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Abstract. ​Cancers are constituted by heterogeneous populations of cells that show complex genotypes             
and phenotypes which we can read out by sequencing. Many attempts at deciphering the clonal process                
that drives these populations are focusing on single-cell technologies to resolve genetic and phenotypic              
intra-tumour heterogeneity. While the ideal technologies for these investigations are multi-omics assays,            
unfortunately these types of data are still too expensive and have limited scalability. We can resort to                 
single-molecule assays, which are cheaper and scalable, and statistically emulate a joint assay, only if we                
can integrate measurements collected from independent cells of the same sample. In this work we follow                
this intuition and construct a new Bayesian method to genotype copy number alterations on single-cell               
RNA sequencing data, therefore integrating DNA and RNA measurements. Our method is unsupervised,             
and leverages on a segmentation of the input DNA to determine the sample subclonal composition at the                 
copy number level, together with clone-specific phenotypes defined from RNA counts. By design our              
probabilistic method works without a reference RNA expression profile, and therefore can be applied in               
cases where this information may not be accessible. We implement and test our model on both simulated                 
and real data, showing its ability to determine copy number associated clones and their RNA phenotypes                
in tumour data from 10x and Smart-Seq assays, as well as in data from the Human Cell Atlas project.  

Introduction 
 
Cancers grow from a single cell, in an evolutionary process modulated by selective forces that               
act upon complex combinations of cancer genotypes and phenotypes ​(1,2)​. The fuel to cancer              
evolution is cellular heterogeneity, both at the genotypic and phenotypic level, and much is yet               
to be understood regarding its effect on tumour evolution and response to therapy ​(3,4)​.              
Notably, the heterogeneity observed in cancer can also be produced during normal tissue             
development, and therefore the quest for understanding heterogeneity is a problem with            
implications far beyond cancer ​(5–7)​. 
 
While the evolutionary principle of cancer growth is intuitive to conceptualise and can be              
replicated in-vivo ​(8)​, it is generally hard to measure cancer clonal evolution using Next              
Generation Sequencing technologies ​(3,9)​. Even popular single-cell sequencing assays such as           
10x and Smart-Seq ​(10)​, which achieve far higher resolution than bulk counterparts, pose             
several challenges for these analyses ​(11)​. On top of this, the generation of genotype and               
phenotype measures poses challenges also in the wet-lab, with much hope put into single-cell              
multi-omics technologies ​(12) that probe multiple molecules from the same cell in parallel (eg.,              
the DNA and RNA, ​Figure 1a ​). In principle, with multi-omics data we can explicitly model               
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heterogeneous genotype-level and phenotype-level cancer populations by integrating multiple         
measurements for each cell in a multi-dimensional matrix (i.e., a tensor). In practice, however,              
single-cell multi-omics assays are still too expensive, and have limited scaling capacity when we              
want to sequence more than some hundreds of cells. An interesting opportunity comes instead              
from single-molecule assays, which are getting everyday cheaper and easily scale to generate             
data from thousands of cells (​Figure 1b ​). A key point is that, at least conceptually, we can                 
attempt the statistical integration of independent assays, trying to map one dataset on top of               
another (​Figure 1c​). For this to be possible, one needs to leverage on a quantitative model for                 
the relation between the sequenced molecules (e.g., one can attempt to predict RNA             
abundance from DNA copies) ​(13)​.  
 
In this work we attempt this type of integration working with total Copy Number Alteration (CNA)                
profiles, and independent single-cell RNA sequencing (scRNAseq) data. The setup of this work             
is most similar to that of ​clonealign​, a recently published method that assigns scRNAseq profiles               
to tumour clones predetermined from independent low-pass single-cell whole-genome DNA          
sequencing (i.e., it is supervised) ​(13)​. Our method does not require input clones, but rather a                
segmentation (i.e., breakpoints) of the tumour DNA obtained from independent assays, together            
with estimates of the total ploidy per segment. We note that this information can be generated                
from routine low-pass bulk DNA sequencing, which is much easier and cheaper to obtain              
compared to the single-cell analogous.  
 
In this framework we formulate an unsupervised clustering problem, in which we estimate             
clusters of cells whose RNA profile can be explained by similar CNAs (which we infer). The                
calling of CNA profiles together with cell clustering in the same statistical framework is, to the                
best of our knowledge, a feature only available in our tool. By design, our method is also                 
reference-free as it does not require a putative reference RNA profile of normal cells. This is                
different from alternative other tools (e.g., Casper and HoneyBADGER) ​(14,15)​, and can help in              
cases where the normal cells are difficult to obtain (e.g., in organoids models). Like ​clonealign​,               
our method statistically relates the ploidy of the tumour genome (i.e., the total copies of the                
major and minor alleles in each segment) to cellular sub-populations associated with distinct             
aneuploidy profiles. After deconvolution, we can directly associate cancer clones to their            
transcriptomic profile, providing an explicit mapping between genotype and phenotype at the            
single-clone level. This is particularly important both in cancer, normal development and other             
diseases. In cancer, where we want to characterise how subclonal CNAs and chromosomal             
instability drive tumour evolution and response to therapy, a key step that points to the puzzling                
link between continuous chromosomal instability and pervasive somatic CNA heterogeneity          
(16)​. In pre-cancer diseases, when we want to measure how pervasive is genetic heterogeneity              
in cells that can be causally linked to the onset of a cancer ​(7)​. 

Results 
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We first conceptualise our approach, focusing on DNA and RNA which we use here. If we can                 
assume a plausible model of the relation between some DNA features and RNA, we can    g             
attempt the statistical integration of measurements collected from assays that independently           
measure these molecules ​(13)​. The aim (​Figure 1c​) is to emulate joint assays by mapping               
measurements of the DNA (input ) on top of RNA measurements (e.g., input ).y x   
 
Genotyping exploits intermediate representations of the inputs. From DNA, we can first compute             
the value , which in our case may represent the tumour total copy number segments (i.e.,  (y)f               
the ploidy per a certain window of the reference genome). Then, we can use to predict              (y)f    
RNA abundance at the level of segments in each single-cell; i.e., we “genotype” segments on               
top of RNA counts by computing . For this task, following earlier works we      g )(y) (f (y))x ~ ( ° f = g         
assume that is a linear model of the DNA ploidy; in practice we correlate the amount of  g                 r  
RNA transcripts that map to a segment with the number of gene copies , using a linear relation             c      

​(13)​. This conceptual framework is general, and can be used for other computations. Forcr ~ α                
instance, when we seek to derive allele-specific expression profiles are tumour mutations         (y)f     
called from , and we can genotype them from the RNA transcripts ​(17) when uses a  y              g   
Binomial variable that counts alternative and reference alleles.  

The CONGAS​ ​method 
 
We have developed ​CONGAS​, a Bayesian method to genotype CNA calls from single-cell             
RNAseq data, and cluster cells into subpopulations with the same CNA profile (​Figure 2 ​). The               
main method is based on a mixture of Poisson distributions and uses, as input, absolute counts                
of transcripts from single-cell RNAseq. The model requires to know, in advance, also a              
segmentation (​Figure 2a ​) of the tumour genome and the ploidy of each segment (​Figure 2b,c​);               
this is in ​Figure 1c​. Assuming to have input CNA data poses a minimal burden. In cancer,  (y)f                 
the input ( ) for segmentation can be generated via low-pass bulk DNA sequencing, and  y             
analysed with standard CNA calling pipelines. If this was not available and cannot be assumed               
straightforwardly, one can attempt to segment directly RNA counts, as we perform in one case               
study, and use that for CONGAS. In normal or conditions where there is a strong bias towards                 
stable diploid populations and we might chase mostly macroscopic events, one could use             
pre-defined arm-level or chromosome-level segmentations ​(5)​. 
 
With the segmentation available beforehand (assumption) we simplify the genotyping problem           
from a statistical point of view, because in practice we avoid segmenting noisy RNA profiles at                
the single-gene resolution. The relation (​Figure 2d,e ​) between the amount of tumour DNA (i.e.,              
the segment ploidy), and the total amount of expected RNA transcripts from genes that map               
onto the segment, uses a linear model for as in ​(13)​. Input CNA segments are also used to        g            
create ad-hoc Bayesian priors based on segments ploidy; if these are not available one can               
assume a predefined ploidy for the analysed genome (e.g. 2 for both tumour, normal, etc.).  
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The ​CONGAS model exists in both parametric and non-parametric form as a mixture of              k ≥ 1  
subclones (i.e., clusters) with different CNA profiles (​Supplementary Figure S1 ​). The model is             
then either a finite Dirichlet mixture with clusters, or a Dirichlet Process with a stick-breaking       k          
construction (non-parametric). In both cases the model handles library size normalisation, and            
can accept optional covariates to adjust for known confounders (e.g., batch effects), as in ​(13)​.               
As far as we are aware, this is the first method that attempts to infer CNAs and jointly cluster                   
input cells in a unique statistical model. 
 
The model likelihood with the usual independence assumption among the input cells and among              
the input CNA segments reads as 
 

 
 
Here is the input data matrix of RNA counts, which describe sequenced cells and    N × I          N     I  
input segments (mapped anywhere on the genome). Counts on a segment are summed up               
by pooling all genes that map to the segment; with cumulative counts we rarely observe               
0-counts segments, which allows us to avoid zero-inflated distributions often used to separate             
measurements from expression ​(18)​. The model uses , a Gamma-distributed latent variable            
which models the library size for cell , and for the number of genes in segment (a       n           i   
constant determined from data). In ​CONGAS ​is the clone CNA profile for clones, where              k   
each clone is defined by segments and associated CNAs; the prior for is a log-transform of     I              
a normal distribution, consistently with the fact that ploidies are positive values. The model              
allows for covariates specified by a matrix, and implements a linear model with  B      B × I         
Gaussian coefficients, equivalent to the one adopted in ​clonalign ​(13)​. In this formulation are               
the latent variables that assign cells to clusters, and the -dimensional mixing N × k            k   
proportions. Based on this modelling idea we also built alternative models that can process              
input data when these are already corrected for library size (e.g., in units of transcripts per                
millions, or read fragments per million), using in this case Gaussian likelihoods. We describe all               
the models in detail in the ​Online Methods​. 
 
CONGAS is implemented in 2 open-source packages. The ​CONGAS package implements all            
the fitting procedures in the Python probabilistic programming language Pyro ​(19)​, exploiting its             
backend to fit the model by stochastic variational inference, running on both CPU and GPU. An                
extra R package ​RCONGAS wraps functions for data pre- and post-processing, visualisation            
and model investigation around ​CONGAS​. 

Synthetic simulations 
 
We tested ​CONGAS by simulating synthetic datasets directly from its generative model (all tests              
are available as Supplementary Data ​). Each simulated dataset reflected standard setups for a             
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10x sequencing assay with about 1000 simulated cells, in line with today’s standard assays.              
The model scales very fast also to analyse tens of thousands of cells, thanks to GPU support                 
native in Pyro. Overall results from our simulations showed that ​CONGAS ​can retrieve the               
generative model for a number of configurations of the input data (​Figure 3 ​). 
 
The method was capable of identifying subclones from tumours that have subpopulations,           ≤ 5   
evolving by both linear and branched patterns of evolution (​Figure 3a ​). In the simulated data,               
every cancer subpopulation was assigned a different copy number profile, reflecting somatic            
CNAs accruing in subclonal lineages. The performance was measured from the ratio of             
agreements over disagreements in cell clustering assignments (Adjusted Rand Index, ARI), and            
was found consistent with other information-theoretic scores usually adopted for measuring           
clustering performance (​Supplementary Figure S2 ​). Also, clustering assignments were stable          
across a number of configurations of different complexity of the simulated tumour (​Figure 3b ​). 
 
CONGAS ​could also work when we introduced overdispersion in sequencing data, a violation of               
its Poisson-based model that, natevely, does not support dispersion. This was obtained by             
sampling read counts data from a Negative Binomial model with increasing dispersion. The             
results showed a trend relating rand index to dispersion, with performance increasing for lower              
dispersion and plateauing for non-dispersed data, as expected (​Figure 3c and ​Supplementary            
Figure S3 ​). 
 
We carried out a final important test to assess the role of the input segmentation in determining                 
subclones. Precisely, we generated subclonal CNAs that were shorter than the input ​CONGAS             
segments, so that only a percentage of genes mapping to a segment were showing a signal in                 
RNA data. This also provides another test-case where the assumptions of our method are              
violated. Performance was measured from very small subclonal CNAs (10% of genes per             
segment), to larger ones (up to 90% of the genes). Results showed a trend between rand index                 
and percentage of involved genes, with good performance achieved when of the genes          0%≥ 4     
that map to a segment are associated to the subclonal CNA (​Figure 3d ​and ​Supplementary               
Figure S4 ​). This clearly suggests that genotyping focal CNAs that involve a handful of genes               
can be difficult, while wider CNAs are generally identifiable even with imperfect segmentation. 

Subclonal decomposition of a triple-negative breast xenograft 
 
We used ​CONGAS to analyse a triple-negative breast cancer dataset generated with 10x             
technology, first released as a case study for the ​clonalign method ​(13)​. This is an important                
case study because we can biologically validate our method thanks to the grand truth provided               
by the single-cell low-pass DNA data required by ​clonalign. 
 
This dataset refers to the patient-derived xenograft SA501X2B collected from patient SA501,            
and has been used to determine clone-specific phenotypic properties that associate with a             
complex clonal architecture; notably the inferred clonal populations have been validated by            
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reproducing clonal dynamics over successive xenograft passages ​(20)​. From low-pass WGS           
analysis this sample is known to harbour three genotypically distinct clones with prevalence             
82.3%, 10.8%, and 6.9% respectively (with one clone sweeping in subsequent engraftments).  
 
To run ​CONGAS we used as input the DNA segmentation consistent with the largest clone               
identified in ​(13) to mimic the main bulk signal, retaining all segments with at least 10 genes.                 
Our analysis from 504 single cells could identify two of the three expected clones (​Figure 4a ​).                
The identified populations show significant differences in the counts of RNA transcripts            
(​Supplementary Figure S5)​; the largest clonal population consists of cells (~75% of         80n = 3     
total), and the smallest one of cells (~25% of total) (​Figure 4b,c​). In terms of      24n = 1           
clone-specific Differential Expression (DE) analysis, we could find genes that are either        22 n = 1     
significantly upregulated or downregulated; Wald test over negative binomial coefficients (fitted           
using DESeq2) with (Benjamini-Hochberg ​method) and absolute log-fold change   adj .001p < 0       
exceeding to determine the genes’ regulatory state (​Figure 4d, Supplementary Figure S6 ​). .250             
Note that some of these genes fall outside of the CNAs that characterize these populations, and                
therefore could only be marginally explained by such genetic changes. Instead, these could be              
explained by more complex regulatory mechanisms indirectly linked to these and other events.             
In this analysis library factors were also found quite variable across cells (​Supplementary Figure              
S7 ​). 
 
The signals identified by ​CONGAS ​are clearly observable across multiple chromosomes, with             
particular strength on chromosomes 15, 16 and 18 (two-sided Poisson test, p-value            .001,p < 0  
Figure 4e,f,h ​and compare with ​Figure 2d ​). This result is consistent with low-pass analysis              
originally carried out in ​(13)​, which we here use to validate our inference (​Supplementary Figure               
S8 ​). Concerning the differences with respect to the original analysis (​Figure 4h ​) - i.e., the lack of                 
identification of a third clone - is simple to explain: the DNA segment that defines this particular                 
population contains less than 10 genes, and is therefore too small to be analysed by ​CONGAS​.                
We note however that this missing cluster is poorly supported also in the original analysis, which                
exhibits assignment uncertainty between the second largest clones and this population  ​(13)​.  

Tumour and normal deconvolution in primary glioblastoma  
 
We used CONGAS to analyse the glioblastoma Smart-Seq data released in ​(21)​. This dataset              
consist of cells from five primary glioblastoma. In particular, we analysed one patient  30n = 4             
(MGH31) with 75 associated cells. MGH31 was the patient of choice as both in the original                
paper and in a successive analysis it seemed to harbor distinct subclonal populations ​(15)​. The               
analysis of these data is mainly challenged by i) the lack of an input CNA segmentation for                 
CONGAS, and ii) the presence of normal healthy cells in the sequenced sample. For these               
reasons, this puts an extra burden on our method. 
 
To implement this analysis we have created a simple preprocessing pipeline around CONGAS.             
To retrieve an input segmentation for our analysis, we have developed a simple Hidden Markov               
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Model to segment minor allele frequencies from the input cells, which we could successfully run               
on this Smart-Seq assay (​Online Methods​). In this way we have identified clear events of loss of                 
heterozygosity, as well as big genome amplification involving chromosomes 7, 10, 13 and 14              
(​Supplementary Figure S9 ​). We have selected these segments to run our analysis. 
 
In a first run (​Figure 5a,b ​), with all cells together (normal plus tumour), CONGAS identifies               k = 3  
clusters; one of them (cluster 3, cells) does not show neither the LOH nor the big copy      0n = 1             
number amplification events. Interestingly, this cluster are indeed normal cells that contaminate            
the sample, as suggested by their comparison with a healthy reference in ​(15)​. We removed              
normal cells and re-run CONGAS on the remaining tumour cells, further finding distinct            k = 3   
cancer subclones (​Figure 5c,d ​). The phylogenetic reconstruction of these clones suggest an            
early branching from an ancestor harbouring the amplification on chromosome 7, and the             
deletion of 10. Clones then branch out: one clone is sustained by a clear amplification on                
chromosome 5 (34% of cells) and a linear path describes the evolution of nested clones with                
increasing levels of aneuploidy (with the largest subclone with also 34% of cells). 
 
The DE analysis of these few cells is inconclusive (data not shown) due to the small number of                  
sequenced cells; nonetheless this 2-steps analysis shows how CONGAS can perform signal            
deconvolution in the presence of normal contamination of the input sample. This is interesting              
and consistent with the fact that the method can work without a reference normal expression.  
 

Monosomy of chromosome 7 in hematopoietic precursor cells 
 
In order to show the versatility of CONGAS we have analysed also mixtures of non-cancer cells                
collected within one experiment associated to the Human Cell Atlas project ​(5)​. In this case the                
dataset provides scRNA from hematopoietic stem and progenitor cells from the bone marrow of              
healthy donors and patients with bone marrow failure. We focused on one patient (patient 1)               
with severe aplastic anemia that eventually transformed in myelodysplastic syndrome, and for            
which cytogenetic analyses revealed monosomy of chromosome 7, a condition that increases            
the risk of developing leukaemias ​(5)​. 
 
To analyse this data we pooled patient 1 together with one of the healthy donors (​n=101 cells                 
total, ​Figure 6a ​). This gives CONGAS both diploid cells (control, from the health patient), and               
cells with chromosome 7 deletion. There is not segmentation for these data, so we used full                
chromosomes with a diploid prior. Aneuploid cells were clearly distinguished from diploid cells             
by this analysis, which found clusters of cells. One cluster contains diploid cells from both     k = 2           
patients, the other cells from patient 1, which are associated with chromosome 7 monosomy.              
Clone-specific differential gene expression (​Figure 6b ​) performed in the same way as the breast              
xenograft example reported 99 genes differentially expressed with and log-fold        adj .01p < 0    
change greater than 0.25. Interestingly the top DE genes were not expressed in the aneuploid               
chromosome, suggesting that an integrated study of transcriptomics and copy number           
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alterations could eventually lead to a better understanding of how these genomic events - which               
have considerable dimension in megabases - can alter cellular behaviour across different            
pathways and functional modules throughout the whole genome. 
 
Discussion 
 
In this paper we present a Bayesian statistical method to genotype CNA from single-cell RNA               
sequencing data, which uses a powerful backend for probabilistic programming, and can run on              
both CPU and GPU to scale to large datasets with tens of thousands of cells (​Supplementary                
Figure S10 ​). CONGAS requires an input segmentation determined from other sequencing           
assays of the input cells (e.g, a low-pass bulk whole-genome), which nowadays is generated at               
a fraction of the cost of the input single-cell RNA dataset. Our method has advantages               
compared to approaches that require a normal reference such as RNA sequencing from a              
matched tissue (which often is not patient-specific) or normal cells in the samples ​(14,15)​. This               
means that our method finds groups of cells with different copy numbers, no matter what the                
reference expression is. This is a major advantage for certain experimental designs, for instance              
in the context of organoid models where we easily grow tumour cells, but struggle growing               
non-tumour cells ​(22)​, or in cell-lines based analysis.  
 
CONGAS reconciles also tumour CNA heterogeneity from RNA by grouping input cells into             
putative genetic clones, using a probabilistic model for cell assignment. Compared to alternative             
approaches that do not attempt clone detection (e.g., CNA callers), or that separate calling from               
clustering, our method is completely integrated in a unique inference framework, and its results              
can be used to compute a clonal phylogeny with standard phylogenetic methods ​(23)​. From a               
CONGAS model we can also assess the phenotypic signature that characterises each clone, at              
least as defined at the RNA expression level. This mapping is also trivial since it comes out as                  
a byproduct of the integration of genetic CNA events together with RNA count data. 
 
Our analysis can be used to detect CNA-associated subclones, and measure their precise             
differential expression patterns, a key step to study how selective pressures shape genotypes             
and phenotypes evolution in distinct populations of cells. In this first work we also show - in                 
multiple case studies - how to determine clone-specific differentially expressed genes which can             
only be partially explained by copy number segments, pointing to complex non-trivial regulatory             
mechanisms that link genotype states with expression patterns. Our method provides a solid             
statistical framework to approach this type of inference, which is crucial to investigate clonal              
dynamics in disease progression, as well as cell plasticity and patterns of drug response from               
the large wealth of single-cell data available nowadays. 

Data Availability 
The implementation of CONGAS is available into two separate packages: ​CONGAS (Python)            
and  ​rCONGAS​ (R). Both packages are available at GitHub  
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● https://github.com/Militeee/CONGAS  
● https://github.com/Militeee/rCONGAS 

 
The analysis of real data, and scripts to generate the main figures of the paper are available in 
the GitHub repository ​https://github.com/caravagn/rCONGAS_test​.  
 
Note to the reviewers:​ During review these repositories are kept private. The ​Supplementary 
Data ​ attached to this submission contains all the material currently available on the repositories. 
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all data, interpreted the results, and drafted the manuscript. 
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Online Methods 

CONGAS  

We discuss here our approach to genotype CNAs from single-cells RNA sequencing data. To              
be precise, while we generally refer to ​CONGAS as a single model, in reality the framework                
leverages a set of core ideas to create models with slightly different features, and that can                
analyse different types of data. The models are: 

● (default) a Dirichlet finite mixture for RNA counts data; 
● a Dirichlet finite mixture for log-normalised RNA data; 
● a Dirichlet Process extension of both the above. 

Also, the framework offers a simple Hidden Markov Model (HMM) to segment input single-cell 
data, which can be used to generate segmentations required by ​CONGAS ​if these are missing. 

In next sections we discuss all models; plate notations are in ​Supplementary Figure S1 ​.  

Modelling the relationship between CNVs and gene expression. ​In order to recover distinct             
populations of cells that differ for the copy number of specific segments, we follow the idea of                 
modelling the generative process of reads counting using a latent variable ​(13)​. Instead of              
modelling the expression of a single gene, we use the aggregated read counts over a whole                
genome segment. This is why our model assumes a pre-existing segmentation of the genome.              
This segmentation is a fundamental part of the model, as it guarantees us a convenient way of                 
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treating the segments as independent statistical entities. As explained in the text, this extra              
assumption poses a minimal burden, considering the cost of generating the single-cell dataset. 

The latent variable has a direct dependence on the copy number state, and it should explain the                 
differential counts expression over a segment among clones. A simple but effective choice is to               
consider the segment expression to be linearly dependent on the total number of chromosomes;              
this is the same idea previously exploited in ​(13)​. The other factors that contribute to segment                
expression and that have to be taken into account are the different depth at which each cell is                  
sequenced, and the number of genes present in a segment.  

Formally, we index with  the segments, with  the number of cells, 
and we introduce a categorical latent variable for each cell assignment  such that  

  

where  is a vector that evaluates to  if cell  belongs to cluster  and  otherwise,  is 
drawn from a Dirichlet distribution as in standard finite-mixture modelling ​(9)​.  

We also indicate as a Gamma distributed latent variable which models the library size and                
name the number of genes in a segment ; this number is a constant that depends on the                   
input segmentation. Our CNAs are modeled as continuous LogNormal distributions; we define            

such that so to represent the copy number value for            
segment , in cluster . 
 
In the default read-counts based mode in ​CONGAS, ​we describe the probability of the counts 

 of the cell  in segment  as 
 

 
 
and the full likelihood is obtained by assuming both cells and segments to be independent. This 
assumption is valid since we have an existing segmentation of the input genome. The model 
likelihood becomes  
 

 
 
and a graphical representation of the model is in ​Supplementary Figure S1 ​. Another way of               
thinking of the denominator in the formula is, given that all the effects are linear, as a matrix                  
decomposition of the input. Note that here the denominator is omitted. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429335doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?qX8Wsh
https://www.codecogs.com/eqnedit.php?latex=i%20%3D%20(1%2C...%2CI)#0
https://www.codecogs.com/eqnedit.php?latex=n%20%3D%20(1%2C..%2CN)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BZ%7D%20%3D%20%5Bz_%7Bnk%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=p(%5Cmathbf%7BZ%7D%20%7C%20%5Cboldsymbol%7B%5Cpi%7D)%3D%5Cprod_%7Bn%2Ck%7D%20%5Cpi_%7Bk%7D%5E%7Bz_%7Bnk%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bz_n%7D#0
https://www.codecogs.com/eqnedit.php?latex=1#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7B%5Cpi%7D#0
https://www.zotero.org/google-docs/?FlPlnf
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta_n#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BC%7D%20%3D%20%5Bc_%7Bik%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=c_%7Bki%7D%20%5Csim%20%5Ctext%7BLogNormal%7D(m_%7Bki%7D%2Cv_%7Bki%7D)#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BY%7D%20%3D%20%5By_%7Bni%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=p(y_%7Bni%7D%20%7C%5Cmathbf%7B%5Ctheta%7D%2C%20%5Cboldsymbol%7B%5Cmu%7D%2C%20%5Cmathbf%7BC%7D%2C%20%5Cmathbf%7BZ%7D)%20%3D%20%5Ctext%7BPois%7D%5Cleft(%5Cfrac%7B%5Ctheta_n%20%5Ccdot%20%5Cmu_i%20%5Ccdot%20%5Cprod_%7Bk%3D1%7D%5E%7BK%7DC_%7Bik%7D%5E%7Bz_%7Bnk%7D%7D%7D%20%7B%20%5Csum_%7Bi%3D1%7D%5E%7BI%7D%5Cprod_%7Bk%3D1%7D%5E%7BK%7DC_%7Bik%7D%5E%7Bz_%7Bnk%7D%7D%7D%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p(%5Cmathbf%7BY%7D%20%7C%20%5Cmathbf%7B%5Ctheta%7D%2C%20%5Cboldsymbol%7B%5Cmu%7D%2C%20%5Cmathbf%7BC%7D%2C%20%5Cmathbf%7BZ%7D%2C%20%20%5Cboldsymbol%7B%5Cpi%7D)%20%3D%20%5Cprod_%7Bn%3D1%7D%5E%7BN%7D%5Cprod_%7Bi%3D1%7D%5E%7BI%7D%20p(y_%7Bni%7D%20%7C%5Cmathbf%7B%5Ctheta%7D%2C%20%5Cboldsymbol%7B%5Cmu%7D%2C%20%5Cmathbf%7BC%7D%2C%20%5Cmathbf%7BZ%7D%2C%20%20%5Cboldsymbol%7B%5Cpi%7D)#0
https://doi.org/10.1101/2021.02.02.429335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

While this model does work with raw counts and accounts for both gene number and library size                 
normalization, the ​CONGAS framework also supports input single-cell data that are already            
normalised. This helps because often the only measurements availables are in units of             
transcripts per million reads, or alternative normalised measures. This is also useful if one wants               
to perform the inference using a custom normalization method. 

Therefore, in addition to the Poisson count-based model we have developed a model that works               
with Normal distributions. In this case we assume the input to be aggregate values (which are                
not anymore integers) of expression over all segments, which must be already normalized             
between cells and segments. 

The segment expression value in this alternative model formulation is now expressed as a               
Normal distribution; this model has likelihood  

 

Notably here we do not have any depence over library size and on the number of genes in a 
segment.  

Parameter estimation with stochastic variational inference. ​Given ​our models we want to            
learn suitable values for the parameters, that we indicate generally as ​. Using to identify                
model hyperparameters, our goal, if we tackle the inference problem from a bayesian             
perspective, is to learn the posterior distribution of our parameters, namely: 

 

Such distribution is generally analytically intractable and different methods for sampling or            
approximate inference have been developed. CONGAS is developed using the probabilistic           
programming language Pyro ​(19) and exploits stochastic variational inference ​(24) to get an             
approximation of the true posterior distribution.  
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Briefly, the idea behind variational inference is to find a variational distribution , that can               
approximate the real posterior. In particular we do so by performing minimization using gradient              
descent over the negative of the evidence lower bound (ELBO) 

 

This is equivalent to minimize the Kullback-Leibler divergence between the variational and the             
actual posterior distribution. In this framework our latent variables are parameterized by a set of               
variational parameters and our goal is to learn those parameters by maximizing the ELBO.               
Taking the gradient from the previous equation and expliciting the dependence on the             
variational parameters : 

 

We used the reparametrization trick to obtain a low variance Monte Carlo estimate of this               
gradient, and the tool can choose to calculate the gradient estimate over a minibatch of               
observations - this still provides an unbiased estimation of the gradient and can give a huge                
speedup over big datasets. We used Adam ​(25) as the optimizer of our choice throughout the                
whole paper, nevertheless the user can use any optimizer present in PyTorch ​(26) or define a                
custom one.  

The tool also gives the possibility to perform MAP inference, using the same mechanism. 

  

Note that the latent variable describing the library size dependence is always learned using               
MAP inference, while for the other variables the user can choose between a full Bayesian               
inference, or MAP.  

Model and prior distributions. ​The bayesian setting gives us the opportunity to integrate some              
pre-existing information directly into the model. A way to guide solutions toward a meaningful              
direction is to assume the prior distribution of CNV values (the in our model; see also ​Figure                  
2b ​) to be centered around the ploidy values obtained from bulkDNA-seq analysis.  

More in detail, the model joint distribution can be factorized as:  
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In the variational framework our latent variables are approximated as variational distributions            
distributions , supposed to be independent and factorizable. The prior distributions           
for our latent variables are: 

● , where is the CNV value from bulkDNA-seq and the           
variance is chosen by the user to govern how far we think the actual CNV values are                  
from the ones inferred by bulkDNA-seq, we use a default of 0.5. 

● , here distribution can be roughly estimated from the data;           
however, even large scarcely informative priors tend to work well in most of the cases.               
Default values are  and  

● , the user can input is prior over the cluster distributions, by default             
all cluster are a priori assumed to have equal proportions (i.e. ) 

The whole model can also be visualized using plate notation (​Supplementary Figure S1 ​). 

In the Gaussian mixture model, prior is still distributed as a LogNormal, with the same                
parameter as before, while for the variance prior .  

For the first step of optimization is initialized using k-means clustering, the library size factor                
is initialized as 

   

where  is the CNV value obtained from the input bulk segmentation. 

Model-selection. ​All these formulations assume the number of clusters to be a constant. To               
pick the optimal number of clones we first select a set of candidate s and fit a separate model                   
for each one, then we perform model selection. In the our packages the information criteria               
currently implement are: 

● the Bayesian Information Criterion (BIC) , where is the          
likelihood of the model; 

● the Akaike Information Criterion (AIC) ; 
● the Integrated Classification Likelihood ​ ​(ICL), based on the BIC, which is  

 

where  are latent variables and ​ their entropy 
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Where not explicitly indicated for our in silico and in vivo analysis the criterion of choice was                 
always the BIC. 

Total number of cells and segments has to be taken into account, as for some Smart-Seq runs                 
with a small number of cells the BIC and ICL regularization might be too strong. In those cases                  
filtering segments or using other selection criteria can help to obtain meaningful results. 

Non-parametric extension. ​Given the importance of selecting the correct number of clusters in             
a finite mixture model, we also adopted a non-parametric formulation of ​CONGAS​. This is              
expressed as a stick-breaking formulation of the Dirichlet Process ​(27)​. 

The stick breaking model in our case can be seen as a semi-parametric way of choosing the                 
optimal number of clusters along with their weights. Note that the Dirichlet Process is defined for                
an infinite number of clusters, what is commonly done in practice is to set a high number of                  
clusters to approximate this behaviour. 

The generative process in our setting has these steps ​(28)​: 

● Draw  
● Draw  
● The mixture weights  are obtained as  

 

● For each  and , draw ​ and   

Where we omitted all the variables that do not depend explicitly on the clusters . The is a                   
hyperparameter that controls our prior beliefs on the number of clusters present in the data, i.e.                
higher will penalize a solution with more clusters and vice versa. Learning good values for                 
is fundamental in a noisy setting like scRNA-seq, and different metrics have been described for               
such optimization problems ​(29)​. Nevertheless, throughout the paper we preferred to run            
different instances of the finite mixture model and then do model selection as explained above.               
This is due both to the difficulties in accurately optimizing and in the increased understanding                
of the data one can get from having all the models fitted. 

Synthetic data generation 
Synthetic datasets were generated following the CONGAS model. 
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First, the human chromosomes from the reference hg38 were divided into segments. For the              
segmentation we first set an approximate minimum distance for the segments, in our case 100               
Megabases and then divide the total length of each chromosome. This process gives us the               
maximum number of possible segments for a chromosome, let us call it . After that we                
sampled the effective number of segments as an integer ranging from 1 to , with equal                 
probability.  
 
Breakpoints were then calculated by first dividing each chromosome by and then             
randomizing the endpoints of each segment adding an error value , where is              
equal to 10% of the segment length. The total number of genes for each segment were                
sampled from a negative binomial distribution with size and mean equal to segment length               
divided by a constant, in our case . 
 
Independently, a tree with a number of clones and a distance among clones of is                 
constructed. The distance here is just the Hamming distance between segments, i.e. the             
number of different segments between two clones. The tree, given the number of clones, is set                
up by iteratively adding each new node to it and choosing its parent randomly from the tree                 
leaves (with equal probability). To simplify both simulation and interpretation of the results each              
branch of the tree has the same length so that each child diverges from its parent for the same                   
number of CN events.  
 
Using this information we sampled counts by using the generative model of CONGAS. For the               
first test we simulated trees with a number of clones ranging from 1 to 9 and distance from 1 to                    
4, with 50 replicates for each combination. The clone proportions were randomly sampled from              
a Dirichlet with concentration parameters of .  
 
For the second test we changed the generative model to obtain overdispersion in the input 
counts, which were sampled from a negative binomial with parametrization  
 

 
 
Where the mean is equal to ,  is the size and the variance is  
  

 
 
Our likelihood then becomes 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429335doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=m_%7Bchr%7D#0
https://www.codecogs.com/eqnedit.php?latex=i_%7Bchr%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bchr%7D#0
https://www.codecogs.com/eqnedit.php?latex=i_%7Bchr%7D#0
https://www.codecogs.com/eqnedit.php?latex=e_i%20%5Csim%20%5Ctext%7BUnif%7D(a%2C-a)#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=6#0
https://www.codecogs.com/eqnedit.php?latex=1e6#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_k%20%3D%20%7B1%7D%2F%7BK%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Coperatorname%7BPr%7D(X%3Dk)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%20y%2B%5Czeta-1%20%5C%5C%20y%20%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cfrac%7Bm%7D%7Bm%2B%5Czeta%7D%5Cright)%5E%7By%7D%5Cleft(%5Cfrac%7B%5Czeta%7D%7Bm%2B%5Czeta%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=%5Czeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Coperatorname%7BVar%7D%5BX%5D%3Dm%2B%5Cfrac%7Bm%5E%7B2%7D%7D%7B%5Czeta%7D#0
https://www.codecogs.com/eqnedit.php?latex=p%5Cleft(y_%7Bi%7D%5E%7Bn%7D%20%5Cmid%20%5Ctheta%2C%20%5Cboldsymbol%7B%5Cmu%7D%2C%20%5Cmathbf%7BC%7D%2C%20%5Cboldsymbol%7B%5Cbeta%7D%2C%20%5Cmathbf%7Bz%7D%5Cright)%20%5Csim%20%5Ctext%7BNegBin%7D%5Cleft(m%20%3D%20%5Ctheta_%7Bn%7D%20%5Ccdot%20%5Cmu_%7Bi%7D%20%5Ccdot%20C%5Cleft%5Bz%5E%7Bn%7D%2C%20i%5Cright%5D%20%5Ccdot%20%5Cexp%20%5E%7B%5Cmathbf%7Bw%7D_%7Bn%7D%5E%7B%5Cmathrm%7BT%7D%7D%20%5Cbeta_%7Bi%7D%7D%2C%20size%20%3D%20%5Czeta%5Cright)#0
https://doi.org/10.1101/2021.02.02.429335
http://creativecommons.org/licenses/by-nc-nd/4.0/


We tested size values , runned 50 repetitions for each and 
fixed the number of clones to , sampled the abundance of each clone in the range , 
and set the distance to . 
 
In the third test we analyzed the case in which the input segmentation does not faithfully                
represent the subclonal segmentation. In the standard CONGAS model, for every gene that             
maps to a segment, the linear relation between segment ploidy and RNA counts affects all               
genes. In this test we simulated a violation of this assumption, allowing that in the same                
segment just a percentage  of the total number of genes is affected by the copy number state.  
 
For this test we evaluated five setups, where starts from 20%, reaches 100% (like in the first                  
test), with steps of 20%. We again performed 50 repetitions for each value of the parameters.                
To focus on the role of this assumption, avoid mixing with other confounders and providing a                
more straightforward interpretation of the results, we here performed inference on just two             
segments, one of which harbouring the same copy-number among clones. Here the number of              
clones, abundance and distance were fixed to , to the range  and to . 

Triple-negative breast xenograft analysis  
Data was obtained from ​(13)​, in the form of a count matrix for which we implemented some                 
basic preprocessing. We removed from the count matrix all those genes expressed in less than               
5% of the cells, furthermore we filtered the 5% most expressed genes, as their fluctuation could                
influence too heavily the total segment counts. All the cells with less than 3000 expressed               
genes were also removed. We calculated the total number of counts in the segment as the sum                 
of the gene counts completely overlapping with a genomic segment.  
 
The input segmentation for CONGAS was again retrieved from ​(13)​, even if in the original               
papers the authors used low-pass single-cell DNA sequencing (instead of bulk, as we assume              
in CONGAS), and clustered cells defined by similar copy-number events. To obtain a unique              
input profile for CONGAS we considered the CNC profile of clone A from the original analysis.                
This is a good surrogate of putative values that we could obtain from a DNA sequencing assay,                 
given that the abundance of this clone is above 80%. 
 
To analyse these data we used a two-steps procedure We first runned the inference with default                
CONGAS parameters, using a learning rate of 0.01 for 800 inference steps. Posterior             
probabilities were computed with another 100 steps, using a learning rate of 0.05. In this first                
run the latent distribution over the CNA values was learned by MAP inference. In this way we                 
set normalization factors and CNV latent variables near to good solutions, as learning the full               
model together is usually less stable and shows marked multimodality. 
 
In the second step we rerun the same model forcing a full Bayesian setting, where we now can                  
learn the full distribution of our latent variables. In this case we focused on learning mean and                 
variances of the LogNormal densities that model CNA values, while taking fixed the other              
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parameters identified in the previous run. We obtained the final clustering assignments after             
filtering the clusters with an abundance of less than 3%.  
 
Differential expression was performed using Seurat ​(30) and DESeq2 ​(31)​. Concordance           
between our clustering assignment and the labels of clonealign was quantified using Adjusted             
Rand Index (ARI), the corrected-for-chance version of the Rand index. 

Glioblastoma data analysis 
 
Input Smart-Seq scRNAseq data were obtained from ​(15)​. The original analysis does not             
provide an input segmentation for CONGAS. We developed a simple Hidden Markov Model             
(HMM) to segment exomes directly from RNA counts, and generate the missing segmentation.  
 
HMM definition. ​Without assuming normalized healthy data, we can segment the genome by             
using allele frequencies. This approach works better with the Smart-Seq protocol than with the              
10x one as it covers the whole gene instead of just the 3’/5’ end. We identified heterozygous                 
single nucleotide polymorphisms (SNPs) and calculated the ratio between counts for the major             
and minor alleles, deriving the minor allele frequency (MAF). In a healthy genome this is 0.5, if                 
we disregard Binomial observational noise. 
 
Our input data consists of mostly cancer cells, and MAFs are therefore no longer necessarily               
distributed around 0.5. Of course, the resolution of MAFs is limited with single-cell data, and we                
cannot expect to distinguish all segments breakpoints, or segment perfectly all the genome 
 
The HMM is developed in Pyro ​(19)​, and is available in the ​CONGAS package. The HMM has 6                  
hidden states; we consider ploidy values above 5 unlikely, at least for the purpose of               
segmentation. Furthermore, our ability to identify different states from MAFs deteriorates with            
very high ploidy. Priors on hidden states are described by the following matrix 
 

 
 
Here is the propensity to change the internal HMM state, and is the same across states. In t > 0                  
order to perform some filtering on the data, we set a small value for , with default The              t    .10−6   
emission probabilities for MAFs are instead Beta distributions ranging in and are          0, ][ 1   
parametrized to be distributed around theoretical MAF values for each ploidy state. Note that              
the first state identifies LOHs, which are not automatically associated to the real number of               
copies. 
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To infer the HMM parameters we use SVI as implemented in Pyro ​(19)​, with MAP inference for                 
the transition matrix and the initial state vector. We calculate the posteriors for the state               
assignments. The emission probabilities, on the other hand, remain fixed and are not learned. A               
summary of emission probabilities is shown in ​Supplementary Figure 9 ​, where also runs of this               
HMM with the glioblastoma Smart-Seq data are shown. 

Healthy cells contamination and subclonal detection. 

The data for obtaining the MAF and the TPM normalized count matrices were taken from [20].  

To avoid RNA-editing the snps have been restricted to those present in the ExAC database [38]                
with a frequency greater than 10%. Our segmenter works with the MAF for the whole tissue, so                 
the first thing we did was to add the reference and alternative allele values for all cells and                  
create a pseudo-bulk. Sites with coverage less than 20 reads were discarded. Our HMM              
segmenter was run on those variants with a t of 1e-8 and a median filtering window of 25 sites.                   
After a manual examination we decided to collapse all the states different from a putative LOH                
(i.e. those different from 1), as the variance of the MAF was too high to confidently call the other                   
ploidy states. 

We then runned CONGAS over this segmentation, and obtained an ideal number of clusters              
equal to 3. Among those we could clearly identify one (cluster number 3) consisting of normal                
cells, as it was lacking of any LOHs.  

We then excluded the cells belonging to that cluster, recalculated the pseudo-bulk MAF, filtered              
sites with less than 30 reads and rerun the HMM segmenter. Also in this case states with a                  
theoretical MAF value too close to each other were collapsed together, in particular 2 with 6 and                 
4 with 5. This new putative segmentation was given as an input for a new CONGAS run. The                  
tool was able to identify 3 putative clones characterized by specific chromosome alterations.             
Differential expression was performed between normal and tumoral cells, between clone 1 and             
clone 3 and between clone 2 and aggregated clone 1 and 3. Differential expression was               
performed in the same way as in the breast xenograft example. 

Hematopoietic precursors data analysis  

Data for 4 healthy donors and 5 patients with bone marrow failure were available from ​(5)​. We                 
first performed standard quality check and normalization using Seurat ​(30)​. In detail, we             
removed cells with a high percentage of counts coming from mitochondrial genes (cutoff > 15%)               
and with counts consistently lower or higher than the majority of the population (>6.8e+6 reads               
and <2.4e+7 reads).  

Data was then normalized in CPM values (counts per million) and transformed in logarithmic              
scale through a transform. As not all the patients had CNA events we selected patient   og(x )l + 1              
1 with monosomy at 7 and an healthy individual as control (labelled with H4). As the dataset                 
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contained different cellular populations to remove the biases caused by marker genes highly             
expressed in just one population we first median filtered the gene expression counts for each               
chromosome using the “runmed” function in R, using a window dimension of 11.  

Given the absence of a corresponding DNA-derived bulk CNA profile, and therefore lacking a              
segmentation associated, we had to resort to a custom segmentation, hopefully suitable to             
target chromosome-level aneuploidy events. We indeed segmented the genome at the level of             
whole chromosomes, and assumed a prior ploidy of 2 for each of them, which seems a                
reasonable baseline choice. After this we runned CONGAS using respectively 3.5 and 0.01 as              
scale and rate parameter for the library size factors prior; we had to change these values                
compared to other analysis as our default were optimized on 10x protocols. Clusters with less               
than 10 cells were discarded as outliers. Differential expression was performed with DESeq2 as              
for the other datasets. 

References 

1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan;481(7381):306–13. 
2. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The 

life history of 21 breast cancers. Cell. 2012 May 25;149(5):994–1007. 
3. Turajlic S, Sottoriva A, Graham T, Swanton C. Resolving genetic heterogeneity in cancer. 

Nat Rev Genet. 2019;20(7):404–16. 
4. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity 

in cancer evolution. Cancer Cell. 2015 Jan 12;27(1):15–26. 
5. X Z, S G, Z W, S K, X F, Q L, et al. Single-cell RNA-seq reveals a distinct transcriptome 

signature of aneuploid hematopoietic cells. Blood. 2017 Oct 13;130(25):2762–73. 
6. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. High burden 

and pervasive positive selection of somatic mutations in normal human skin. Science. 2015 
May 22;348(6237):880–6. 

7. Martincorena I. Somatic mutation and clonal expansions in human tissues. Genome Med. 
2019 May 28;11(1):35. 

8. Acar A, Nichol D, Fernandez-Mateos J, Cresswell GD, Barozzi I, Hong SP, et al. Exploiting 
evolutionary steering to induce collateral drug sensitivity in cancer. Nat Commun. 2020 
21;11(1):1923. 

9. Caravagna G, Heide T, Williams MJ, Zapata L, Nichol D, Chkhaidze K, et al. Subclonal 
reconstruction of tumors by using machine learning and population genetics. Nat Genet. 
2020 Sep;52(9):898–907. 

10. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length 
RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014 Jan;9(1):171–81. 

11. Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven 
grand challenges in single-cell data science. Genome Biol. 2020 Feb 7;21(1):31. 

12. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel 
sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015 
Jun;12(6):519–22. 

13. Campbell KR, Steif A, Laks E, Zahn H, Lai D, McPherson A, et al. clonealign: statistical 
integration of independent single-cell RNA and DNA sequencing data from human 
cancers. Genome Biol. 2019 Mar 12;20(1):54. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429335doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://doi.org/10.1101/2021.02.02.429335
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. CaSpER identifies and visualizes CNV events by integrative analysis of single-cell or bulk 
RNA-sequencing data | Nature Communications [Internet]. [cited 2021 Jan 24]. Available 
from: https://www.nature.com/articles/s41467-019-13779-x 

15. Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, et al. Linking transcriptional and genetic 
tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 
2018;28(8):1217–27. 

16. Watkins TBK, Lim EL, Petkovic M, Elizalde S, Birkbak NJ, Wilson GA, et al. Pervasive 
chromosomal instability and karyotype order in tumour evolution. Nature. 2020 
Nov;587(7832):126–32. 

17. 10X Genomics. 10XGenomics/vartrix: Single-Cell Genotyping Tool [Internet]. Available 
from: https://github.com/10xgenomics/vartrix 

18. Sarkar A, Stephens M. Separating measurement and expression models clarifies 
confusion in single cell RNA-seq analysis. bioRxiv. 2020 Apr 18;2020.04.07.030007. 

19. Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, et al. Pyro: 
Deep Universal Probabilistic Programming. J Mach Learn Res. 2019;20(28):1–6. 

20. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in 
breast cancer patient xenografts at single-cell resolution. Nature. 2015 
Feb;518(7539):422–6. 

21. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell 
RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 Jun 
20;344(6190):1396–401. 

22. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. 
Patient-derived organoids model treatment response of metastatic gastrointestinal 
cancers. Science. 2018 Feb 23;359(6378):920–6. 

23. Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA, Sanguinetti G, et al. 
Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat 
Methods. 2018;15(9):707–14. 

24. Blei DM, Kucukelbir A, McAuliffe JD. Variational Inference: A Review for Statisticians. J Am 
Stat Assoc. 2017 Apr 3;112(518):859–77. 

25. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs 
[Internet]. 2017 Jan 29 [cited 2020 Dec 4]; Available from: http://arxiv.org/abs/1412.6980 

26. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An 
Imperative Style, High-Performance Deep Learning Library. Adv Neural Inf Process Syst. 
2019;32:8026–37. 

27. Ferguson TS. A Bayesian Analysis of Some Nonparametric Problems. Ann Stat. 1973 
Mar;1(2):209–30. 

28. Ishwaran H, James LF. Gibbs Sampling Methods for Stick-Breaking Priors. J Am Stat 
Assoc. 2001 Mar 1;96(453):161–73. 

29. Blei DM, Jordan MI. Variational inference for Dirichlet process mixtures. Bayesian Anal. 
2006 Mar;1(1):121–43. 

30. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun 13;177(7):1888-1902.e21. 

31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. 2014 Dec 5;15(12):550. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429335doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://www.zotero.org/google-docs/?VAl7pT
https://doi.org/10.1101/2021.02.02.429335
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main Text Figures 
 

 
 

Figure 1. a. Single-cell multi-omics from a population of heterogeneous cells, phylogenetically related into              
4 clones (distinct colours). In this assay we simultaneously measure, for instance, the DNA and RNA from                 
the same cell, and use a tensor to describe the data. ​b. If we cannot implement a multi-omics assay, we                    
can split the cancer cells into groups and generate independent measures; these data cannot be directly                
overlapped. ​c. ​The measurements obtained from split data ( and ) can be integrated, if we have a         x    y         
model for the relation between the sequenced molecules. Assuming DNA and RNA, for instance, we can                
first use DNA reads and determine Copy Number Alterations (CNA). Notice that dimensionality of     y            (y)  f  
can be lower than that of , as it depends the data used in . If are low-pass single-cell       y          y    y     
measurements, we can call single-cell copy numbers, cluster cells and set to be a matrix of copy           (y)  f        
number clones. If are reads from bulk DNA sequencing, can be a vector reporting clonal bulk copy    y        (y)  f          
numbers. In both cases with breakpoints and ploidy data we can use the DNA amounts to predict the                  
expected RNA transcripts, assuming a link function applied to . In this way we genotype CNAs on        g    (y)  f         
top of RNA, emulating a joint measurement (observed RNA  and inferred DNA, ) for each cell. x (y)  f   
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Figure 2. a. The CONGAS model for CNA Genotyping from single-cells takes as input a bulk                
segmentation with total copy numbers (i.e., segment ploidy(. The input segments are genotyped on top of                
single-cell RNA sequencing data. In this example we picture a small subpopulation of cancer cells (i.e., a                 
subclone), harbouring a CNA around chromosome 4. ​b. ​CONGAS uses the total ploidy (i.e., total CNA) of                 
each segment to build a prior for the parameter that model copy number in single cells. For chromosome                  
4, this would be peaked at 2 since the tumour bulk does not show evidence of the subclone. ​c. ​The                    
subclone (orange) is here characterised by an LOH on chromosome 4. The genotypes are briefly referred                
to as AB and A, referring to the major and minor alleles. ​d. CONGAS assumes a linear model of the                    
relation between the total number of RNA transcripts in segment , and the segment ploidy from        ri     i       c   
DNA (the sum of major and minor allele counts). These values are computed from the set of genes                  Gi  
that map to a segment. ​e. ​CONGAS normalises counts for library size and the number of genes that map                   
to each segment. For this subclone, our model expects to see more transcripts in cells that are diploid                  
(AB), compared to those that have undergone LOH (A).  
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Figure 3. a ​CONGAS ​synthetic tests with different subclonal architectures, obtained sampling clone trees               
with variable number of nodes. The degree of tumour heterogeneity is tuned by an evolutionary distance,                
which counts the number of CNAs that a subclone acquires, relative to its ancestor. The bulk input profile                  
for CONGAS is generated by considering CNA segments from the most prevalent clone. We scan models                
with up to 9 clones, with distance ranging from 1 to 4. The performance is measured by using the                   
adjusted rand index (ARI) between the simulated and retrieved cell assignments. The heatmap colour              
reflects the mean, and the standard deviation is annotated. ​b. ​Smoothed ​density for the percentage of                
cluster labels matched in every simulation, split by trees of increasing distance. ​c. ​ARI from synthetic                
tests simulating sequencing overdispersion after changing the Poisson model in ​CONGAS with a             
Negative Binomial and variable dispersions. ​For each test a clonal architecture with 2 clones. is               
simulated. ​d. ARI from synthetic tests simulating input segmentations that are misleading, meaning that              
only a subset of genes that map to a segment is affected by the CNA, so input breakpoints from bulk do                     
not match subclonal breakpoints. For each test a clonal architecture with 2 clones and a fixed number of 2                   
segments is simulated.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429335doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Figure 4. a. ​Analysis of single cells from a breast xenograft, sequenced by using 10x technology     04  n = 5             
in ​(13)​. CONGAS finds clusters of cells, which show significant differences in the counts of RNA     k = 2             
transcripts mapping to some segments of chromosomes 15, 16 and 18. ​b. The largest clonal population                
consists of cells (~75% of total), the smallest one cells (~25% of total). ​c. Raw RNA  80  n = 3         24  n = 1         
counts (normalised per segment, plot using the z-score) showing transcriptional counts in a subset of the                
tumour genome (same segments highlighted as in panel a). Chromosome 1 is included as a graphical                
control: according to CONGAS no significant copy number differences exist among the clones (i.e., the               
CNA is clonal). Also other segments from the same affected chromosomes are clonal. ​d. Genome-wide               
clone-specific Differential Expression analysis highlights genes that are either upregulated or     12  n = 2        
downregulated ( and absolute log-fold change > to determine up-regulation); notice that .01  p < 0     .25  0       
some of those genes do not reside in genome portions with CNAs that characterise the populations. ​e, f,                  
g. RNA transcripts count for the genes mapping to the segment on chromosome 15, 16 and 18, which are                   
highlighted in panels a/b. The densities on top of the histograms are the Poisson mixtures inferred by                 
CONGAS. ​h. Comparison between clustering assignments of CONGAS and clonealign on these data             
(13)​. The input of clonealign are the CNA profiles of three clones, obtained from low-pass single-cell                
whole-genome sequencing data. The tool then assigns the RNA data to each one of the input clones. The                  
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only difference between the analyses is a very small cluster that is not found by CONGAS. All the other                   
cells are assigned exactly the same cluster by both analyses (Adjusted Rand Index 0.85). 
 
 

 

 
 

Figure 5. a. ​Analysis of glioblastoma Smart-Seq data for single cells, a small portion of         5n = 7        
which are known to be non-cancerous ​(15,21)​. The input segmentation for CONGAS is             
unavailable, we retrieve it here by segmenting the minor allele frequency of heterozygous             
polymorphism, using an Hidden Markov Model. This panel shows a first run of CONGAS with all                
input cells; cluster 3 is the cluster of normal cells. ​b. Mixing proportions for the first CONGAS                 
run with both tumour and normal cells. ​c. ​CONGAS run after that normals cells have been                
removed. ​d. Mapping between clusters obtained in the first and second run. Cluster 3 from the                
first run are normal cells; cluster 1 from the first run splits into two clusters in the second run. ​e.                    
Input raw data (z-score), highlighting segments as in panel (a). ​f, g. ​Input data and Gaussian                
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density for the segments on chromosome 10 and 13, in the first run. h. Input data and Gaussian                  
density for the segment on chromosome 13, in the second run.  
 
 

 
Figure 6. a. ​Analysis of bone marrow Smart-Seq samples for cells and 2 patients, one          00n = 1       
healthy (H4) and one with bone marrow failure (patient 1). As these dataset does not have a                 
precalculated input CNA segmentation, we have aggregated gene counts at the level of whole              
chromosomes and genotyped those large-scale events. This panel shows how CONGAS is            
clearly able to distinguish between the healthy population and the one with the disease, in this                
case harboring a deletion in chromosome 7 in a subset of cells of patient 1. It can also be                   
noticed how clustering assignments are not correlated with the total number of counts,             
suggesting that CONGAS can correctly normalize for sequencing efficiency. ​b. ​Volcano plot            
showing the gene differentially expressed between the two clusters; note that the highlighted             
genes map off from chromosome 7. ​c. ​Genome wide visualization of the CNV profiles inferred               
by CONGAS highlights the strongest signal on the monosomy for chromosome 7, which is              
causative for bone marrow failure in patient 1. 
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Supplementary Figures 
 

● Supplementary Figure S1. ​CONGAS plate notation 
● Supplementary Figure S2. ​Performance for different clonal architectures. 
● Supplementary Figure S3. ​Performance with sequencing overdispersion. 
● Supplementary Figure S4. ​Performance with miscalled segments. 
● Supplementary Figure S5. ​Input raw counts with DEGs for breast xenograft. 
● Supplementary Figure S6. ​Genome-wide DE for breast xenograft. 
● Supplementary Figure S7. ​Fit report for breast xenograft. 
● Supplementary Figure S8. ​Comparison with clonelaign for breast xenograft. 
● Supplementary Figure S9. ​HMM runs on the GBM dataset. 
● Supplementary Figure S10. ​Performances with CPU and GPU.  
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Supplementary Figure S1. ​CONGAS probabilistic graphical models in plate notation. ​A.           
CONGAS main model for counts as a finite mixture of Poissons; here N indexes the number of                 
cells, while I and K represent respectively the total number of segments and clusters. Note that                
the latent variables ​z ​and all other variables are vectors of dimension K. ​B. CONGAS alternative                
model as a finite mixture of independent Gaussian distribution, which can process continuous             
inputs. We assume in this case that the data is not only discretized, but has already been                 
normalized for library size and other confounding variables.  
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Supplementary Figure S2. a,b. ​Performance for the main synthetic test, where we scan             
different numbers of clusters assembled on trees with increasing evolutionary distance. We            
show the percentage of cluster labels that match in a simulation. We do this by sorting clusters                 
by size, assigning them labels, and then assigning each cell to a cluster according to the model.                 
We then check position by position if the clusters match - this is a strong penalty. In bottom we                   
show NMI, the mutual information normalised in [0,1]. 
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Supplementary Figure S3. ​Performance for synthetic tests with sequencing overdispersion. In           
this case we use different parameters of a Negative Binomial distribution to generate read              
counts (Main Text). The performance shows a clear trend; here the scores are computed              
between simulated and inferred clustering labels. ARI is the adjusted rand index, MI and NMI               
the mutual information and its normalised extension. Score match reports the proportion of cells              
with the exact same cluster label (simulated versus inferred). 
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Supplementary Figure S4. ​Performance for synthetic tests with subclones that have CNA            
segments where only a portion of the mapped genes obeys the linear DNA/RNA relation. In               
practice, this tests for the presence of subclonal CNAs that involve segments smaller than the               
ones given in input to CONGAS. In this case we use different proportions of genes, ranging                
from 10% to 90% (see also Main Text). The performance shows a clear trend; the same scores                 
in Supplementary Figure S2 are reported. 
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Supplementary Figure S5. ​Heatmap for the input raw counts of the breast cancer xenograft              
discussed in the Main Text. Each column is a cell, each row one of 212 differentially expressed                 
genes; count values are log transformed. Rows are clustered by hierarchical clustering. 
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Supplementary Figure S6. a. ​Genome-wide DEGs for the breast cancer xenograft discussed in             
the Main Text. Above the genome we show the number and the percentage of DEGs per                
segment; the top marks are DEGs off the input CNA segments. ​b. Data density and CONGAS                
mixture for segments with >250 genes (the largest segments of this tumour).  
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Supplementary Figure S7. a. ​ELBO to analyse the breast cancer xenograft discussed in the              
Main Text. ​b. Library size factors per clone, inferred by CONGAS. ​c. Model’s latent variables               
show a clear separation of the clusters 
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Supplementary Figure S8. a-e. ​For every segment in a subset of the input chromosomes we               
plot the data coloured accordingly to the clustering assignments obtained by clonealign (top),             
and CONGAS (bottom). Clone C from clonealign is very difficult to identify; both other clusters               
match perfectly. 
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Supplementary Figure S9. ​Results of the first run for our HMM semgenter ​a-c. ​Plots of the raw                 
MAF data after median filtering over chromosomes. The three plots show increasing width for              
the median window, in order from the upper left 1 (no filtering at all), 5, 21. These plots also                   
highlight the intrinsic noise in the data, which makes it hard to call confidently the CNV regions                 
d. ​Plot of the HMM states after inference provide breakpoints and segmentation values. 
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Supplementary Figure S10. ​Execution time for CONGAS runned on two simulated dataset,            
one with 1000 cells and the other with 10000 cells. For each dataset we timed 100 executions                 
for respectively 300 and 1000 gradient update steps in 3 different settings: standard python              
interpreter, JIT compiler and GPU/CUDA. From the plot it is clear how for small cell numbers the                 
CPU is faster, but as the number of cells starts to increase the GPU can give an effective speed                   
up to the calculation. All calculations were performed on a machine with 2 Intel Xeon vCPU                
@2.2GHz, 13 GB of RAM and an NVIDIA Tesla T4. 
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