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Abstract 
 
Mouse models are critical in pre-clinical studies of cancer therapy, allowing 

dissection of mechanisms through chemical and genetic manipulations that are not 

feasible in the clinical setting. In studies of the tumour microenvironment (TME), 

multiplexed imaging methods can provide a rich source of information. However, the 

application of such technologies in mouse tissues is still in its infancy.  Here we 

present a workflow for studying the TME using imaging mass cytometry with a panel 

of 27 antibodies on frozen mouse tissues. We optimise and validate image 

segmentation strategies and automate the process in a Nextflow-based pipeline 

(imcyto) that is scalable and portable, allowing for parallelised segmentation of large 

multi-image datasets. With these methods we interrogate the remodelling of the TME 

induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung 

cancer model, highlighting the infiltration and activation of antigen presenting cells 

and effector cells.    
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Introduction 
 
The advent of successful immune checkpoint inhibitors has revolutionised the 

treatment of cancer in recent years. However, a large proportion of patients exhibit 

intrinsic or acquired resistance, and good prognostic markers for response are 

lacking. The TME is thought to play a key role mediating immune evasion. Therefore, 

it will be crucial to enhance our knowledge about the cells infiltrating the tumour and 

their spatial context. Manipulating the TME to revert immune suppression has the 

potential to significantly enhance the efficacy of immunotherapies. Mouse preclinical 

cancer models provide an excellent platform to study such interventions aimed at the 

TME in a controlled manner. 

 

The use of multiplex techniques such as single cell mass cytometry (CyTOF) and 

single cell RNA sequencing, it has become apparent that tumours are infiltrated with 

a diverse spectrum of immune cells, often with different phenotypes from their 

normally homeostatic counterparts1, 2, 3, 4. Unfortunately, the digestion of the tissue 

that is required to perform such analysis destroys the spatial context of the TME. 

Immunofluorescence (IF) and immunohistochemistry can provide spatial localisation 

data, but the number of markers that can be used simultaneously is limited by the 

spectral overlap of fluorophores and chromogens. Thus, highly multiplexed imaging 

technologies, such as imaging mass cytometry (IMC) that is based on unique atomic 

mass are very attractive, permitting in depth characterisation of the TME with a 

metal-conjugated antibody panel of up to 40 markers while retaining the spatial 

context5, 6. 

 

While products and methods for conducting IMC studies on patient samples are 

becoming well established, publications using IMC in the mouse are scarce and use 

limited antibody complexity without subsequent quantification of the images7, 8. Here 

we present a complete IMC workflow, including a validated 27-marker antibody 

panel, automated and optimised image segmentation using our imcyto pipeline, and 

showcase various spatial analyses. We applied these methods to study the effects of 

MRTX1257, a mutant specific inhibitor of the KRAS G12C oncoprotein, on the TME 

of an immunotherapy refractory KRAS G12C mutant lung cancer. The targeted 

inhibition of oncogenic KRAS signalling using the recently developed mutant specific 
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KRAS G12C covalent inhibitors has shown very promising efficacy in phase 1 and 

phase 2 clinical trials and was recently approved for locally advanced or metastatic 

KRAS G12C mutant lung cancer9, 10, 11. However, it is expected that long term 

therapeutic responses will be limited by acquisition of drug resistance12, 13, 14, and 

therefore combination therapies are under intense investigation. Two  recent studies 

reported enhanced survival when combining the KRAS G12C inhibitors with anti-

PD1 immune checkpoint blockade in an immunotherapy sensitive syngeneic KRAS 

G12C mutant CT26 colon carcinoma subcutaneous tumour model15, 16. This 

prompted us to investigate the effects of tumour-specific KRAS inhibition on the TME 

in the context of a preclinical model of lung cancer, the 3LL DNRAS cell line, a KRAS 

G12C mutant and NRAS-knockout Lewis Lung Carcinoma derivative that we have 

previously shown to be sensitive to KRAS G12C inhibition17. The Lewis Lung 

Carcinoma is considered to be highly refractory to immune interventions18 and has 

an immune cold, or immune excluded, phenotype.  

Here we present a workflow to enable the spatial and phenotypic characterisation of 

the tumour microenvironment in pre-clinical mouse models by IMC, including a 

mouse antibody panel, a cell type-optimised segmentation strategy and a scalable 

and portable pipeline for automated segmentation of large datasets. Subsequently, 

we employed a collection of analysis methods, such as clustering and dimensionality 

reduction to characterise the cells in the tissues. We integrated the spatial 

information at the tissue level using the domain classification obtained from our 

segmentation pipeline, while cell-cell interactions were explored using the 

neighbouRhood analysis developed by the Bodenmiller group19, as well as 

approaches that assess distances between cell types, exploring different aspects of 

the spatial relationships within the TME. Using this methodology we gained detailed 

quantitative insight into the phenotypes and spatial relationships of immune cells and 

stromal compartments of the mouse lung TME, and how KRAS G12C inhibition 

promotes remodelling into a more immune activated state. 
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Results 
 
Validated antibody panel for imaging mass cytometry on mouse tissues 

Due to the limited availability of well-validated antibodies for use on mouse formalin-

fixed and paraffin-embedded (FFPE) tissues, especially with respect to immunology 

markers, we designed and validated a 27-antibody panel for use on frozen tissue 

sections. Example composite images are shown in Fig. 1a and Supplementary Fig. 

1.  

With this panel we are able to distinguish many different immune cell types that are 

thought to play a role within the TME, such as lymphocytes and various subsets of 

myeloid cells. In addition, this panel includes markers to visualise the context of the 

tissue architecture, e.g. endothelium and fibroblasts, as well as phenotypic markers 

that describe maturation and activation state of both tumour and immune cells (Fig. 

1b and Supplementary Table 2). Several metals were kept free for insertion of 

additional markers to customise this panel, with some slots in the most sensitive 

range of the detector, suitable for dimmer markers such as additional checkpoint 

molecules.  

 

Optimisation of single cell segmentation using cell type specific settings  

Quantification of IMC data requires image segmentation to extract expression data at 

the single cell level. We sought a software solution that would be able to scale 

sufficiently and therefore chose to work with open source packages CellProfiler and 

Ilastik, as previously described by the Bodenmiller lab20. Cell Image Analysis 

Software CellProfiler was used for pre-processing and subsequent object 

identification and segmentation. Ilastik provides interactive pixel classification to 

generate staining probability maps that can be used to even out variations in staining 

intensities at the local level and between image sets, providing a more robust basis 

for segmentation. All of the published segmentation strategies for IMC were originally 

optimised and validated on human FFPE tissues. Therefore, we first questioned 

what method would be most appropriate for use on frozen mouse tumours. In most 

instances, cell segmentation starts with the segmentation of the nuclei, which can 

subsequently be used as seeds to expand into cell objects. Various methods have 

been described to subsequently define the cell border: by expanding the nuclear 

perimeter by a fixed distance, such as 3 pixels, by a watershed method onto a 
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membrane staining6, or by propagation onto a probability map of membranes 

generated by pixel classification with machine learning20, 21.  We started with testing 

two of these strategies, the 3-pixel expansion and the propagation method onto a 

membrane probability map (Fig. 2a), using a tumour from the 3LL Lewis Lung 

Carcinoma stained with our antibody panel. From visual inspection of the cell masks 

we observed several recurring problems such as the failure to capture membrane 

staining of large cells, and the inclusion of signal from neighbouring cells into the 

smaller cells such as lymphocytes. In particular the inclusion of signal from 

neighbouring cells (spatial “spillover”) led to increased noise in the data. In addition 

we observed that cells with a spindle shape, such as alpha smooth muscle actin 

(αSMA) expressing fibroblasts, were captured very poorly. Figure 2b shows 

examples of these segmentation errors resulting from 3-pixel expansion and 

propagation pipelines in studying F4/80+ macrophages, CD4+ T cells and aSMA+ 

fibroblasts.  

We explored modifications of these segmentation strategies with the aim to improve 

the quality of the data. To improve the signal-to-noise ratio in the pixel expansion 

segmentation we minimised the radius by which the cells were expanded from the 

nucleus. A 1-pixel expansion segmentation led to a reduced contact between cell 

boundaries and therefore less signal bleed between neighbouring cells (Fig. 2b). 

This was reflected in the improved signal capture (“enrichment”) per cell, when 

considering the amount of signal capture in the brightest 500 cells for a particular 

marker, relative to the rest of the cells in the image (Fig. 2c), as well as the improved 

signal/noise within individual cells (Fig. 2d).  

 

These three strategies used only one set of parameters to identify all nuclei, the 

seeds of each cell object. However, in complex tissues such as the TME, nuclei 

differ widely in size and shape. Setting a size threshold for an average tumour cell 

may easily exclude the smaller T cells, while stringent “declumping” settings can 

unnecessarily split up larger multi-lobed nuclei of tumour cells and macrophages.  

Also, the general absence of a clearly identifiable nucleus associated with the αSMA 

signal was a likely cause for the poor segmentation of fibroblasts. Therefore, we 

modified the propagation method, to sequentially segment the different cell types 

using settings that are optimal for those cells. Each of the ‘segmentation layers’ is 

based on its own probability map and can use different settings for nuclear 
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identification. Figure 2a includes a graphic explaining the different layers of the 

sequential segmentation pipeline. By subtracting the mask of the cells identified at 

each step from the primary object layer (the nuclei), we can prioritise the cell types in 

the order at which they are segmented. The prioritised segmentation of the smaller 

lymphocytes improved their signal enrichment and signal-to-noise ratios, compared 

to the standard propagation method. A significant improvement was also seen for the 

capture of the αSMA signal into segmented cells (Fig. 2b, c and d).    

 

As a further validation of segmentation quality, we measured how well each method 

was able to detect challenging cell types, such as small lymphocytes, irregularly 

shaped macrophages, and the before mentioned fibroblasts. We manually annotated 

a set of CD4+ and CD8+ T cells, CD103+ dendritic cells (DCs), F4/80+ macrophages 

and αSMA+ fibroblasts in the image. We counted how many of the highest 

expressing cells identified by the different segmentation strategies overlapped with 

these manually annotated cells. There was an improvement in detection of T cells, 

macrophages and fibroblasts in the sequential segmentation dataset, as shown in 

the bar graph manual annotation in Fig. 2e. As a negative control we also looked at 

the identification of CD103+ DCs, which was not prioritised in the sequential 

segmentation pipeline using cell type specific markers, but instead was segmented 

at step 9 along with the bulk of the remaining cells using 1-pixel expansion. These 

cells were detected to a similar extent in all four segmentation pipelines. 

An added advantage of using pixel classification with Ilastik was that we could also 

use marker combinations to identify larger tissue structures, including tumour, 

normal adjacent tissue and the interface between those two. This domain 

segmentation added a layer of spatial context, allowing for quantification of markers 

and cell types within the different tissue compartments (Fig. 2f). 

 

imcyto: A Nextflow based automated pipeline for segmentation on a high-

performance computing cluster 

For automated processing of our complex sequential segmentation method on large 

datasets, we developed a Nextflow-based segmentation pipeline, optimised to run on 

a high-performance computing cluster. Nextflow is based on the concept that 

software does not need to be installed on a server for it to be executed. Using 

Docker or Singularity containers, software packages are run as virtual images and 
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are thereby portable, reproducible and platform independent. The resulting pipelines 

can be parallelised to make the process scalable across large datasets22. For 

automation of our workflow, we combined IMCtools, Ilastik and CellProfiler into our 

Nextflow-based “imcyto” pipeline (Supplementary Fig. 2). The programs take in 

custom settings provided in the form of user-generated Ilastik and CellProfiler project 

files as plugins, thereby making the pipeline adaptable to widely varying 

segmentation methods. As such, all of the four segmentation strategies discussed 

above can be run using this pipeline. Segmentation using the sequential method on 

our dataset consisting of 12 images ranging from 429MB up to 3.35GB, was 

completed in less than 45 minutes on the high-performance cluster at The Francis 

Crick Institute.  

 

Targeted KRAS G12C inhibition in a preclinical model of NSCLC 

Eight mice, harbouring orthotopic tumours of the 3LL DNRAS cell line, were treated 

for seven days with the KRAS G12C inhibitor MRTX1257 (n=3) or vehicle (n=5). 

Treatment with MRTX1257 very markedly limited tumour growth compared to vehicle 

treated mice, although significant tumour regression was not observed 

(Supplementary Fig. 3). From 3 mice of each group the lungs were harvested, 

processed and stained for IMC. A total of twelve regions of interest (ROIs) ranging 

from 1-9 mm2 were selected for downstream analysis with IMC; six tumours for each 

treatment group and where possible including adjacent normal tissue. 

 

IMC of lung tumours treated with MRTX1257 KRAS G12C inhibitor 

At first inspection, the images revealed recurrent patterns in the cellular arrangement 

of the tissues (Fig. 3a). Vehicle treated tumours showed a tissue architecture in 

which CD68+ macrophages accumulated along the edge of the tumour, while F4/80+ 

and CD206+ macrophages seemed more intermixed with tumour cells. Aggregates of 

neutrophils were often observed associated with necrotic regions within the tumour 

and effector cells such as CD4+ and CD8+ T cells were mostly excluded from the 

tumour area. Upon treatment with MRTX1257, the tissue organisation became more 

diffuse, the macrophages were more apparently abundant within the tumour, the 

neutrophil presence diminished, and most dramatically, the T cells infiltrated the 

tumour bed.  
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Segmentation and clustering identified 13 cell types in the TME 

The twelve ROIs were segmented using the sequential segmentation pipeline 

described above, giving a dataset of 282,837 cells, including mean intensities for all 

27 markers, x and y coordinates, and domain assignments. Unsupervised clustering 

by Phenograph23, followed by supervised splitting of clusters and manual annotation 

of cell types based on marker expression patterns, resulted in a total of 35 clusters 

annotated into 13 cell types (Fig. 3b, and Supplementary Fig. 4a, Supplementary 

Table 3). Approximately 37% of cells in the whole dataset were tumour cells and a 

similar proportion was taken up by myeloid cells, predominantly macrophages. 

Fibroblasts and lymphocytes represented a much smaller proportion, 2.2% and 5.8% 

respectively (Supplementary Fig. 4b). Principal Component Analysis (PCA) on the 

mean intensities of all markers per cell showed separation of the images by 

treatment along the principal component axes (Supplementary Fig. 4c). In particular 

the macrophage and fibroblast compartments were expanded by the MRTX1257 

treatment, while the proportion of neutrophils appeared reduced (Supplementary Fig. 

4b, 4d and 4e). The domain distribution of the cell types showed large shifts in 

spatial organisation as a response to the treatment (Fig. 3c and Supplementary Fig. 

4e and f). Many cell types had an increased presence in the tumour domain in the 

MRTX1257 treated samples, such as lymphocytes, which we had already observed 

in the raw images (Fig. 3a), but also fibroblasts, DCs and endothelium, with 

exception of the neutrophils that were no longer abundantly present in the tumour. 

To interactively explore the movement of the cell types between the tissue domains 

as a result of the treatment, we made use of a visualisation tool that sets the three 

main tissue domains “normal”, “tumour” and “interface” as x, y and z dimensions in a 

3D plot. By connecting the averages of the two treatment groups this visualised the 

magnitude of shift in spatial distribution (Supplementary data 3D plot and 

Supplementary Fig. 4g).  

While the MRTX1257 treatment achieved good inhibition of tumour growth over the 

treatment period of seven days, there was very little actual tumour regression 

observed. We wondered whether some of this could be attributed to the increased 

influx of immune cells, as has been described in the form of pseudoprogression or 

stable disease in response to immune checkpoint inhibitors24, 25. Comparing the 

relative cellularity of the main cell types between the treatments Fig. 3d confirmed 
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that the proportion of tumour cells in the tumour domain was reduced from 66% in 

the vehicle treated dataset to 40% in the MRTX1257 treatment group, while many 

immune subsets, particularly the macrophage compartment, had expanded 

significantly, supporting the idea that the amount of tumour regression may have 

been underestimated in the tumour volume measurements by microCT.  

 

Macrophages subsets exhibit different tissue localisation and treatment responses 

Canon et al. previously reported changes in macrophages in response to the KRAS 

G12C inhibition15. This prompted us to investigate these cell types in more detail. 

Uniform Manifold Approximation and Projection for Dimension Reduction (uMAP), 

which better preserves the global structure in the data than tSNE26, confirmed the 

relatedness of many of the macrophage Phenograph clusters (Fig. 4a). The 

macrophage population separated out into two major macrophage subtypes that not 

only differed by phenotype, but also by their distribution across the tissues and how 

they responded to the treatment. One subset, which we called Type 1 macrophages, 

were mainly represented by cluster 11 and characterised by high CD68 and CD11c 

expression, PD-L1 expression and ribosomal protein S6 phosphorylation (pS6) (Fig. 

4a and 4b). The expression of CD11c and CD68 is similar to lung resident alveolar 

macrophages but they lack the characteristic CD206 expression27, 28, 29, and their 

accumulation at the tumour edge (interface domain) and some expression of pS6 

suggests these might be reactive M1 polarized macrophages30, 31. This macrophage 

subset remained fairly stable between the two treatment groups, with respect to 

phenotype and localisation (Fig. 4c). The second subset of macrophages, Type 2, 

represented by clusters 5A, 8 and 26, was found almost exclusively within the 

tumour domain, and characterised by F4/80 and some CD206 expression (Fig. 4b). 

The expression of CD206 on this subset is striking, as CD206 is usually expressed 

on normal alveolar macrophages, but also considered a marker for immune 

suppressive M2 tumour associated macrophages. This macrophage population 

expanded significantly upon KRAS inhibition. Furthermore, their phenotype was 

dramatically different upon treatment, with higher expression of F4/80, CD206 and 

most notably MHC-II and CD86, indicating an increased presence of mature antigen 

presenting cells (Fig. 4a).  

Using CellProfiler’s “Object relationships” output from our imcyto pipeline, we applied 

the Bodenmiller neighbouRhood analysis19 on the two macrophage subtypes to look 
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for cell types that would be enriched or depleted in their direct neighbourhood. 

Rather than looking at the number of images for which a spatial relationship was 

found significant, which is the default output of this analysis, we looked at the log2-

fold change in neighbourhood enrichment compared to the permutated data for each 

ROI, to reflect the magnitude of enrichment or depletion of cell types in each other’s 

neighbourhoods (Supplementary Fig. 5a). This revealed some interesting 

relationships, such as the consistent co-existence of Type 1 macrophages with DCs 

and to a lesser extent CD4+ T cells (Fig. 4d) in particular in the interface domain 

(Supplementary Fig. 5b and c), while they were being rarely found in close contact 

with tumour cells. Indeed, visualising these cell types showed that Type 1 

macrophages are found often in close proximity to CD4+ T cells and DCs, particularly 

at the edge of the tumour (Fig. 4e). This is also true of the minority of intra-tumoural 

Type 1 macrophages, which maintain neighbourhoods with dendritic cells. Type 2 

macrophages interact with DCs to a similar extent as the Type 1 macrophages, and 

in addition show an interesting spatial interaction with fibroblasts, where in particular 

the fibroblasts in the tumour domain and at the interface were found close to Type 2 

macrophages (Fig. 4f, 4g and Supplementary Fig. 5b and c). This is in line with 

reports that cancer associated fibroblasts can recruit monocytes and differentiate 

them to M2-like tumour associated macrophages32. 

 

T cells infiltrate the tumours in response to MRTX1257 

Lymphocytes are thought to be the most important effector in the anti-tumour 

immune response. In the work from Canon et al15, it was noted that KRAS inhibition 

led to an increase in T cells in the tissue, with greater expression of the activation 

and exhaustion marker PD-1. In the images of our mouse lung tumours we observed 

a modest but not significant increase in T cell numbers as a consequence of the 

treatment, but more strikingly they were now able to migrate into the tumour domain 

(Fig. 3a, 3c and Supplementary Fig. 6a, 6b and 6c). uMAP visualisation of the T cell 

clusters in our dataset yielded a good separation of CD4+, CD8+, and regulatory T 

cells (Foxp3+) and even a few rare gamma-delta T cells (Fig. 5a). Similar to what has 

been previously reported, PD-1 expression on CD8+ T, CD4+ T and regulatory T cells 

was markedly increased upon KRAS inhibition (Fig. 5b). More interestingly, PD-1 

expression was mostly confined to T cells within the tumour area, and not detected 

in the adjacent normal tissue. This suggests that there is either a selective 
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recruitment of activated T cells into the tumour domain or, perhaps more likely, a 

localised induction of PD-1 when T cells come into contact with the TME. Insight into 

which cell types come into close contact with the T cells could shed some light on 

this matter. The neighbouRhood analysis looks at local enrichment and depletion of 

cells in the direct surroundings of a cell of interest, but the correction towards a 

permuted dataset can lead to a relative underrepresentation of spatial interactions 

with abundant cell types. To quantify in a more absolute way how the neighbourhood 

of the T cells changes with treatment, we decided to look at distances between cell 

types and frequency of those interactions. We calculated the distance of each cell to 

the nearest CD4+, CD8+ or regulatory T cell using Pythagoras’s theorem, which gives 

the spectrum of proximities between cell types and works across the whole image. 

This approach showed that some cell types were consistently found nearer to these 

T cells, such as other lymphocytes, dendritic cells and Type 1 macrophages (Fig. 5c 

and Supplementary Fig. 6d and 6e). Other cell types were found further away at 

baseline, but the average distance was reduced when the samples were treated with 

MRTX1257, such as for tumour cells and Type 2 macrophages – in agreement with 

the relocation of T cells into the tumour domain. Looking in more detail at the cell 

types found in close proximity (within 100 pixels), some interesting patterns emerged 

(Fig. 5d). T cells were found closely located next to dendritic cells, in particular in the 

interface domain, an interaction that remained in the MRTX1257 treated samples. 

Regulatory T cells also showed a tight interaction with CD4 T cells and seemed to be 

the main T cell type associating with cDC1 dendritic cells. In contrast to regulatory T 

cells, CD4+ and CD8+ T cells were found close to endothelium in the vehicle treated 

images, but this association became less tight in the MRTX1257 treated condition. 

Type 1 macrophages were also found in proximity to the T cells in the interface 

domain, but their interaction was more often indirect, at a peak distance of 20-60px 

from the T cells, which agrees with the earlier observation that they primarily interact 

with dendritic cells (Fig. 4d). Similarly, there was presence of tumour cells in the 

neighbourhood of T cells in the interface, but mostly at a distance. The most striking 

change induced by treatment with MRTX1257 was the dominant interaction of T cells 

with Type 2 macrophages in the tumour domain, where also the tumour cells were 

found at a closer range. This result suggests that T cells will come under stronger 

influence of tumour cells and Type 2 macrophages with treatment, potentially relating 

to their upregulation of PD-1.   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.02.02.429358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429358
http://creativecommons.org/licenses/by/4.0/


van Maldegem, Valand et al.    13 

 

Tumour infiltration is accompanied by restoration of tumour vasculature 

To use a more unbiased approach to dissecting the differences between vehicle and 

MRTX1257 treated samples, we performed linear regression analysis on the mean 

intensities of all markers in the samples (Supplementary Table 4). Markers that were 

upregulated with MRTX1257 treatment included the macrophage maturation markers 

CD206, MHC-II, and F4/80, as discussed above. Interestingly, vimentin was the 

fourth highest coefficient in the table. Also in the PCA analyses of Supplementary 

Fig. 4c, vimentin was one of the major variables contributing to component 1 and 2 

(Fig. 6a), and vimentin was upregulated with MRTX1257 treatment across the ROIs 

(Fig. 6b). Vimentin expression is the canonical marker of epithelial-to-mesenchymal 

transition (EMT), which has been suggested as one of the possible mechanisms of 

resistance to KRAS-inhibition33, 34. In fact, mean expression of vimentin increased for 

all cell types in the dataset, yet most striking was the difference seen for epithelium 

and endothelium (ratio: 4.7, p-adj = 0.02 and ratio 2.7, p-adj = 0.04, respectively, 

according to a linear mixed effects model) (Fig. 6c). While vehicle treated samples 

showed relatively low expression of vimentin on both cell types, following MRTX1257 

treatment endothelium became one of the highest expressing cell types and this 

expression was predominantly within the interface and tumour domain 

(Supplementary Fig. 7). Upregulation of vimentin on endothelium can be a reflection 

of endothelium-to-mesenchymal transition35. However, a close inspection of the 

PECAM and vimentin expression in the tissues, showed only modest colocalisation 

of the two antibodies at the pixel level. Vimentin is also a marker for pericytes, and 

while we do not have another marker in the panel that would unambiguously identify 

these cells, the observed expression patterns strongly suggest the presence of 

pericytes lining the endothelium (Fig. 6d). Indeed the expression of vimentin 

correlated with the proportion of endothelium in the MRTX1257 treated samples (Fig. 

6e). Together with the increased presence of endothelium in the tumour (Fig. 3c and 

3d), the detection of pericytes points to normalisation of the vasculature of the 

tumour as a result of KRAS G12C inhibition. Improved vascularisation of the tumour  

agrees well with the observation that the MRTX1257 treated samples harboured 

fewer necrotic patches in the tumours, but can also have played a role in facilitating 

tumour infiltration by effector cells, as the proportion of endothelium in the tumour 
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correlated with the level of infiltration by T cells and dendritic cells in the MRTX1257 

treated tumours (Fig. 6f). 
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Discussion 
 

Multiplex imaging techniques such as imaging mass cytometry are beginning to take 

centre stage in studies of the TME36. Application of this technology to pre-clinical 

mouse studies, however, has been lacking. Here we have described the design, 

optimisation and validation of a complete IMC workflow for mouse tissues. Our panel 

of 27 antibodies provides a good basis for immuno-oncology studies, identifying 

many of the cell types of interest in the TME. Additional isotopes are still available to 

allow for customisation in any area of research interest, such as additional 

checkpoint molecules or stromal markers, or for combination with RNAscope as was 

previously shown for human FFPE tissues37.   

 

Considering that frozen tissues generally have a reduced quality of histomorphology 

compared to FFPE and the 3LL DNRAS cell line gives rise to very densely packed 

tumours, we set out to find an optimised segmentation method, critical for obtaining 

good quality single cell data. We tested modifications to previously published image 

segmentation methods and established two strategies with a better performance with 

respect to signal-to-noise ratios and cell identification. The 1-pixel expansion 

segmentation can represent a simple strategy to obtain quick segmentation data 

from a new antibody panel, without the need for training the classifiers. More flexible 

and sensitive segmentation can be obtained with a sequential segmentation strategy 

and importantly, this method can provide a solution to cells that are more challenging 

to segment. Any of those segmentation methods can simply be applied to large 

datasets using our automated image segmentation pipeline, which has been made 

available to the wider community via the nf-core platform (nf-core/imcyto). This 

pipeline is scalable, yet flexible, as it can be customised to work with any antibody 

panel or segmentation strategy.   

 

Working with mouse tissues, has the advantage of imageing a cross section of the 

whole tumour, which is generally not possible with human samples due to the 

significantly larger size. This provides enhanced insight into the tumour architecture, 

as we have seen here for the very distinct cell communities within the different areas 

of the tissue, such as the accumulation of effector cells and the striking spatial 
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separation of two distinct phenotypes of macrophages. We found Type 1 

macrophages expressing CD68 and CD11c, resembling normal or tumour 

associated tissue resident alveolar macrophages as previously described27, 29, 38,, 

though lacking expression of mannose receptor CD206. These cells accumulated at 

the tumour edge whilst they were being excluded from the main body of the tumour. 

In contrast, Type 2 macrophages were intermixed with the tumour cells and were 

characterised by expression of F4/80 and CD206. These macrophages possibly 

represent tissue resident interstitial macrophages or may have been recently 

recruited from the circulating monocyte pool, as previous studies showed that 

circulating classical monocytes could differentiate into F4/80-high tumour associated 

macrophages in a model of metastatic breast cancer in the lung39. Casanova-

Acebes and colleagues recently characterised the lung macrophage populations on 

both human and mouse NSCLC using single cell transcriptomics, similarly 

separating the macrophages in two large clusters, one (I) with an alveolar 

macrophage profile like our Type 1 macrophages and also located at the tumour 

periphery, and a second monocyte-derived population (II) more similar to our Type 2 

tumour infiltrating macrophages38. Chakarov, et al. described the existence of two 

interstitial macrophages subsets, Lyve1hi CD206+ and Lyve1lo MHC-II+, both derived 

from monocytes40. While the Type 2 macrophages in our data aggregate in the 

uMAP as one expanding population with increased expression of activation markers 

upon MRTX1257 treatment, there is some differential expression of CD206 and 

MHC-II within this subset that could be consistent with the recruitment of two types of 

interstitial macrophages. Zilionis, et al. used single cell transcriptomics to distinguish 

four macrophage and three monocyte subsets in a mouse lung cancer model3, a 

granularity that our IMC panel cannot offer3. Technologies that couple transcriptome 

analysis with cell surface marker expression such as CITEseq will aid us to better 

match the macrophage phenotypes observed here to their transcriptional activation 

state.  

While MRTX1257 is a tumour-specific inhibitor, acting only on the G12C mutant form 

of KRAS protein found in the tumour cells and not the wild type KRAS protein found 

in the cells of normal tissue, it had profound indirect effects on the TME. The studies 

of Canon et al.15 and Briere et al.16 used flow cytometry and immunohistochemistry 

to look at changes in the TME upon KRAS G12C inhibition in the immunogenic 

subcutaneous colon cancer model CT26. The main changes they observed were 
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increases in macrophages, DCs and T cells. Our data paralleled those observations 

in an immune evasive orthotopic lung cancer model and provided additional spatial 

phenotypic data. We have used several different approaches to explore the spatial 

relationships between cell types, within cell neighbourhoods, and across the tissue 

domains. We showed how the tumour bed becomes infiltrated with maturing 

macrophages and PD-1+ lymphocytes, changing the spatial interactions between 

these cells. Interestingly some cells seemed to consistently exist together, such as 

the Type 1 macrophages that remain within the cell neighbourhood of DCs, 

irrespective of whether they are in the interface or in the tumour domain. This 

suggests either that their recruitment is regulated by the same mechanism, or that 

there is a functional importance to their interaction. While the DCs in that cellular 

niche expressed co-stimulatory molecules such as CD86 and could therefore 

potentially activate the T cells, the Type 1 macrophages expressed high levels of 

PD-L1 and would in turn be able to repress the T cell activation. On the other hand, 

CD4 T cells in the interface of vehicle treated samples interacted strongly with 

regulatory T cells that can play a role in suppressing T cell activation; this interaction 

was lost in the MRTX1257 treated samples as the number of regulatory T cells in the 

tumour did not increase in all but one of the tumours assessed. Clearly, such local 

interactions could be fundamental to the outcome of immunotherapeutic treatments. 

It also raises the question of the state of the local chemokine and cytokine milieu. 

While a study by Schulz, et al. demonstrated that IMC can be combined with 

transcript detection using an RNA-scope based in situ hybridisation37, the detection 

level of cytokine mRNA is often a limiting factor. A multi-omics approach combining 

IMC with single cell approaches such as CITE-Seq41, or spatial transcriptomics42, 43 

would therefore have the potential to significantly enhance our insight into the 

mechanisms regulating cellular communities.  

A major advantage of a multiplex technology is  that it allows for discovery and 

hypothesis generation. The finding of a higher expression of vimentin across all cell 

types was unanticipated but could be explained by a greater mobility of cells in the 

remodelling process of the TME44. In addition, it led to the observation that there was 

an increased presence of endothelium and possibly pericytes, pointing towards 

normalisation of the tumour vasculature upon MRTX1257 treatment in this normally 

haemorrhagic and necrotic tumour model45. Altogether, our data shows that 

treatment with a tumour-specific KRAS inhibitor can dramatically remodel the TME in 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.02.02.429358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429358
http://creativecommons.org/licenses/by/4.0/


van Maldegem, Valand et al.    18 

favour of an anti-tumour immune response, even in an immune cold tumour model 

such as the 3LL Lewis Lung Carcinoma. Current investigations are aimed at 

elucidating the mechanism by which this conversion is mediated. 

 

We have presented here a complete IMC workflow for use in preclinical mouse 

studies and demonstrated the value and importance of using IMC to study the effects 

of a treatment on the spatial organisation of the TME. 
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Methods  
 

In vivo drug study 

This work was performed under a UK Home office approved project license and in 

accordance with The Francis Crick Institute welfare guidelines. Mice were bred and 

maintained in specific-pathogen-free (SPF) conditions, housed up to 5 per cage in 

individually ventillated cages (IVC), with a 12–12 h light–dark cycle. Food and water 

were provided ad libitum. 106 3LL DNRAS Lewis Lung Carcinoma cells17 were 

injected in the tail vein of 9-11 week old C57BL/6 mice and allowed to establish for 3 

weeks. The lung tumour burden was assessed using a Quantum GX2 microCT 

Imaging System (PerkinElmer) and mice were assigned to treatment groups of 

similar tumour burden. MRTX1257 was prepared by sonication in 10% Captisol® 

(Ligand) and 50 mM citrate buffer (pH 5.0) and administered daily at 50mg/kg by oral 

gavage (5µl/g) for 7 days. Four hours after the last treatment mice were scanned 

again and sacrificed with a terminal overdose (0.1ml/10g body weight intraperitoneal) 

of a mixture of Pentobarbital (2% w/v) and Mepivacaine hydrochloride (8 mg/ml), 

followed by cervical dislocation.  

 

Tumour volume measurements 

Mice were scanned one day before start of treatment and on the last day of treatment. 

Mice were anesthetised by inhalation of isoflurane (Abbott Labs) and CT scanned 

using the Quantum GX2 micro-CT imaging system (Perkin Elmer). Breathing rate and 

body temperature were measured throughout the scan using in-built physiological 

monitoring devices. Scanning parameters were as follows: copper & aluminium filter 

0.06 + 0.5mm respectively, 1 degree’s rotation step over 360 degrees, source current 

40μA, source voltage 90kV, image isotropic pixel size 50μm. Scan mode at High 

Speed & Gating 4min. Gating technique set at Respiratory Gating. Lung images were 

grouped into bins based on the respiratory cycle and images reconstructed using the 

Quantum GX2 program with parameters set at Acquisition FOV 36mm & Recon FOV 

25mm. Estimations of lung tumour volumes were generated by highlighting 3D regions 

of interest in imaging program Analyze, version 12.0, from AnalyzeDirect.   
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Tissue processing 

Three mice from both the vehicle and the MRTX1257 treated group were processed 

to be used in IMC. Dissected lungs with tumours were stored in 20% ice cold 

sucrose up to one hour before embedding in Tissue-Tek O.C.T. Compound (Sakura) 

and being frozen gently using an isopentane liquid nitrogen bath. Blocks were stored 

at -80C until further processing.   

 

Antibody staining  

Five µm thin tissue sections were cut and collected onto SuperFrost Plus™ 

Adhesion slides (Thermo Scientific) in a cryostat and stored at -80°C. When 

required, slides were thawed for 3 hours, fixed for 10 min with Image-iT™ Fixative 

Solution (ThermoFisher) and washed with DPBS (GIBCO) and then 

DPBS/0.05%Tween. Slides were blocked with Superblock blocking buffer in DPBS 

(Thermo Scientific) for 30 min and then 1:100 anti-CD16/CD32 FC-block (BD 

Biosciences) for 10 min. Staining was done with a cocktail of primary antibodies in 

0.5% BSA and 1:100 anti-CD16/CD32 FC-block in DPBS/0.05%Tween for 1 hour in 

a dark humid chamber and followed by washes in DPBS/0.05%Tween and then 

DPBS alone three times each and rinsed in MilliQ water. For immunofluorescence 

(IF) the samples were stained with three dilutions (1:40, 1:100, 1:200) of the primary 

antibody, washed as above but not in water, and then mounted with ProLong Gold 

Antifade Mountant with/without DAPI (Thermo Scientific), cover-slipped and left to air 

dry overnight. For IMC, after the final DPBS wash slides were incubated with 1:500 

Cell-ID Intercalator-Ir (Fluidigm) in DPBS for 10 min and rinsed with MilliQ water 

before air drying overnight. Antibody clones conjugated with metal isotopes were 

purchased from Fluidigm where available (mouse CyTOF catalogue) or obtained in 

purified format and conjugated in house using MaxPar conjugation kits (Fluidigm) 

according to the manufacturer’s protocol.  Details of the antibodies and dilutions 

used for IF and IMC are listed in Supplementary Tables 1 and 2.   

 

Image acquisition 

IF slides were imaged with a Zeiss Upright LSM710 microscope with a 20x objective 

lens using Zen blue imaging software (Zeiss). IMC images were acquired using 

Hyperion Imaging Mass Cytometer. Each ROI was selected such that it would 

contain a whole tumour including adjacent normal tissue where possible, or, if 
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required, they were cropped post-acquisition to contain a single tumour. Twelve 

images obtained from six mice were selected for this study, ranging 1~9 mm2 

(429Mb up to 3.35Gb).  

For figures in this publication with IF or IMC images we used Fiji ImageJ v2.0.0 to 

make composite images of selected channels. For visualisation purposes the images 

were processed with an outlier removal step, filtered using a median or gaussian 

filter (0.5px radius) and scaled to enhance contrast. For Fig. 1c the lymphocyte 

images were filtered using a band pass (3-40px) Fast Fourier Transformation to 

enhance detection of the cells. 

  

Segmentation pipeline 

The following section describes the proposed segmentation pipelines carried out in 

CellProfiler v3.1.9, including custom modules by Bodenmiller 

(https://github.com/BodenmillerGroup/ImcPluginsCP) and Ilastik v1.3.3b1 (see Code 

availability, and Supplementary Fig. 3).  In brief, data obtained as .txt files were 

converted into stacks of individual .tiff files per antibody marker using the IMCtools 

package v1.0.5 (https://github.com/BodenmillerGroup/imctools)20. Images in the full 

stack path were minimally filtered using outlier removal and median filtering in 

CellProfiler (both using the custom “Smooth Multichannel” module). For nuclear 

segmentation, images for 191Ir and 193Ir were summed, histogram equalised and 

segmented using a propagation-based thresholding strategy in CellProfiler.  

For the pixel expansion strategy, segmented nuclei were expanded by a set number 

of pixels (1 or 3) to identify whole cell objects (see Fig. 2a).  

For the propagation strategy, selected markers (CD44, CD45, PECAM, CD11c, CD3, 

CD4, CD68, CD8, F480, aSMA, B220, CD206) were merged, alongside a nuclei 

image and converted into an RBG composite tiff in CellProfiler. This composite was 

fed into Ilastik pixel classification workflow and classified into nuclei, membrane and 

background to generate probability maps. In CellProfiler both segmented nuclei (as 

described) and membrane probability maps were used for whole cell segmentation 

using a propagation-based thresholding strategy (see Fig. 2a).  

Similarly, for the sequential segmentation strategy, multiple images representing 

individual cell types and domains were created by merging together selected 

markers in CellProfiler (PECAM for normal, CD44 for tumour, EPCAM and aSMA for 
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structural, CD3, CD4, CD8 and B220 for lymphocytes, and CD68, F480, CD206 and 

CD11c for macrophages). These 5 new images alongside a nuclei image were 

combined into a 6-channel image in CellProfiler. This was fed into Ilastik autocontext 

workflow and classified into tissue domains (nuclei, tumour, normal, structural) and 

cell types (lymphocytes, macrophages, fibroblasts) to generate probability maps. In 

CellProfiler, individual cell types (in order - lymphocytes, macrophages, fibroblasts, 

normal cells, tumour cells, remaining cells) were sequentially segmented using both 

segmented nuclei (as described but with customised size parameters) and 

corresponding probability maps, with the exception of fibroblasts which were 

identified only using the probability map. All cell types were added together to 

generate a total cell mask. Domain segmentation was performed using thresholding 

on domain probability maps, creating normal, tumour and structural domains. The 

interface domain was created from the overlap between normal and tumour 

domains. For CellProfiler and Ilastik project files used in these segmentation 

strategies, see Data availability. 

 

Validation of segmentation strategies 

All cells in the ROI “BRAC3438.6f_ROI1_t1_Vehicle” (in short: “02_Vehicle”), were 

ranked for expression of each of the markers depicted, and the top 500 highest 

expressing cells were selected to calculate the mean intensity for that marker within 

the top 500, and the remaining cells, as a measure of signal enrichment. Signal-to-

noise ratios were calculated by taking the mean intensity of relevant marker in the 

top 500 cells, relative to the expression of “polluting” markers not expected to be 

expressed in these same cells.  

We generated a small manually annotated dataset from the same image set as 

above, by recording the x and y coordinates of CD4+ (n=92) and CD8+ T cells 

(n=70), CD103+ DCs (n=65), F4/80+ macrophages (n=108) and aSMA+ fibroblasts 

(n=88). Cells from the top 500 expressing CD4, CD8, CD103, F4/80 or aSMA were 

interrogated to determine how many cells of each matched up to cells in the 

annotated dataset, following the criterium that the cell centre had to fall within 5px of 

each other.  
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imcyto pipeline  

An automated Nextflow based pipeline that sequentially pre-processes and 

segments imaging data and extracts single cell expression information (see 

Supplementary Fig. 2). This pipeline combines Docker or Singularity containers for 

IMCtools, CellProfiler and Ilastik. Inputs for the pipeline are image data in the form of 

.mcd, .txt, or ome.tiff files, a .csv file with binary information on the channels to be 

included, the user-generated CellProfiler pipeline files (.cppipe) - custom CellProfiler 

modules need to be separately provided, and (pre-trained) Ilastik project files (.ilp). 

Output files from each step in the pipeline, such as raw or pre-processed TIFFs, 

probability maps, masks, Object relationships and measurements in the form of a 

.csv file will be created in an organised results folder structure. Alongside, a report is 

generated on the performance of the pipeline, with respect to memory and processor 

usage and running time for each individual processing step. 

A detailed user guide can be found on: https://github.com/nf-core/imcyto 

 

Data normalisation, scaling and clustering  

Data for each ROI was normalised to mean intensity of Xenon134. To create the 

larger dataset, data from six control tumour ROIs and 6 MRTX1257 treated tumours 

were concatenated (282,837 cells in total for all twelve images combined) and 

channels scaled to the 99th percentile. A few small image areas containing a sudden 

drop in counts were excluded from the analysis, by excluding cells with X and y 

coordinates falling within those areas. Mean pixel intensity of 17 specific cellular 

markers from the data were selected for high-dimensional, unsupervised clustering 

using Rphenograph23: αSMA, B220, CD103, CD11c, CD3, CD44, CD45, CD4, 

CD68, CD8, EPCAM, F480, LY6G, MHC-II, NKp46, PECAM, PVR. This grouped the 

single-cell data into separate sub-populations based on phenotypic similarity of the 

chosen markers and assigned each to a cluster number using the Louvain 

community detection algorithm. A k input of 20 generated 30 clusters, and further 

manual separation into subclusters by expert gating resulted in 35 distinct sub-

populations overall (see Supplementary Methods). Clusters were evaluated to 

associate each with a cell type based on the distribution of weighted expression of 

each marker and grouped into 13 cell types based on their phenotypic classification 

(see Supplementary Table 3). 
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Phenotypic analysis  

R implementations of tSNE (RtSNE)46 and uMAP47 were used for dimensionality 

reduction. Macrophage uMAP analysis was based on clusters 05A, 08, 11, 21A, 23 

and 26, using the markers MHC-II, F4/80, PD-L1, CD86, CD68, CD206, pS6 and 

CD11c. The T cell uMAP was based on clusters 06A, 06B and 25, using the markers 

CD3, CD4, CD8, TCRgd, Foxp3, PD1 and CD103.  

 

Spatial analysis  

A permutation approach developed by the Bodenmiller lab was used to determine 

whether detected neighbour interactions between cell types occurred more 

frequently in the images than observed by randomization 

(https://github.com/BodenmillerGroup/neighbouRhood)19. Briefly, an ‘objectTable’ 

logging object, and cluster information, and ‘Object relationships’ listing each cell and 

all its identified neighbours within a 15-pixel distance, were sent through 5,000 

rounds of permutation. A P-value was then calculated to determine whether the 

difference between average baseline and permutated neighbour interactions were 

significantly different for each pairing combination of cell types. Significant interaction 

or avoidance was determined by baseline values falling above or below the 

distribution of permutated data, respectively. Averaged interactions for baseline 

versus permutation statistics from the Bodenmiller neighbouRhood analysis script 

were then compared for each pairing of cell types from every image by calculating 

log2 fold chance (log2FC) to determine how treatment affects neighbour interactions. 

For Type 1 and Type 2 macrophages, the log2FC was also calculated for normal, 

tumour and interface domains separately. 

The Pythagoras’s theorem was used to compute distances of each cell in the dataset 

to the nearest CD8+, CD4+ and regulatory T cell, based on the x and y coordinates 

of the centre of the cells.  

 

Statistics 

We used the `lme4` package within R to fit a mixed-effects model to account for fixed 

effects of domain, cell type and treatment, whilst allowing for a per-mouse and ROI-

within-mouse variation of distribution of cells between celltypes. We use a Poisson 

model as a surrogate to fit the multinomial distribution of cell counts across the cell 

types. Individual comparisons are carried out using a Wald test. We used the 
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correlation structure between ROIs in the same treatment group, as predicted by 

mixed-effects models fitted on the treatments separately to build the correlation 

heatmaps of cell type proportions. Similarly, the mean intensity of vimentin was fit 

with a mixed-effects model to describe the variation of vimentin expression between 

cell types and treatments. Other statistics as specified in the figure legends. 

 

Data availability  

The raw image files, pipeline input files, processed single-cell data, 3D plot and 

associated files generated and used for this study, are available in a Figshare 

repository at https://hdl.handle.net/10779/crick.c.5270621. 

The remaining data is available within the Article and Supplementary Information. 

 

Code availability  

The automated imcyto image segmentation pipeline built using Nextflow is freely 

available at https://nf-co.re/imcyto and https://github.com/nf-core/imcyto48. 

The code generated during this study for analysis of single cell IMC data following 

image segmentation was written for R v3.6.2 and is available at Figshare: 

https://hdl.handle.net/10779/crick.c.5270621 and 

https://github.com/FrancisCrickInstitute/vanMaldegem_Valand_202149.  
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Figure Legends 
 

Figure 1. A 27 multiplex antibody panel to characterise the TME in mouse 
frozen tissues 
a. Validation of antibodies in IMC using a tissue with known staining patterns, an 

example shown here is a follicle in the spleen; Ir191/193 (blue), B220 (green); CD4 

(magenta), CD68 (yellow), αSMA (cyan), vimentin (red). Representative image of 

two independently stained spleen tissues. 

b. Panel of 27 antibodies that identify multiple cell types from lymphoid, myeloid, 

tumour and stromal compartments, as well as markers of activation and proliferation 

status. Detailed information on the antibody clones and isotope conjugations can be 

found in Supplementary Table 1. Abbreviations: DC, dendritic cells; NK, natural killer; 

EMT, epithelial-to-mesenchymal transition; Ag, antigen.  

 

Figure 2. Comparing four segmentation strategies 
a. Graphic describing segmentation strategies performed in CellProfiler. Identified 

nuclei are expanded on by a select number of pixels to create a cell mask with the 

pixel expansion strategy. The propagation strategy uses both identified nuclei and a 

membrane probability map generated by pixel classification in Ilastik to create a cell 

mask, using the propagation thresholding parameter in CellProfiler. In the sequential 

segmentation pipeline each step uses custom size threshold settings for nucleus 

detection, as well as cell type specific markers to generate the probability maps for 

membranes in Ilastik. A propagation step as described in (a) is subsequently used to 

find cell boundaries in steps 1, 2, 4, 5, 7. At every level, the identified objects are 

subtracted from the total remaining nuclei. Any remaining cells at step 9 are 

segmented using 1-pixel expansion. Steps 3, 6, 8 and 10 describe the segmentation 

of tissue domains, based on probability maps in Ilastik.   

b. Representative false colour images of F4/80 (green), CD4 (yellow) and aSMA 

(red) markers merged with a nuclear stain (blue) and cropped (top row). Cell mask 

outlines (white) overlaid onto these markers were generated by either 3-pixel 

expansion strategy (2nd row) or propagation strategy (3rd row), 1-pixel expansion 

strategy (4th row) or sequential segmentation (bottom panel). Image processing for 
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visualisation: outliers were removed and a median filter of 0.5-pixel radius was 

applied in Fiji. 

c. Heatmap showing enrichment of markers as a result of each segmentation 

strategy. Enrichment was defined as the relative expression in the top 500 cells of 

the markers as listed on the x-axis, compared to the expression of those same 

markers in the rest of the cells in the dataset. 

d. Heatmap depicting the relative amount of noise in each segmentation strategy by 

looking at the relative expression of the key identifying marker, compared with 

markers that would not be expressed on the same cell, but may be found in its direct 

proximity within the tissue and thus would be a sign of signal bleed from adjacent 

cells (“signal/noise”). 

e. Percentage of cells from the manually annotated dataset that were matched with 

cells in the top 500 for each marker, compared between segmentation strategies. 

Size of annotated datasets: CD103+ DCs, n=65; CD4+ T cells, n=92; CD8+ T cells, 

n=70; F4/80+ macrophages, n=108; αSMA+ fibroblasts, n=130.   

f. Graphic showing the result of the domain segmentation as part of the sequential 

segmentation method, red = normal tissue, purple = tumour, green = interface, cyan 

= structural domain. Violin plot: Quantification of two key markers PECAM and CD44 

used as the basis for the domain segmentation. 

Abbreviations: px, pixel. 

 

Figure 3. Characterisation and spatial distribution of cell types in Lewis Lung 
carcinoma model 
a. Two representative 3LL lung tumours, either treated with vehicle or MTRX1257 for 

7 days (n=6 for both groups). Overall tissue organisation changes upon KRAS-

inhibition, with increased CD45+ leukocytes and αSMA+ fibroblasts in the tumour 

domain (left), increased expression of macrophage markers such as F4/80 and 

CD206 in the tumour (middle), and more T cells infiltrating the tumour bed (right). For 

visualisation purposes, the images were processed in Fiji with a median filter (radius 

0.5). To enhance visualisation of the small lymphocytes, the channels for CD3, CD4, 

CD8 and B220 were filtered using a band pass Fast Fourier Transformation.  

b. Heatmap showing the expression of 18 lineage markers within the 13 identified 

cell types. The heatmap was scaled by row to emphasise the key markers per 

cluster.  
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c. Relative distribution of cell types within the tissue domains, separated by the two 

treatments. It shows how the fibroblasts, lymphocytes, DCs and macrophages have 

increased presence in the tumour domain, while neutrophils have been reduced. 

Error bars indicate standard error of mean over the ROIs (n=6 for each treatment 

group). For full statistics using mixed effects model, see Supplementary Fig. 4.  

d. Proportions of cell types within the tumour domain, separated by treatment. 

Abbreviations: MRTX, MRTX1257 

 

Figure 4. Impact of tumour-specific KRAS G12C inhibition on phenotype and 
spatial characteristics of macrophages 
a. uMAP of macrophage clusters separates into two distinct populations (top left). 

Repeated sampling and uMAP dimensionality reduction gave a similar distribution of 

the data (n=3), representative plots shown. 

uMAP of macrophages, coloured by domain (top middle), treatment (top right), and 

the expression of individual markers that were selected for the generation of these 

uMAPs in the bottom two rows, data separated by treatment group. Type 1 

macrophages, largely made up of cluster 11, are characterised by high CD68+ 

CD11c+ expression, as well as PD-L1 and some pS6 positivity, and mainly reside at 

the tumour edge (normal and interface domain) and do not change much upon 

treatment with MRTX1257. The Type 2 macrophages, a merge of clusters 05A, 08, 

and 26, is characterised by F4/80 and CD206 expression. This population is much 

increased in size upon treatment, predominates the tumour domain, and shows 

upregulation of maturation markers F4/80, CD206, MHC-II, CD86 and PD-L1 with 

treatment.  

b. Crop of a vehicle treated tumour to illustrate the difference in markers expression 

between the CD68+ CD11c+ Type 1 macrophages at the interface and F4/80hi and 

CD206+ Type 2 macrophages in the tumour. For visualisation purposes, the images 

were processed in Fiji with a median filter (radius 0.5).  

c. Tissue distribution for both macrophages differs little between treatments. Stacked 

bar graph showing the distribution of the two macrophage types within the tissue 

domains. Type 1 macrophages are found mostly in the normal and interface domain. 

Type 2 macrophages are found almost exclusively in the tumour domain. Error bars 

indicate the standard error of means for the averages of proportions per ROI. Linear 
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mixed-effect modelling based statistics for this data are depicted in Supplementary 

Fig. 4f.  

d. Log2 fold changes in enrichment from the neighbouRhood19 analysis for Type 1 

macrophages, CD4 T cells and dendritic cells. Filled circles represent images for 

which the enrichment was statistically significant compared to randomisation of all 

events in the image as calculated within the neighbouRhood package, while open 

circles indicate non-significance. Values above zero indicate enrichment of a cell 

type in the neighbourhood of the macrophages, below zero means depletion. Error 

bars indicate the standard error of means between the ROIs.  

e. Visualisation of cell outlines of CD4+ T cells and dendritic cells, to demonstrate the 

frequent occurrence in the close proximity of Type 1 macrophages in two 

representative ROIs (n=12).   

f. Log2 change enrichment for Type 1 macrophages and fibroblasts as in d.  

g. Visualisation of cell outlines of fibroblasts, to demonstrate the frequent occurrence 

in the close proximity of Type 2 macrophages in two representative ROIs (n=12).  .  

Abbreviations: MRTX, MRTX1257 

 

Figure 5. Phenotypic and spatial characterisation of T cells in response to 
treatment  
a. uMAP of T cell clusters (top left), coloured by tissue domain (top middle), 

treatment (top right) and the expression of individual markers that were selected for 

the generation of these uMAPs in the bottom two rows, data separated by treatment 

group.  

b. T cells upregulate PD-1 upon MRTX1257 treatment, but only those within the 

tumour domain. Histograms plotting the normalised counts for mean intensity of PD-

1 per CD4+ CD8+ or regulatory T cell. Top: data separated by treatment, bottom: 

MRTX1257 treated samples only, separated by tissue domain. 

c. Box-and-whiskers plot depicting the distance of cell types to the nearest CD8+ T 

cell. In vehicle treated tumours, CD8+ T cells are on average found in proximity of 

other lymphocytes, endothelium, DCs and Type 1 macrophages, but not close to 

tumour, fibroblasts, or Type 2 macrophages. Upon MRTX1257 treatment, these 

distances generally become shorter, reflective of migration of CD8+ T cells into the 

tumour domain accompanied by increased presence of Type 2 macrophages and 

fibroblasts within the tumour. Boxes minima and maxima represent 25th and 75th 
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percentile, centre depicts the median, whiskers indicate 1.5*interquartile range, dots 

are individual outliers. Linear mixed-effects modelling confirmed that between 

treatments the cell types display a significantly different distribution of distances to 

nearest CD8 T cell (P value = 0.0001 for treatment:celltype interaction, ANOVA 

tested).  

d. Heatmaps for the different domains displaying cells in close proximity to the cell 

type of interest, separated by treatment and binned in distances from the centre of 

the cell (bins: 0-20px, 20-40px, 40-60px, 60-80px, 80-100px). Scaled on columns to 

show the relative contribution of cell types to the neighbourhood. 

Abbreviations: MRTX, MRTX1257; px, pixels 

 

Figure 6. MRTX1257 treatment is correlated with increased vimentin 
expression and tumour vascularisation. 
a. Plot depicting the contribution of the mean intensity of markers per mouse that 

have contributed to the first two principal components (PC1 and PC2 on and x and y 

axis respectively) of the PCA analysis from Supplementary Fig. 4c. 

b. Mean intensity of vimentin per ROI, separated by treatment group on the x-axis. 

Points are coloured by mouse ID as indicated in the legend. P-value = 0.03, 

extracted from ANOVA testing of linear mixed effects model. 

c. Distribution of vimentin expression across cell types separated by treatment, 

means are indicated with a dot. ANOVA testing of a linear mixed-effects model found 

that the two treatment conditions had a significantly different vimentin expression 

profile across the cell types (P<0.0001 for treatment:cell type), and that these 

differences were significant for Endothelium (P-adj = 0.04) and Epithelium (P-adj = 

0.02, corrected for multiple testing by adjusting for false discovery rate (FDR)).  

d. Crop of PECAM and vimentin expression in a tumour treated with MRTX1257. For 

visualisation purposes, the images were processed in Fiji with a median filter (radius 

0.5). 

e. Vimentin expression and proportion of endothelium cells in the tissue are 

positively correlated for the MRTX1257 treated ROIs, but not for the vehicle-treated 

ROIs (two-sided Pearson correlation testing, not adjusted for multiple testing). No 

other correlations between cell type and vimentin expression were found to be 

significant.  
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f. Pearson correlation matrix of cell type proportions in the tumour domain of 

MRTX1257 treated tumours, extracted from the linear mixed-effects model using the 

mouse:roi estimates. 

Abbreviations: MRTX, MRTX1257 
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