inhibitory control in a sample of both 

older and younger adults (Fountain-Zaragoza et al., 2019). However, connectivity within the 

saCPM did not account for significant age-related differences in performance, suggesting that it 

did not capture patterns of functional connectivity that are sensitive to the effects of aging.  

The aim of the present study was thus to derive an age-specific connectome-based 

predictive model that explains individual differences in attentional control performance. Using a 

leave-one-out cross-validation technique, we attempt to identify patterns from whole-brain 

functional connectivity during a sustained attention task that predict sensitivity on that task in a 

sample of healthy older adults. We find that aging samples pose a unique challenge to predictive 

modeling as they exhibit considerable brain-behavior heterogeneity. Despite this, we identify an 

aging sustained attention CPM (Age-saCPM) and demonstrate its ability to predict attentional 

performance in an independent sample of older adults.  

2. Material and Methods 
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2.1 Power Analysis. The primary aim of the study was to derive a functional 

connectivity-based marker predictive of attentional control performance in older adults. Network 

derivation was modeled after Rosenberg, Finn, et al., (2016), in which cross-validation was used 

to iteratively identify networks of connections (i.e., edges) that were related to attentional 

performance, generate predictive models, and test prediction on left-out participants. The 

resulting model (i.e., the saCPM) comprised a high-attention network, edges whose strength was 

associated with better performance (mean r = .59), and a low-attention network, edges whose 

strength was associated with worse performance (mean r = -.58). Based on an alpha level of .001 

(two-tailed test), a total sample size of 40 participants was needed to yield an estimated power of 

at least 0.80 to derive networks for the CPM.  

Additionally, our previous application of this model in a sample of older and young 

adults (Fountain-Zaragoza et al., 2019), found significant associations between saCPM 

predictions and observed Stroop task performance (rs= -.620, total sample size needed = 33). In 

order to have sufficient power for network identification, we derived networks using data from a 

set of 50 internal validation participants. We then assessed the external validity of the model on a 

previously unseen, independent sample of 34 participants.  

2.2 Sampling and Screening. This cross-sectional study included data from two 

independent sets of healthy, community-dwelling older adults aged 65-85 years. Participants for 

the internal validation sample (N1 = 50) were recruited for a study aimed at identifying 

neuroimaging markers of attentional control in healthy older adults. This was the primary dataset 

used for network derivation, model building, and internal validation; participants were recruited 

for a study aimed at identifying biomarkers of healthy aging. The external validation sample (N2 

= 34) was used to test prediction of the derived model; this sample was comprised of baseline 
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data from an ongoing randomized controlled trial of mind-body interventions for healthy aging 

(clinical trial #NCT03626532). Participants were recruited from the greater Columbus, Ohio 

area.  

Participants were considered eligible if they were right-handed, had corrected near and 

far visual acuity no worse than 20/40, were not colorblind (Ishihara, 2010), able to perceive and 

understand all study components, without objective cognitive impairment (see below), without 

contraindication to the MR environment, and self-reported absence of current psychiatric 

disorders, neurological disorders and incidents (e.g., stroke), and terminal illnesses (e.g., cancer). 

Participants were excluded if they scored in the range of possible mild cognitive impairment or 

dementia on cognitive screenings. This was defined as a score < 26 on the Montreal Cognitive 

Assessment (MoCA, Nasreddine et al., 2005; range: 26-30) for the internal validation sample. 

For the external validation sample, this was defined as a score < -1.5 SD on one or more of the 

following tests: the computerized Wisconsin Card Sorting Test (perseverations), WAIS-III Digit 

Span and Block Design subtests, Boston Naming Test, Controlled Oral Word Association Test, 

and the Hopkins Verbal Learning Test (total recall or retention). Both studies were approved by 

The Ohio State University Institutional Review Board, and informed consent was obtained from 

each participant. Neither dataset has been published. Data supporting the findings of this study 

can be made available upon request from the corresponding author. 

2.3 Data Exclusion. Of the 50 internal validation participants, 41 had usable data. Of the 

34 external validation participants, 26 had usable data. Reasons for data exclusion included 

acquisition error (N1: 1), possible mild cognitive impairment (N2: 1), incidental findings on 

structural images (N1:  2; N2: 1), poor engagement with the gradual-onset continuous 

performance task (gradCPT hit rate >2.5 SD below the mean, translating to 52%-67% correct; 
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N1: 2),  inadequate vision correction (N1: 1), low correlation between their functional 

connectivity matrix and all other functional connectivity matrices in the sample (-2.7 SD below 

the mean; N1: 1), excessive head motion throughout both runs of the gradCPT (N1: 2; N2: 6). Of 

the 41 internal validation participants, six demonstrated excessive motion in the second run of 

the gradCPT, so only the first run was included in the analyses. Of the 26 external validation 

participants, three had only one run included in analyses due to excessive motion, 

misinterpreting task instructions, and a low hit rate. Consistent with a well-established pipeline 

in our laboratory (Fountain-Zaragoza et al., 2019) and a prior study employing CPM in older 

adults (Lin et al., 2018), excessive head motion was defined as mean framewise displacement 

(FD) > .15 mm and motion > .5 mm in more than 10% of functional volumes (Power, Barnes, 

Snyder, Schlaggar, & Petersen, 2012). 

The distribution of each variable of interest (d’, connectivity strength for each network, 

predicted performance generated from each network, and mean FD) was checked using the 

Shapiro-Wilk test of normality (Shapiro & Wilk, 1965). Of these variables, mean FD was not 

normally distributed. 

2.4 Image Acquisition and Analysis 

2.4.1 Gradual-onset Continuous Performance Task. While in the scanner, participants 

performed the gradual-onset continuous performance task (gradCPT; Esterman et al., 2013; 

Fortenbaugh et al., 2018; Rosenberg, Finn, et al., 2016). In this task, participants viewed 

grayscale, circular images (diameter = 256 pixels, 7° of visual angle) of city and mountain scenes 

presented in the center of the screen. Images were presented one at a time. Images gradually 

transitioned using linear pixel-by-pixel interpolation, taking 800 ms for each full transition. 

Participants were asked to respond by pressing with their right index finger to city scenes, 
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occurring randomly about 90% of the time, and to withhold responses to mountain scenes. They 

completed two separate runs, each consisting of four 3-minute blocks interleaved with rest 

blocks. Rest blocks were indicated by the presentation of a circle in the center of the screen for 

30 seconds, during which participants were asked to simply attend to the fixation circle. They 

were then alerted to the start of the next block by the presentation of a dot inside the circle for an 

additional 2 seconds. Eight seconds of fixation were included at the start of each run and were 

excluded from analyses. Each run lasted 13:44 minutes. The dependent variable of interest was 

sensitivity, or d’, which takes both correct responses (i.e., hits) and errors of commission (i.e., 

false alarms) into account. This was calculated as d’ = z(hit rate)–z(false alarm rate) for each 

block and then averaged across blocks for each participant (as in Rosenberg, Finn, et al., 2016). 

Reliability of d’ was calculated using a Spearman-Brown-corrected split-half correlation between 

average performance on even blocks versus odd blocks. There was excellent reliability in both 

the internal and external validation samples (rs = 0.97).  

2.4.2 Imaging Parameters. Data for both studies were collected at the Center for 

Cognitive and Behavioral Brain Imaging at The Ohio State University on a 3T Siemens 

MAGNETOM Prisma system using a 32-channel head coil. The order of sequence acquisition 

for the internal validation sample (N1) was: localizer, resting-state, T2, gradCPT run 1, 

magnetization prepared rapid gradient echo (MPRAGE), fieldmaps, gradCPT run 2. The order of 

sequence acquisition for the external validation sample (N2) was: localizer, resting-state, N-back 

task run 1, N-back task run 2, MPRAGE, gradCPT run 1, T2, fieldmaps, gradCPT run 2, DTI. 

This study required the use of at least one of the gradCPT runs, the MPRAGE for registration of 

functional images, and the fieldmaps for distortion correction. Sequence parameters for the 

gradCPT were identical for both samples. For each run of the gradCPT task, 824 volumes were 
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acquired using a multiband echo-planar imaging (EPI) sequence with the following parameters: 

repetition time (TR) = 1000 ms, echo time (TE) = 28 ms, flip angle = 50°, field of view: 240 mm 

x 240 mm, 45 axial slices, slice thickness = 3 mm (voxel size = 3.0 mm3), multiband acceleration 

factor = 3. For the internal validation sample (N1), the anatomical MPRAGE had the following 

parameters: TR = 1900 ms, TE = 4.44 ms, flip angle = 12°, field of view: 256 mm x 256 mm, 

slice thickness = 1.00 mm (voxel size = 1.0 mm3), 176 sagittal slices. For the external validation 

sample (N2), MPRAGE parameters were: TR = 2400 ms, TE = 2.15 ms, flip angle = 8°, field of 

view: 256 mm x 256 mm, slice thickness = 1.00 mm (voxel size = 1.0 mm3), 208 sagittal slices. 

For both samples, the fieldmap had the following parameters: TR = 512 ms, TE 1 = 5.19 ms, TE 

2: 7.65 ms, flip angle = 60°, field of view: 240 mm x 240 mm, slice thickness = 3.00 mm (voxel 

size = 2.0 x 2.0 x 3.0 mm), 45 axial slices. 

2.4.3 Image Preprocessing. Data were preprocessed using fMRIB’s software library 

(FSL; Smith et al., 2004) in two steps. First, a minimal preprocessing pipeline was used that 

included motion correction, brain extraction, bias field inhomogeneity correction, and spatial 

smoothing with a 6-mm kernel. Second, all steps requiring linear regression with projection of 

data into an orthogonal space were conducted in a joint nuisance regression model (as 

recommended in Lindquist, Geuter, Wager, & Caffo, 2019). This nuisance regression step 

included pre-whitening and high-pass filtering (frequency = 0.01 Hz) to remove the effects of 

low-frequency noise, and regression of mean signal from CSF and WM, a 24-parameter motion 

model (six motion parameters, six temporal derivatives, and their squares), and mean global 

signal, which has been found to reduce the effects of both physiological signals and head motion 

in functional connectivity data  (Ciric et al., 2017; Parkes et al., 2018; Power et al., 2014; Power, 

Plitt, Laumann, & Martin, 2017; Power, Schlaggar, & Petersen, 2015; Weissenbacher et al., 
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2009). Additionally, following the recommendation of Power et al. (2012), volumes with FD 

values > 0.5 mm were added as confounds in the regression model. See supplemental 

information for more details regarding motion controls.  

2.4.4 Whole-Brain Functional Connectivity. Brain parcellation was conducted using a 

268-node, whole-brain functional atlas (Shen, Tokoglu, Papademetris, & Constable, 2013; 

https://www.nitrc.org/frs/?group_id=51). This atlas includes cortical, subcortical, and cerebellar 

regions and was developed with the goal of maximizing the similarity of voxel-wise timeseries 

within each node. Nodes were considered missing if less than 50% of their original volume was 

retained after masking each participant’s functional image, resulting in only two excluded nodes  

(nodes #51: right temporal pole, node #252: left cerebellum from the Shen atlas). Whole-brain 

functional connectivity during task runs was computed for each participant using the Graph 

Theory GLM toolbox (GTG; Spielberg, Miller, Heller, & Banich, 2015). The first eight volumes 

of rest from each run, as well as embedded rest breaks, were excluded and remaining data were 

concatenated across runs for participants with two usable runs. Activity in each node was 

calculated by averaging the time courses of all voxels within the node. Functional connectivity 

(i.e., edges) was calculated as the Pearson correlation (r) between the timecourses of each node 

pair. Each coefficient was then normalized using Fisher's r-to-z transformation and the resulting 

266 x 266 fully connected matrices representing the functional connectivity between each node 

pair were used in all subsequent analyses. 

2.4.5 Effects of Head Motion. Given that motion can introduce significant confounds in 

studies of functional connectivity, after excluding participants with excessive head motion and 

correcting for head motion during preprocessing, we assessed whether estimates of head motion 

(mean FD), derived from processed data, were correlated with d’, age, or the strength of the 
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high- or low-attention networks following derivation. Head motion was significantly associated 

with lower d’ (rs = -0.31, p = .048), but not age (rs = 0.25, p = .12), in the internal validation 

sample. As such, mean FD was used as a covariate at the edge selection step in internal 

validation. In the external validation sample, motion was not significantly associated with d’ (rs 

= 0.25, p = .22) or age (rs = -0.096, p = .64) so neither were included as covariates in the primary 

analyses. However, to be conservative, the external validation effects were additionally tested 

when controlling for head motion.  

2.5 Statistical Analyses 

2.5.1 Predicting Attentional Control. In all subsequent analyses assessing the 

performance of predictive models, we report several metrics of model performance. These 

include Spearman rank correlation between observed and predicted d’, mean squared error 

(MSE) from the linear regression fitting predicted to observed d’, and the coefficient of 

determination prediction R2 (also known as q2; Scheinost et al., 2019). Prediction R2 is computed 

as [1-(model MSE/null MSE)] in which a null model has predictions that are all the same (the 

mean of observed behavior). Due to this, prediction R2 can be negative, indicating that the 

predictive model explained less variance than simply predicting the mean of d’. 

2.5.2 Predictive Ability of the saCPM in Aging Datasets. We first evaluated the 

predictive ability of the young-adult saCPM (Rosenberg, Finn, et al., 2016) in both samples of 

older adults separately (N1 = 41 and N2 = 26). To do so, we applied the masks from the original 

saCPM high-attention and low-attention networks (268 x 268 symmetrical, binary matrices 

including 1s for edges that belong in the network and 0s elsewhere) to individual functional 

connectivity matrices. We averaged all edge values in each mask to calculate high-attention and 

low-attention connectivity strengths and then computed combined strength (i.e., the different 
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between high- and low-attention network strength) for each individual. Network strength values 

were entered into the GLM model that was constructed in the initial derivation of the saCPM 

(Rosenberg, Finn, et al., 2016) to generate predicted d’ for all participants. Model performance 

was assessed as the correspondence between observed and predicted d’ using the metrics 

specified above.  

2.5.3 Internal Validation. The CPM method, previously described in (Finn et al., 2015; 

Rosenberg, Finn, et al., 2016; Shen et al., 2017), was used to predict individual differences in 

attentional control (i.e., d’ on the gradCPT) from whole-brain functional connectivity. All CPM-

based analyses were completed using custom MATLAB scripts (adapted from those available 

here: https://github.com/YaleMRRC/CPM). We defined the models using a leave-one-out cross-

validation (LOOCV) approach to reduce the rates of false-positive findings. On each iteration of 

cross-validation, the model was trained on data from n-1 participants (n = 40) and tested on the 

left-out individual. Forty-one rounds of cross-validation were conducted such that each 

individual served as the test participant once. Each iteration included feature selection followed 

by model building and prediction of performance for the left-out individual.  

In the feature selection step, we identified edges that were related to d’. Partial Pearson 

correlations were conducted between every edge and d’ across training set participants, 

covarying mean FD. These correlation coefficients were then thresholded at p < .01 across 

participants and separated into a positive tail called the high-attention network (i.e., edges whose 

strengths are associated with better performance) and a negative tail called the low-attention 

network (i.e., edges whose strengths are associated with poorer performance). We then computed 

a single summary measure (strength) for each network by averaging all constituent non-zero 

edges, which represents each participant’s level of functional connectivity within the respective 
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set of edges. We consolidated the information from the high- and low-attention networks using 

combined network strength, calculated as the difference between network strengths. In order to 

facilitate interpretability, results are presented for this combined network model, unless 

otherwise stated.  

We next built three predictive models based on network strengths within the Aging high-

attention network, Aging low-attention network, and the combined model. For each, we used 

linear regression to generate a first-degree polynomial that best fit respective network strength to 

d’ in the set of n – 1 (i.e., 40) participants. We then tested prediction on the left-out participant 

by calculating their three network strengths and entering those values into each model to 

generate three predicted d’ scores. This process was repeated for all iterations of n – 1 groups, 

such that predicted scores were eventually generated for each participant. The final high- and 

low-attention networks of this new Age-saCPM is the set of edges that appeared in every round 

of LOOCV.  

Model success was quantified by conducting a Spearman rank correlation (rs) between 

predicted and observed d’. Model fit indices, such as MSE and prediction R2, were not reported 

for internal validation results because in-sample predictive accuracy likely overestimates the 

effect (Poldrack, Huckins, & Varoquaux, 2019). We chose to use Spearman rank correlations 

because CPM predictions have been shown to have limited range compared to observed scores, 

and are thus better represented as relative rather than absolute predictions (Rosenberg, Finn, et 

al., 2016). Given the lack of independence across LOOCV iterations, permutation testing was 

used to determine significance of any successful models based on a non-parametric p-value 

calculated from 1,000 permutation tests. To do so, we randomly shuffled participants’ d’ values 

and conducted LOOCV to assess the correlation between predicted and randomly shuffled 
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observed scores. This was done 1,000 times in order to generate a null distribution of correlation 

values, against which the results of the analysis were compared to determine significance level 

(i.e., p value of each network).  

2.5.4 External Validation. We next assessed the predictive power of the model by 

correlating predicted and observed d’ for a previously unseen external validation set. Network 

strength values for each of the external validation participants were computed by averaging all 

edge values within the final high- and low-attention network masks generated in the previous 

step. We also computed combined network strength by subtracting the low-attention network 

strength from the high-attention network strength. Network strength values were entered into the 

GLM models to produce predicted d’ values. Model performance was assessed as the 

correspondence between observed and predicted d’ using the metrics specified above. 

2.5.6 Characterizing the Anatomy of the Age-saCPM. We characterized the 

distribution of edges within the Age-saCPM using two approaches to classify edges. First, we 

used matrices to visualize how many edges in the high-attention and low-attention networks 

belonged to each macroscale brain region including prefrontal, motor strip, insula, parietal, 

temporal, occipital, limbic, cerebellum, subcortical, and brainstem. Next, we calculated the 

relative involvement of ten canonical networks in the Age-saCPM. The networks were 

previously defined in Finn et al. (2015) and Noble et al. (2017) and include: 1) medial frontal 

(MF), 2) frontoparietal (FP), 3) default mode (DMN), 4) motor (MOT), 5) visual I (V1), 6) 

visual II (V2), 7) visual association (VA), 8) salience (SAL), 9) subcortical (SC), and 10) 

cerebellar (CB). We employed a calculation to index the relative contribution of each network, as 

reported by Greene et al. (2018). We designated each edge (i,j) to its respective pair of canonical 

networks [A (the network that includes i), B (the network that includes j)]. Conceptually, the 
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contribution of edges between canonical networks A and B is the number of edges between A 

and B belonging to the Age-saCPM (mA,B) divided by the number of edges between A and B in 

the whole brain (EA,B). These two numbers were also normalized for network size (mtot = total 

number of edges in the Age-saCPM; Etot = total number of edges in the whole brain), such that a 

value of 1 indicates a proportionate contribution and larger values indicate a greater contribution 

of that network pair to the model than would be expected for its size. The resulting matrices are 

symmetric along the diagonal, so only the bottom triangle of each matrix is displayed. 

 

 

 

3. Results 

3.1 Predicting Attentional Control 

 Two independent groups of older adults (internal validation sample: N1 = 41, external 

validation sample: N2 = 26) performed the gradual onset continuous performance task (gradCPT; 

Esterman et al., 2013; Fortenbaugh et al., 2018; Rosenberg, Finn, et al., 2016) in the scanner, and 

performance was measured using sensitivity (d’). Task-based functional connectivity was 

calculated using the 268-node Shen functional atlas (Shen et al., 2013; 

https://www.nitrc.org/frs/?group_id=51). The two included samples did not significantly differ 

on demographic or beahvioral variables (Table 1).  

3.1.1 Predictive Ability of the saCPM in Aging Datasets. In our previous work, we 

found that the original saCPM, identified in a sample of healthy young adults (Rosenberg, Finn, 

et al., 2016), predicted inhibitory control (Stroop task performance) across a sample of both older 

and younger adults (Fountain-Zaragoza et al., 2019). However, we found that prediction within 

ContributionA,B = 
mA,B/mtot 

EA,B/Etot 
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older adults alone was only successful from the low-attention network, and only a small subset of 

edges within it (the OA Low1 and OA Low2 subnetworks) accounted for age-related 

performance differences. Given this mixed evidence of generalizability to aging samples, we 

tested the predictive ability of the original saCPM model and age-sensitive subnetworks in the 

two older-adult samples used in this study. This allowed a more direct evaluation of 

generalizability, as these participants performed the same attention task on which the original 

saCPM was derived (i.e., the gradCPT).  

When the saCPM was applied to the internal validation dataset (N1 = 41), prediction was 

not successful from the high-attention network (rs = 0.024, p = .88, MSE = 0.51, prediction R2 = 

-4.86%), the low-attention network (rs = -0.13, p = .43, MSE = 0.50, prediction R2 = -2.87%), or 

the combined model (rs = -0.057, p = .72, MSE = 0.50, prediction R2 = -4.47%). Applying the 

saCPM to the external validation dataset (N2 = 26), predictions were also not successful from the 

high-attention network (rs = -0.21, p = .29, MSE = 0.38, prediction R2 = -1.50%), the low-

attention network (rs = -0.32, p = .11, MSE = 0.38, prediction R2 = -2.33%), or the combined 

model (rs = -0.34, p = .087, MSE = 0.37, prediction R2 = 0.077%). The negative prediction R2 

values indicate that saCPM predictions were less accurate than simply predicting the mean of 

observed d’ in each sample. Similarly, connectivity strength wtihin the age-sensitive saCPM 

subnetworks was not significantly associated with d’ in either the internal validation sample (OA 

Low1 subnetwork: rs = -0.091, p = .57; OA Low2 subnetwork: rs = -0.024, p = .88) or the 

external validation sample (OA Low1 subnetwork: rs = 0.19, p = .34; OA Low2 subnetwork: rs = 

0.061, p = .77). The lack of successful prediction from existing networks to both older-adult 

samples suggests that there are limits to the generalizability of the saCPM networks in aging 

samples and further justifies the need for defining an aging-specific model of attentional control.  
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3.1.2 Internal Validation. Connectome-based predicitve modeling (CPM; Shen et al., 

2017) was conducted using the internal validation sample (N1) with the goal of identifying a set 

of functional connections that predicts performance on the gradCPT (i.e., d’). Network models 

were iteratively trained using leave-one-out cross-validation (LOOCV) on 40 participants’ task 

data and tested on the left-out 41st participant. On each round, networks were derived by 

identifying edges (i.e., functional connections) that were significantly associated (at p < .01) with 

d’, controlling for head motion, in the 40 training set participants. Strength in the identified 

network was summarized as mean connectivity among included edges, and a linear model was 

used to relate network strength to behavior across the training set. Then, the left-out participant’s 

network strength value was entered into the linear model to generate a predicted d’ score. Model 

performance was assessed by correlating individuals’ observed d’ with their predicted d’ 

generated during the respective round of LOOCV. Network derivation did not result in 

significant prediction of left-out participants’ d’ from the high-attention network (rs = 0.07, p = 

.66), the low-attention network (rs o = 0.25, p = .11), or a combined model (rs = 0.16, p = .31), 

calculated by subtracting low-attention network strength from high-attention network strength. 

Given that internal validation was unsuccessful, permutation testing was not conducted.  

We tested the influence of several confounding variables on derivation, including residual 

effects of head motion, cross-validation and modeling strategy, and choice of significance 

threshold. We confirmed that the models were not fitting to noise attributable to motion (see 

Supplementary Materials “Additional Motion Controls”). Derivations remained non-significant 

at multiple thresholds based on both p-values and percentiles (see Supplementary Materials 

“Testing Edge Selection Thresholds” and Table S1). We also found that prediction remained 

unsuccessful across 100 permuted iterations of 10-fold cross-validation and when using LOOCV 
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with ridge regression (see Supplementary Materials “Alternative Derivation Strategies and 

Figure S1). 

3.1.3 Examining Cross-Round Consistency. In order to investigate why internal 

validation may have failed, we assessed the consistency of edge selection across rounds of 

LOOCV by correlating the two-dimensional matrix of edges from one round with the matrices of 

each of the other rounds. Across rounds, the correlation strengths ranged from 0.55 - 0.86 (M = 

0.79, SD = 0.066) and the average percent overlap ranged from 62% to 87% (M = 79%, SD = 

6%). These two metrics suggest that there was considerable variability in the edges selected 

across rounds of LOOCV (i.e., a small number of common edges), and raised the possibility that 

the model was overfitting to noise. Therefore, as predictive reliability is contingent upon 

selecting correlated features that capture variance both in the construct of interest and between 

individuals (Sripada et al., 2020), unsuccessful internal predictions may have been driven by 

inconsistent or non-specific feature selection. Additionally, the range of predicted d’ in this study 

was smaller (range = 1.22, min = 2.23, max = 3.45) than the range of observed scores (range = 

2.53, min = 1.54, max = 4.07), such that the model did not generate predicted scores below -0.69 

SD or above 1.04 SD from the observed d’ mean. As such, prediction error was smallest (i.e., the 

model was most accurate) for individuals who scored within 1 SD of the mean. Although this 

phenomenon is observed in both CPM-specific analyses (e.g., Rosenberg, Finn, et al., 2016), and 

machine learning predictions in general, these observations suggest that patterns of functional 

connectivity-performance associations may differ for individuals performing on the tails of the 

distribution compared to the rest of the sample. Thus, failure to accurately predict performance 

across rounds of LOOCV may also be due to heterogeneity in brain-behavior relations.  
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3.1.4 External Validation. Establishing the validity of predictive models requires 

assessment of model performance in an independently collected dataset that was not involved in 

model building (Scheinost et al., 2019). This process ensures that model predictions are valid and 

generalizable, rather than overfitting to sample-specific features (Yarkoni & Westfall, 2017). In 

this case, internal validation was hampered by variability in edges selected across rounds of 

cross-validation. However, construction of a final model, containing edges appearing in every 

round of cross-validation, mitigates this problem and can be used to assess the external validity 

of the Age-saCPM in a completely independent external validation dataset (N2). Final networks 

were defined as edges found consistently across rounds of internal cross-validation and GLM 

coefficients were calculated by modeling the relationship between connectivity in these final 

networks and behavior across the full internal validation sample. The final Age-saCPM 

contained 122 edges; 71 in the high-attention network and 51 in the low-attention network 

(Figure 1a).  

As a true test of generalizability, we examined the predictive power of this final Age-

saCPM model in the independent external validation sample of older adults who also completed 

the gradCPT (Figure 2). We found that prediction was successful from the combined Age-

saCPM networks (rs = 0.55, p = .004, MSE = 0.30), accounting for 18.7% (prediction R2) of the 

variance in d’ in previously unseen individuals, and this effect remained when controlling for  

head motion (rs = 0.51, p = .009). The low attention network accounted for more variance (rs = 

0.60, p = .002, MSE = 0.28, prediction R2 = 24.8%) than the high-attention network (rs = 0.39, p 

= .052, MSE = 0.35, prediction R2 = 6.55%). This pattern is consistent with our previous finding 

that the original saCPM networks identified by Rosenberg, Finn, et al. (2016) generalized to an 

older adult sample and that components of the low-attention network were more sensitive to age-
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related deficits in inhibitory control (Fountain-Zaragoza et al., 2019). Notably, prediction in the 

external validation dataset was successful from models derived using all thresholds tested 

(Supplementary Figure S2). However, the p < .01 model demonstrated greater predictive power 

than models with more lenient thresholds, and stricter models yielded very low numbers of edges 

(ranging from 9-58).  

3.1.5 Characterizing the Anatomy of the Age-saCPM. The distribution of Age-saCPM 

edges and nodes belonging to each macroscale region of the brain are presented in Figure 1a-c. 

Of the 71 edges in the high-attention network, intra-prefrontal edges represented the largest 

proportion (22.5%) and had the largest contribution to the network, accounting for size. Others 

with large contributions included insular-motor, limbic-motor, and prefrontal-motor edges. 

Contrastingly, over a quarter of the 51 edges in the low-attention network were between 

prefrontal and subcortical areas (25.5%), representing the largest contribution to the network. 

This was followed by contributions from motor-brainstem edges, prefrontal-brainstem edges, and 

intra-subcortical edges (Figure 1b). As can be seen in Figure 1c, the most striking difference 

between the two networks was the much greater involvement of bilateral prefrontal nodes in the 

high- than low-attention networks. The observed bilateral, and particularly left hemisphere, 

involvement fits with a pattern of age-related neural compensation in response to demanding 

tasks, which has been well-established in regional activation studies (Grady, 1998; Park & 

Reuter-Lorenz, 2009; Reuter-Lorenz & Cappell, 2008). This is also consistent with previous 

functional connectivity studies that have demonstrated compensation such that older adults who 

demonstrated increased bilateral prefrontal connectivity performed similarly to young-adult 

comparators, whereas the group that did not performed much lower (Eavani et al., 2016). The 

low-attention network had greater representation of subcortical and cerebellar nodes, which are 
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increasingly recognized as playing important roles in both motor and attentional functioning 

(Buckner, 2013; Kellermann et al., 2012; Strick, Dum, & Fiez, 2009). In fact, certain cerebellar 

regions participate as nodes in the dorsal attention network (Brissenden, Levin, Osher, Halko, & 

Somers, 2016). However, aging is associated with reduced cerebellar volume and altered cortico-

cerebellar network connectivity, both of which have been linked to age-related performance 

decrements (Bernard & Seidler, 2014). Thus, the involvement of subcortical and cerebellar 

regions in predicting poorer performance may reflect age-related neural vulnarbilities in those 

areas. 

Of note, there was very limited overlap between the Age-saCPM and the original saCPM 

networks (Rosenberg, Finn, et al., 2016) with just one edge overlapping in the high-attention 

networks, zero in the low-attention networks, and 4 edges when network membership is ignored. 

There was no overlap between the Age-saCPM and saCPM subnetworks reported in Fountain-

Zaragoza et al. (2019). 

The relative involvement of each of ten canonical functional networks in the Age-saCPM 

is depicted in Figure 3. The greatest contributions to the high-attention network were from 

connections among the medial frontal and frontoparietal networks and within the salience 

network. In addition to being consistent with the patterns of compensatory frontal recruitment 

discussed above, this pattern highlights the non-specific nature of this recruitment such that we 

observed connectivity between multiple frontal networks. This is consistent with findings of age-

related reductions in network segregation, particularly among networks implicated in associative 

processes, including frontoparietal, salience, and dorsal/ventral attention networks (Chan et al., 

2014). Our results suggest that interactions among these frontal networks supports attentional 

performance for older adults. This pattern also mirrors results from previous functional 
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connectivity-based predictive modeling studies that highlight an important role of these networks 

for individual-level performance. One paper found that medial frontal and frontoparietal network 

connectivity was most successful at discriminating between individuals (Finn et al., 2015) and 

another showed that predictive features for a variety of cognitive tasks (including working 

memory, language, and motor tasks) were concentrated in medial frontal, frontoparietal, visual, 

and motor networks (Greene et al., 2020). For the low attention network, there was greatest 

involvement of connections between the visual II and medial frontal networks and between 

subcortical and medial frontal networks. Although somewhat unexpected, it is possible that the 

involvement of medial frontal-visual II connectivity in predicting poorer performance reflects 

failed attempts to engage with the visual stimuli and cognitive demands of the task. The 

involvement of subcortical-frontal connectivity, on the other hand, is consistent with results 

observed in the original saCPM, in which there were more connections within the subcortical-

cerebellum network and between subcortical-cerebellum and frontoparietal networks in the low-

attention than high-attention networks (Rosenberg, Finn, et al., 2016). This pattern may reflect 

age-related increases in connectivity from subcortical regions to other networks (Tomasi & 

Volkow, 2012), and might suggest a detrimental role of these shifts for attentional performance.  

4. Discussion 

This study aimed to define a functional connectivity-based whole-brain model of 

attentional control in healthy older adults. A network-based predictive model previously defined 

in young adults (the saCPM; Rosenberg, Finn, et al., 2016) did not generalize to the two samples 

of older adults in this study, demonstrating the need for an aging-specific model. Using 

connectome-based predictive modeling, our initial attempt to identify brain networks that were 

predictive of attentional performance was unsuccessful. We observed that the consistency of 
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edges selected across rounds of cross-validation was low, which appeared to be driven by 

heterogeneity in brain-behavior relationships across participants. However, the final network of 

edges that appeared in every round of cross-validation successfully predicted performance in an 

independent sample of older adults. Thus, despite the observed heterogeneity, there is a shared 

network of connections that predicts meaningful variance relevant to attention in older adults. 

The final Age-saCPM model successfully predicted attentional control from task-based 

functional connectivity in an independent sample of healthy older adults, accounting for roughly 

25% of the variance in performance. Prediction in this external sample was stronger from the 

low-attention network (24.8% of the variance) than the high-attention network (6.5% of the 

variance). This pattern is consistent with our previous finding that components of the low-

attention network from the original saCPM were more sensitive to age-related deficits in 

inhibitory control (Fountain-Zaragoza et al., 2019). Interestingly, the original young-adult 

saCPM networks (Rosenberg, Finn, et al., 2016) did not successfully predict performance in 

either sample in this study, suggesting that a model trained in older adults may contain signal 

that is specific to aging and thus offer superior generalizability in this population. Further, we 

found little overlap between the original saCPM and the Age-CPM, with only four shared edges 

between the two. The distinctiveness of the Age-CPM from previous models derived in young 

adults may be driven by a unique attentional signature in aging. 

The networks of the Age-saCPM were widely distributed, involving connections from all 

macroscale brain regions and canonical networks. The high-attention network was weighted 

toward prefrontal and motor regions with large contributions of connections involving the 

frontoparietal, medial frontal, and salience networks. These results fit broadly with accounts of 

age-related compensatory over-recruitment of bilateral frontal areas (e.g., Park & Reuter-Lorenz, 
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2009), providing converging evidence, from a network perspective, that increased connectivity 

among frontal areas supports attentional performance in older adults. Indeed, one previous study 

illustrated that older adults who demonstrated increased connectivity between bilateral prefrontal 

areas performed similarly to young-adult comparators, whereas the group that did not exhibit this 

increase performed much lower (Eavani et al., 2016). The large degree of frontal network 

involvement in the high-attention network is also supported by a robust literature documenting 

the role of frontally-mediated networks as “hubs” that regulate other brain networks (Cole et al., 

2013; Spreng et al., 2010) in service of memory, attention, and executive function (Grady et al., 

2016; La Corte et al., 2016; Shaw et al., 2015). For example, connectivity between the salience 

network with other networks was predictive of performance on tasks of episodic memory, 

working memory, and inhibition (La Corte et al., 2016). Moreover, frontoparietal network 

connectivity mediates the relationship between connectivity in other networks and performance, 

supporting its role as a primary driver of cognitive function in older adults (Shaw, Schultz, 

Sperling, & Hedden, 2015).  

In contrast, the low-attention network was most heavily weighted towards subcortical 

areas, with large contribution of subcortical-medial frontal and visual II-medial frontal 

connections. Interestingly, previous CPM analyses using the gradCPT have also found a 

similarly large contribution of connections involving subcortical areas to the low-attention 

network (Rosenberg, Finn, et al., 2016), suggesting that this may be a consistent feature of poor 

attentional performance. When comparing the high- and low-attention networks, there is a 

notable lack of inter-frontal network (i.e., frontoparietal-medial frontal) contribution to the low-

attention network, again pointing to a supportive role of frontal involvement for attention in 

older adults. Whereas connectivity within several expected networks (i.e., medial frontal, 
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frontoparietal, and salience networks) predicted better attention, many of the edges of the low-

attention network were between disparate networks (e.g., subcortical-medial frontal). This is 

suggestive of the well-characterized pattern of diffuse increases in between-network connectivity 

in aging (Ferreira et al., 2016), which can result in the merging of previously modular networks 

(Geerligs, Renken, et al., 2015). This loss of functional segregation has been found to be 

detrimental to cognition for older adults (Andrews-Hanna et al., 2007; Avelar-Pereira et al., 

2017; Damoiseaux et al., 2008; Geerligs, Renken, et al., 2015; Geerligs et al., 2014; Grady et al., 

2016; Onoda et al., 2012), and consistent with our observation of such patterns in a network 

predicting poorer attentional performance. 

Although the Aging-CPM was ultimately generalizable across samples, it is important to 

consider factors that may have hampered initial model derivation success. Across rounds of 

cross-validation, we observed considerable variability in the edges selected as relevant to 

performance, suggesting that there were heterogeneous patterns of brain-behavior relations 

across the sample. Decades of research have demonstrated that complex changes in brain 

structure and function result in diverse profiles of cognitive function in later life, with some 

linked to progressive decline over time while others having little impact (Boyle et al., 2017). 

Therefore, even samples of non-cognitively impaired older adults likely exhibit varied presence 

and extent of neuropathology and functional alterations. It may be the case that the sample used 

for model derivation in this study was not sufficiently sized (internal validation included N1 = 

41) for the model to converge on a solution in the face of such variability. Importantly, other 

studies investigating CPM models in larger aging datasets have also encountered mixed success, 

both in attempting model derivation (Lin et al., 2018) and in testing generalizability of 
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previously identified networks (Avery et al., 2019). This suggests that the heterogeneous process 

of aging poses a unique challenge to brain-based biomarker identification.  

Although age-related differences in functional connectivity are amplified during 

challenging cognitive tasks compared to rest (Dørum et al., 2017), it is possible that either the 

gradCPT task or the selection of d’ as the behavior of interest was not optimal for elucidating 

individual differences in sustained attention in older adults. Recent studies have shown that 

certain cognitive states appear to amplify individual differences in cognition and some tasks 

yield better prediction than others (Greene et al., 2018). Given that the development of useful 

biomarkers hinges greatly on the metric of behavior it is trained upon, future studies would likely 

benefit from scanning older adults as they perform a suite of tasks that tap multiple 

complementary domains of attention. As such, future research may confront these challenges by 

employing multimodal and multivariate approaches (Cole & Franke, 2017; Yoo et al., 2019), 

integrating data regarding structural features and connectomes from both resting-state and 

various tasks. 

Despite the challenges posed by heterogeneity in this aging sample, the present study 

produced a model that explained significant variance in attentional performance. This suggests 

that even in the face of age-associated neuropathology and heterogeneous brain-behavior 

relationships, there is a pattern of connectivity capturing attentional abilities that is shared, which 

can successfully predict performance in an independent sample of older adults. These results 

highlight the potential utility of brain-based models for predicting individual-level attentional 

functioning in the context of the heterogeneous aging process. Future work utilizing multimodal 

and multivariate approaches to capture this variability (Yoo et al., 2019) holds promise for 

producing imaging-based biomarkers that are sensitive predictors of current cognitive status. 
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These biomarkers would offer exciting avenues for predicting future cognitive decline and 

serving as target outcomes for interventions aimed at promoting cognitive function in older 

adults.  
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Appendix 
Table 1.  
Demographics and Descriptive Statistics. 

    

 
Internal 

Validation (full 
n = 50) 

External 
Validation 

(full n = 34) 

Internal 
Validation 

(included n = 41) 

External 
Validation 

(included n = 26) 

Group Differences
(included) 

 Mean SD Mean SD Mean SD Mean SD test p 
Demographics           
Age (years) 70.3 4.60 70.7 4.53 69.7 3.88 69.5 3.41 t(65) = 0.16 .88
Education (years) 17.4 3.21 16.5 2.77 17.5 3.30 16.2 2.32 t(65) = 1.73 .089
% Women 54.0 --- 47.1 --- 51.2 --- 46.2 --- X2 = 0.16 .69
Race (no. and %)         X2 = 1.39 .71
       White 47 94.0 31 91.2 38 92.7 25 96.2   
       Black 1 2.00 3 8.82 1 2.44 1 3.85   
       Asian 1 2.00 0 0.00 1 2.44 0 0.00   
       Other 1 2.00 0 0.00 1 2.44 0 0.00   
MRI Assessment            
gradCPT d’ 2.59 0.75 2.22 0.87 2.72 0.70 2.47 0.62 t(65) = 1.46 .15
Raw meanFD  0.17 0.057 0.23 0.12 0.17 0.048 0.18 0.04 t(65) = -1.47 .15
Included volumes 
(no. and %) 

1598.6 97.0 1509.2 91.6 1610.3 97.7 1596.6 96.9 
t(65) = 0.98 .33
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Figure 1. Anatomical Distribution of the Age-saCPM. A) The 71 edges belonging to the high-attention 
network are in red and the 51 edges belonging to the low-attention network are in blue. In brain figures, 
the size of nodes represents higher degree (i.e., more functional connections). Ring plots depict intra- and 
inter- region connections for the high-attention (red) and low-attention (blue) networks. Ribbon size is 
proportional to the number of edges. For B and C, scaled contributions were calculated by adjusting for 
the number of edges belonging to the respective regions and the size of the networks. Values > 1 indicate 
a disproportionate contribution relative to size. B) Matrices present the contributions (lower triangular) and 
raw number of edges (upper triangular) for each macroscale brain region for the high-attention (red) and low-
attention (blue) networks. C) Bars represent the nodes in the high-attention (red, top) and low-attention 
(blue, bottom) networks belonging to each macroscale brain region in the left hemisphere (lighter shades) 
and right hemisphere (darker shades). Colored bars depict contributions (values multiplied by 10 for 
visualization purposes), gray bars represent the raw number of nodes. Region acronyms: PFC = prefrontal; 
MOT = motor; INS = insula; PAR = parietal; TEM = temporal; OCC = occipital; LIM = limbic; CER = 
cerebellum; SUB = subcortex; BSM = brainstem. Visualization software: glass brains 
(https://bioimagesuiteweb.github.io/webapp/connviewer.html), ring plots (https://flourish.studio/). 
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Figure 2. The Age-saCPM Predicts Attentional Performance in Novel Older Adults. Scatter plots show 
the correspondence between observed performance on the gradCPT (d’) and model-based predicted 
performance based on the combined network (gray), high-attention network (red), and low-attention 
network (blue). The coefficient of determination (prediction R2) is presented for each. *p < .05, **p < .01, 
***p < .001.  
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Figure 3. Functional Distribution of the Age-saCPM. A) The involvement of ten canonical networks in 
the high-attention (left) and low-attention (right) networks. Ribbon size is proportional to the degree of 
contribution of each network pair, which adjusts for the number of edges belonging to the respective 
networks and the size of the Age-saCPM networks. Values > 1 indicate a disproportionate contribution 
relative to size. B) Matrices present the contributions (lower triangular) and raw number of edges (upper 
triangular) for each canonical network pair in the high-attention (red) and low-attention (blue) networks. 
C) The difference in contribution (lower triangular) and number of edges (upper triangular) of each pair 
of canonical networks. Red represents higher involvement in High > Low, blue represents higher 
involvement in Low > High. Network acronyms: MF = medial frontal; FP = frontoparietal; DMN = 
default mode; MOT = motor; VI = visual I; VII = visual II; VA = visual association; SAL = salience, SC 
= subcortical; CB = cerebellar. Ring plot visualization: https://flourish.studio/. 
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