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ABSTRACT 1 

Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation and their changes 2 

during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty 3 

young and 29 older adults underwent a night of polysomnographic recordings. Using the Transition 4 

frequency, slow waves with a slow transition (slow switchers) and with a fast transition (fast switchers) 5 

were discovered. Slow switchers had a high EEG connectivity along their depolarization transition 6 

while fast switchers had a lower connectivity dynamic and dissipated faster during the night. Aging was 7 

associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG 8 

connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity 9 

network of older individuals. Our findings show that two different types of slow waves with possible 10 

distinct underlying functions, coexist in the slow wave spectrum. 11 
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INTRODUCTION 1 

Sleep slow waves are Non-Rapid Eye Movement (NREM) sleep oscillations in the delta range 2 

(<4Hz) reflecting high neuronal synchronization (Diekelman & Born, 2006). They generate sustained 3 

interest in neuroscience research for their role in sleep-dependent memory consolidation, synaptic 4 

plasticity, and as markers of homeostatic sleep pressure (Gais, Mölle, Helms, & Born, 2002; Inostroza 5 

& Born, 2013; Steriade, 2006; Borbély, 2001; Diekelmann & Born, 2010). In human sleep studies, there 6 

is, however, a fundamental question as to whether EEG waves showing oscillations < 4 Hz are a unique 7 

entity or rather hide two types of slow waves with specific functional roles.  In humans, slow EEG 8 

frequencies are often divided into two components, slow waves (typically 1-4 Hz) vs slow oscillations 9 

(< 1Hz) (Achermann & Borbely, 1997; Mölle et al. 2002; Muehlroth et al. 2019). It has been 10 

hypothesized that these two components have different functional molecular regulation mechanisms 11 

(Lee et al., 2004), and responses to homeostatic pressure (Achermann & Borbely, 1997; Campbell et 12 

al. 2006). More recent studies in mice and humans showed that faster delta frequency (2.5 – 4.5 Hz) 13 

react differently to sleep deprivation than lower delta frequencies (0.75 – 2 Hz), suggesting distinct 14 

neurophysiological substrates. Precisely, compared to lower delta frequencies, faster delta frequencies 15 

showed an increase incidence and power after a sleep deprivation protocol (Hubbard et al., 2020). In 16 

recent years, Siclari et al. (2014) showed that delta oscillations (1 – 4.5 Hz) with distinct cortical origins 17 

and distributions are sustained by different synchronization processes. Their team further identified two 18 

types of slow waves, widespread and steep (type I) and smaller, more circumscribed (type II) slow 19 

waves with only the second type showing homeostatic regulation (Bernardi et al. 2018). More recently, 20 

animal and human studies brought to light new evidence of two types of slow waves based on the up 21 

and down state duration: one showing positive correlation between consecutive up and down state 22 

duration, and another one showing negatively correlated up and down state durations (Nghiem et al. 23 

2020). Here, we propose to describe the dichotomy in the delta frequency range based on a new 24 

parameter characterizing the time delay from the up-to-down state: the transition frequency. Using this 25 

parameter, we show two types of slow waves driven by different pressure of homeostatic dissipation 26 

and endowed by specific EEG functional connectivity dynamics. 27 
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Sleep slow waves are characterized by a hyperpolarizing state (negative phase in surface EEG/ 1 

down state), during which cortical neurons are synchronously silent, followed by a depolarizing state 2 

(positive phase in surface EEG/ up state) during which cortical neurons fire intensively (Csercsa et al., 3 

2010; Steriade, 2006). The transition from the negative to the positive phase is critical, as it is a strong 4 

marker of the ability of brain networks to switch from a state of hyperpolarization to a state of massive 5 

depolarization. The slope of the slow wave (the rate of amplitude change from the negative to the 6 

positive peak) is generally described as the best measure to assess synaptic strength and sleep 7 

homeostasis compared to other classic parameters (Bersagliere & Achermann, 2010; Riedner et al., 8 

2007). However, using slope as a measure of transition speed also presents important limitations, as it 9 

is affected by slow wave amplitude: with similar positive and negative duration, higher slow waves will 10 

necessarily have steeper slopes (Bersagliere & Achermann, 2010). A novel metric that captures the 11 

transition speed without being affected by amplitude needs to be developed. 12 

The study of slow waves necessarily involves the notion of age, as slow waves drastically 13 

change during adulthood. Compared to young adults, older individuals show lower slow wave density 14 

as well as reduced amplitude, smoother slope, and longer positive and negative phase duration of slow 15 

waves, possibly indicating that cortical neurons enter less synchronously into the hyperpolarization 16 

and depolarization phases (Carrier et al., 2011). Therefore, our ability to disentangle the influence of 17 

slow wave amplitude over our typical metric of the down-to-up state transition, e.g. the slope, is 18 

compromised in aging. Finding a novel metric that captures the transition speed without being 19 

affected by amplitude needs to be developed, especially when studying older populations. Age-related 20 

EEG connectivity modification has also been recently described in the literature (Ujma et al., 2019; 21 

Bouchard et al., 2019) with major age-related differences in deeper NREM sleep, when slow waves 22 

are prominent. At the scale of sleep stages and cycles, our team reported that older individuals showed 23 

higher between-region EEG connectivity at the whole brain scale in deep NREM sleep (stage N3) as 24 

compared to younger adults (Bouchard et al. 2019). These results support the notion that the brain of 25 

younger individuals during deeper NREM sleep stages operates with reduced long range cortico-26 

cortical connectivity (Spoormaker et al. 2011; Massimini et al. 2007). However, EEG connectivity at 27 

the scale of slow waves has yet to be studied in humans and during aging. Such information would 28 
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allow a better understanding of the dynamic and distinct networks recruited during those oscillations 1 

in addition to providing functional clues to support the complementary phenomena happening in the 2 

delta frequency range as described in other studies. The goals of our study were thus to clearly 3 

identify the dichotomy in the slow wave’s spectrum and describe the EEG connectivity patterns and 4 

homeostatic decline of these two types of slow waves in young and older individuals. 5 

 6 

MATERIAL AND METHODS 7 

Participants and protocol 8 

Fifty-nine participants, 30 young (14 women, 16 men; 20-30 years; mean=23.49 ±2.79 yo) and 9 

29 older (18 women, 11 men; 50-70 years; mean=59.6 ±5.61 yo) adults in good physical and mental 10 

health have completed the study protocol (demographic data for each group is presented in 11 

Supplementary Table 1). Exclusion criteria were first investigated during a phone screening using a 12 

semi-structured interview. Smoking, a body mass index (BMI) over 27, the use of drugs and/or 13 

medication that could affect the sleep-wake cycle and/or the nervous system, complaints about the 14 

sleep-wake cycle and/or cognition, transmeridian travel within three months prior to the study and night-15 

shift work or night-shift work in the last three months all resulted in the exclusion of the participant. 16 

Participants included in the study were asked to maintain between seven and nine hours of sleep per 17 

night prior to the study. Participants with a score higher than 13 at the Beck depression inventory (Beck, 18 

Steer, & Garbin, 1988) or a score higher than 7 at the Beck Anxiety Inventory (Beck, Epstein, Brown, 19 

& Steer, 1988) were excluded from the study. Potential cognitive impairment and dementia were 20 

screened using a neuropsychological assessment in which IQ, memory, attention, processing speed, and 21 

executive functions were performed and ruled out for all participants. Premenopausal women had 22 

regular menstrual cycles (25-32 days), and menopausal women showed amenorrhea, for at least a year 23 

before the testing. They reported no night sweats or hot flashes. Perimenopausal women were excluded 24 

from the research. The protocol was approved by the ethics committee of the Hôpital du Sacré-Coeur 25 

de Montréal and performed in accordance with the relevant guidelines and regulations. Participants 26 

provided informed consent and received financial compensation for their participation. 27 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429396
http://creativecommons.org/licenses/by/4.0/


  6 
 

Procedures 1 

All participants underwent one screening and one experimental night of polysomnographic 2 

(PSG) recording at the Center for Advanced Research in Sleep Medicine at the Hôpital du Sacré-Coeur 3 

de Montréal. For the screening night only, PSG also included leg electromyogram (EMG), 4 

thoracoabdominal plethysmograph, oral/nasal canula as well as frontal, central, and parietal electrodes 5 

referred to linked earlobes (Iber, Ancoli-Israel, Chesson, & Quan, 2007). Participants with periodic leg 6 

movements or sleep apneas/hypopneas (index > 10 per hour of sleep associated with a micro arousal) 7 

were excluded from the study. 8 

Polysomnographic recording for the experimental night 9 

All participants filled out a sleep diary and followed a regular sleep-wake cycle for seven days 10 

before the experimental night based on their individual habitual bedtimes and wake times (±30 min). 11 

Bedtimes and wake times in the laboratory were also based on their own sleep schedules. On the 12 

experimental PSG night, twenty EEG derivations (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, 13 

Oz, O1, O2, T3, T4, T5, T6) referred to linked earlobes were recorded (10-20 international system; 14 

EEG: gain 10,000; bandpass 0.3–100 Hz; -6 dB), in addition to chin EMG, electrooculogram (EOG) 15 

and electrocardiogram (ECG). Signals were recorded using an amplifier system (grass model 15A54; 16 

Natus Neurology, Warwick, Rhode Island, USA) and digitized at a sampling rate of 256 Hz using 17 

commercial software (Harmonie, Stellate Systems, Montreal, Quebec, Canada). Sleep stages (N1, N2, 18 

N3, and REM) were visually scored by an electrophysiology technician in 30-second epochs and 19 

according to standard criteria of AASM (Iber et al., 2007) and sleep cycles were identified. Artifacts 20 

were first automatically detected (Brunner et al., 1996) and then visually inspected by a trained 21 

technician. PSG variables for each group for the experimental night are presented in Supplementary 22 

Table 1. 23 

Slow Waves Detection 24 

 Slow waves were detected automatically on artifact-free NREM (N2 and N3) epochs on all 25 

electrodes using previously published criteria (Dang-Vu et al., 2008; Dube et al., 2015). Specifically, 26 

data was initially filtered between 0.3 and 4.0 Hz using a band-pass filter (- 3 dB at 0.3 and 4.0 Hz; -23 27 
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dB at 0.1 and 4.2 Hz) and slow waves were defined according to the following parameters: A negative 1 

peak below -40 uV, a peak-to-peak amplitude above 75 uV, the duration of negative deflection between 2 

1500 and 125 ms, and the duration of positive deflection not exceeding 1000 ms. 3 

Sleep Spindles Detection 4 

Spindles were automatically detected on artifact-free NREM (N2 and N3) epochs on all 5 

electrodes using a previously published algorithm (Gaudreault et al., 2018; Lafortune et al., 2014; 6 

Martin et al., 2013). Specifically, the EEG signal was bandpass filtered between 10 and 16 Hz using a 7 

linear phase finite impulse response filter (–3 dB at 10 and 16 Hz). The envelope amplitude of the 8 

Hilbert transform of this band-limited signal was smoothed and a threshold was set at the 75th percentile. 9 

All events of duration between 0.5 to 3 seconds were then selected as a spindle. The overlap of a spindle 10 

oscillation with a slow wave, characterized by the onset of the spindle between -	𝜋 and 𝜋 /2 on the slow 11 

wave phase, was defined as a co-occurrence (see Figure 1A).  12 

Slow Wave Characteristics 13 

For each slow wave, we derived the map between the time and the phase obtained from the 14 

Hilbert transform of the filtered slow wave in the delta band (0.16	 − 4	Hz	). All slow waves were 15 

equally time referenced by choosing the zero phase at the maximum of the depolarization. Then, the 16 

temporal evolution during each slow wave was uniquely described with a phase ranging from −3𝜋/2  17 

to 𝜋/2 as illustrated in Figure 1A. In addition to general parameters like slow wave density (number 18 

per minute) and frequency (inverse of the total duration 𝑇	), we calculated the transition frequency 19 

extracted from the filtered slow wave in the delta band. For each slow wave, transition frequency 20 

characterizes the half-wave associated with the depolarization transition. If 𝜏denotes the delay of the 21 

down-to-up-state transition (see Figure 1A), then the transition frequency is defined as 	𝑓/ = 1/2𝜏. 22 

Figure 1B displays the scatter plot of the overall joint distribution of slow wave frequencies and 23 

transition frequencies for all slow waves detected on Fz in young and older individuals. The marginal 24 

distributions of the two frequencies clearly show an age difference in the distribution of the transition 25 

frequency	𝑓/ that is not observed for the frequency. We observe a critical value for the transition 26 

frequency around 1.2 Hz (dashed line) where the two distributions cross with aging. This change in the 27 
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distribution suggest a model of mixture to reveal distinct modes that could be associated with different 1 

types of sleep slow waves that may evolve distinctively with aging.  2 

 3 
 4 

Figure 1: Frequency and Transition frequency of slow waves in young and older individuals 5 

Caption: (A) represents the phase of a slow wave with the transition between hyperpolarization (H) 6 

and depolarization (D) in pink. Scatter plot of the exhaustive Fz inventory of the frequency (1
1
) and 7 

transition frequency (	 1
2/

 ) of each slow wave in young (light red) and older groups (dark red). The 8 

marginal distributions of the two frequencies show a similar distribution for the mean frequency 9 

whereas the transition frequency shows distinct distributions with aging. 10 

 11 

Slow and fast switchers 12 

As introduced in the previous section, we considered a mixture of Gaussians to modelize the distribution 13 

of the transition frequency of the slow wave. As seen in Figure 2A and 2B, distributions show two 14 

modes and any slow wave can then be labeled as slow switchers or fast switchers (respectively cyan 15 

and dark blue distribution for young and older participants). More specifically, the probability 16 

distribution can be expanded as a sum of weighted Gaussians 	𝑝(𝑓/	|	𝑆𝑤) , 17 

𝑝(𝑓/) = 	𝑝(𝑆𝑙𝑜𝑤𝑆𝑤)	𝑝(𝑓/	|	𝑆𝑙𝑜𝑤𝑆𝑤) + 	𝑝(𝐹𝑎𝑠𝑡𝑆𝑤)	𝑝(𝑓/	|	𝐹𝑎𝑠𝑡𝑆𝑤) 18 

where 	𝑝(𝑆𝑙𝑜𝑤𝑆𝑤)	+ 	𝑝(𝐹𝑎𝑠𝑡𝑆𝑤) 	= 	1. 19 

In this sum,	𝑝(𝑓/	|	𝑆𝑙𝑜𝑤𝑆𝑤) and 	𝑝(𝑓/	|	𝐹𝑎𝑠𝑡𝑆𝑤) are Gaussian distributions that describe, depending 20 

on the class ‘slow switchers’ or ‘fast switchers’, the probability to transit with the frequency 	𝑓/.  21 

	𝑝(𝑆𝑙𝑜𝑤𝑆𝑤)	(resp. 	𝑝(𝐹𝑎𝑠𝑡𝑆𝑤)) is the probability for the sleep slow wave to be a slow switcher (resp. 22 
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a fast switcher). The reliability of the mixture model was further tested with the Akaike Information 1 

Criterion (Figure 2C) that assessed that a mixture with two Gaussian distributions is necessary and 2 

sufficient to fit the entire distribution of the transition frequency. This parametric model of 𝑝(𝑓/) can 3 

be estimated using the EM (Expectation-Maximization) algorithm to fit the distribution for each 4 

individual. From this mixture of Gaussians, we can define the frequency 𝑓∗ where the two Gaussians 5 

intersect: a slow wave will be labeled as a ‘slow switcher’ if 𝑓/ 	< 	 𝑓∗, i.e. if 𝑝(𝑓/	|	𝑆𝑙𝑜𝑤𝑆𝑤) ≥6 

	𝑝(𝑓/	|	𝐹𝑎𝑠𝑡𝑆𝑤) and a fast switcher otherwise.   7 

 8 

 9 
 10 

Figure 2: Transition frequency and the slow and fast switcher definition  11 

Caption: (A) and (B) are normalized histograms of the transition frequencies (in pink) for young (A) 12 

and older subjects (B), for slow waves detected in frontal derivations (average of F3, F4 and Fz). The 13 

fit of the distributions can be decomposed as a mixture of Gaussians: One Gaussian (cyan) accounts 14 

for slow switchers, the other (dark blue) accounts for the fast switchers. The separation line at f* = 15 

1,2Hz stands for the intersection between the two Gaussian distributions. (C) shows the Akaike 16 

Information Criterion for the increasing number of Gaussians in the mixture. The lower the criterion 17 

with a sparse decomposition, the better the mixture fit. (Parietal and Central derivations are presented 18 

in Supplementary Figure 1)  19 

Slow and fast switchers modulation analysis 20 

To evaluate the decline of slow and fast switchers throughout the night, we calculated the 21 

percentage of slow or fast switchers in each sleep cycle related to the respective total number 22 

of slow or fast switchers across the night. To statistically test changes between slow and fast 23 
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switchers’ decline across sleep cycles, a three-way ANOVA with one factor [2 (Group: younger 1 

vs. older)] and 2 repeated measures [2 (Switcher: slow vs. fast)] × [3 (Cycle: cycle 1, 2, and 3)] 2 

was performed. P-values < 0.05 were considered significant and simple effects were analyzed 3 

to follow up significant interactions. 4 

Phase-Locked connectivity analyses 5 

The functional connectivity across the EEG derivations was assessed using a time-resolved Phase Lag 6 

Index (PLI) calculated at six successive phases of the slow wave. Five phases were evenly spaced during 7 

the transition, whereas a sixth phase was defined after the depolarization maxima. Given a slow wave 8 

(further labeled by 𝑘) was detected on the derivation denoted by 𝑛∗, we considered the internal phase 9 

of the detected oscillation and the simultaneous phase of the other EEG derivations, 𝜑E∗
(F) and 𝜑G

(F)  10 

respectively (the * indicates the derivation on which the slow wave was detected). The slow wave phase 11 

lag index between 𝑛∗ and any other derivation 𝑚 is then defined by 12 

𝑝𝑙𝑖(𝑛∗,𝑚)	= 	
1
𝑁∗ 	L𝑠𝑖𝑔𝑛	 N𝑠𝑖𝑛 O𝜑E∗

(F) 	−	𝜑G
(F)PQ

�F

 13 

where the summation runs over the 𝑁∗ slow waves detected on 𝑛∗. This quantity is calculated for six 14 

regularly spaced phases of the detected slow wave. Since this pairwise pli emphasizes the slow wave 15 

detected on 𝑛∗, we further symmetrize the definition to account for all the slow waves detected over 16 

any pair (n, m): 17 

𝑃𝐿𝐼(𝑛,𝑚) = 	
1
2
	U𝑝𝑙𝑖(𝑛∗,𝑚)	+ 	𝑝𝑙𝑖(𝑛	,𝑚∗)V 18 

It is worth noting that slow waves that would truly propagate from 𝑛 to 𝑚 with a non-vanishing 19 

delay would contribute with 𝑝𝑙𝑖(𝑛∗,𝑚) ≃ 𝑝𝑙𝑖(𝑛	,𝑚∗) since the non-vanishing delay will be of an 20 

opposite sign. The definition of this PLI thus emphasizes the connectivity due to cortico-cortical 21 

propagation of the slow waves, independently from the shape of the oscillation. For each of the six 22 

phases chosen along the slow waves, the statistical significance of the connections was assessed through 23 

a random resampling of the phase with a max-statistics over the full set of electrode pairs. This null-24 

hypothesis modeling was used to define the threshold at each of the six-phase points, for a given p-25 

value (0.01). Finally, to quantify the global strength of the connectivity, a global connectivity index 26 
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(Bouchard et al. 2019) was then defined at each of the six slow wave phases as the sum of the PLI over 1 

the significant pairs of electrodes. An increasing value of this index qualitatively assesses a more 2 

interconnected network or a more significant phase-locked synchronization (with constant non-3 

vanishing delay) among the EEG electrodes. 4 

RESULTS 5 

Section 1: Slow and fast switchers in the sleep slow waves inventory for young and older individuals  6 

Figure 3 illustrates slow wave density, distributions of transition frequencies and slow switcher 7 

probability for frontal (average of F3, F4, and Fz), central (average of C3, C4, and Cz), and 8 

parietal (average of P3, P4, and Pz) derivations. As expected, slow wave density was 9 

significantly lower in older individuals as compared to younger participants for the three 10 

derivation clusters (Figure 3A). Our analyses demonstrated the existence of the “slow 11 

switchers” and the “fast switchers” represented by a bimodal distribution of the transition 12 

frequency, in each cluster and for both young and older individuals (Figure 3B and 3C). The 13 

cut-off frequency between the two Gaussian curves was statistically determined for each 14 

subject and then averaged over both groups (see slow and fast switchers in the Methods 15 

section). In young individuals, a cutoff frequency of 1.3 Hz was found for all derivations 16 

whereas older individuals showed a frequency of 1.2 Hz in frontal and 1.1 Hz in central and 17 

parietal derivations. Since further analyses showed that the slow switchers and fast switchers 18 

dichotomy exists with or without the concomitant occurrence of a spindle (see Supplementary 19 

Figure 2), we present the analyses for all slow waves in Figure 3A,B,C, and D. We also showed 20 

that older individuals had a higher probability of producing slow switchers than fast switchers 21 

when generating a slow wave compared to younger individuals (Figure 3D, p<0.0001 for all 22 

derivations). 23 
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 1 
Figure 3: Slow and fast switcher slow waves 2 

Caption: (A) Slow wave densities in cluster of frontal (F3, Fz, F4), central (C3, Cz, C4) and 3 

parietal (P3, Pz, P4) derivations in young and older individuals. (B) and (C) The distribution 4 

of probabilities of slow waves being slow (cyan) or fast switchers (dark blue) in younger and 5 

older individuals, respectively, with each curve representing one participant. We can observe 6 

the two distinct modes of sleep slow waves based on their transition frequency in each 7 

derivation. (D) Age-related differences in the probability of producing a slow switcher when 8 

generating a slow wave. Significant age differences in (A) and (D) were calculated using t-9 

tests (***, p < 0.0001). 10 

 11 
Section 2: Fast switchers show a steeper decline than slow switchers at the beginning of 12 

night  13 

Considering slow and fast switchers separately, Figure 4 displays the percentage of switchers 14 

in each cycle related to the total number of the same switchers across the whole night. 15 

Remarkably, the first three sleep cycles, which are present in almost all participants (cycles 4 16 

and 5 mostly missing for the older individuals), showed an exponential decay that is 17 

significantly different for the two types of slow waves. In the younger group, the exponential 18 
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∼ 𝑒Z	[	\ drives the fast and slow switchers decay with 𝑟	 = 	1.6	(𝑅2 = 1) and 𝑟	 = 	1.3	(𝑅2 =1 

1) respectively. For older subjects, a much slower exponential decay also drives the fast 2 

switchers with 𝑟	 = 	0.6	(𝑅2 = 1) whereas the slow switchers are rather evolving with an 3 

exponential reduction ∼	−𝑒	𝑟	𝑡 with 𝑟	 = 	0.4	(𝑅2 = 1).  4 

The three-way ANOVA with repeated measures showed significant Group × Cycle [F(2,1) = 5 

6.9, p = 0.001] and Cycle × Switcher [F(2,1) = 69.2, p < 0.001] interactions as well as a specific 6 

Cycle effect [F(1.4, 80.1) = 69.7, p < 0.001]. Simple effects analysis for the Group × Cycle 7 

interaction showed that younger individuals had, in general, more slow waves (averaged 8 

number of both types) in Cycle 1 (t(57) = 2.6, p < 0.05) but less in Cycle 2 (t(57) = -2.2, p < 9 

0.05) when compared to older individuals, whereas no group differences were found for Cycle 10 

3. These results highlight a stronger decrease of slow waves in young individuals as compared 11 

to the older individuals between Cycle 1 and Cycle 2, suggesting a steeper decline of 12 

homeostatic pressure. As for the Cycle × Switcher interaction, simple effects analysis showed 13 

a higher proportion of fast switchers than slow switchers for Cycle 1 (t(58) = -9.6, p < 0.001) 14 

whereas an opposite effect was found for Cycle 2 (t(58) = 7.0, p < 0.001) and Cycle 3 (t(57) = 15 

6.0, p < 0.001). When put together, these results suggest a steeper decline of fast switchers 16 

between Cycle 1 and Cycle 2 when compared to slow switchers, as demonstrated by the 17 

inversion of the slopes at the second time point.  18 

 19 

 20 
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Figure 4: Slow and fast switchers decline across sleep cycles 1 

Caption: For each participant in each group, we clustered slow switchers and fast switchers 2 

with respect to the cycle during which they occurred. Considering slow and fast switchers 3 

separately, the percentage of switchers in each cycle related to the total number of switchers 4 

across the whole night are displayed. The curves are spline-interpolation of the overall average 5 

in each group. 6 

Section 3: The EEG connectivity dynamics evolve differently within slow and fast switchers 7 

PLI was used to investigate intrinsic slow wave EEG connectivity networks across different 8 

phases of the depolarization transition (Figure 5A). Since sleep spindles can involve dynamic 9 

changes in connectivity (Zerouali et al, 2015), analyses were performed separately for spindle-10 

free slow waves and slow waves coupled to a spindle. Figure 5B and 5C show the connectivity 11 

graphs across consecutive phases in slow and fast switchers for younger individuals (Figure 12 

5B) and older individuals (Figure 5C) for slow waves without sleep spindles. Similar analysis 13 

for slow waves with sleep spindles of young and older individuals is shown in Figure 6. 14 

Analysis of the global connectivity index, which quantifies the overall significance of the 15 

global connectivity of a graph, showed distinct EEG connectivity strength for slow and fast 16 

switchers in both young (Figure 5D) and older (Figure 5E) adults. Our results also showed a 17 

higher overall EEG connectivity during slow switchers as compared to fast switchers and 18 

higher connectivity in young individuals rather than in older individuals. More specifically, in 19 

younger individuals, we observed a global increase in EEG connectivity during slow switchers 20 

which reaches its highest connectivity strength at the maximum of depolarization. Whereas this 21 

scenario recruited connectivity patterns along the full slow wave depolarization in the absence 22 

of a spindle (figure 5D), the connectivity involved in the slow wave with a spindle is 23 

concentrated later, around the maximum depolarization phase (Figure 6D). In older individuals, 24 

slow switchers showed higher EEG connectivity along the depolarization transition while no 25 
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significant link was found for the fast switchers. With aging, the fast switchers or the presence 1 

of a spindle drastically obliterated the EEG connectivity (Figures 5E, 6E). 2 

 3 

 4 
Figure 5: EEG Connectivity signature of slow and fast Switchers without sleep spindles in 5 

young and older individuals. 6 

Caption: (A) Illustration of the 6 different phases along the depolarization transition (a, b, c, 7 

d, and e) and the hyperpolarization transition of the slow wave (f). (B and C) EEG connectivity 8 

graphs, using Phase-Locked connectivity (PLI) metrics and statistically assessed by non-9 

parametric statistics for the slow (upper level) and fast- (lower level) switchers without sleep 10 

spindles, in young (B) and older (C) individuals. (D and E) Global Connectivity Index (GCI) 11 

values at each phase of the slow wave, obtained by the summation of the PLI values across the 12 

significant electrode pairs. The GCI thus shows the weight of significant links obtained through 13 
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non-parametric analyses. Slow switchers are represented in cyan whereas the fast switchers 1 

are in dark blue. Graphs have a common scale and can therefore be compared.  2 

 3 

 4 

 5 
 6 

Figure 6: EEG Connectivity signature of slow and fast switchers with sleep spindles in young 7 

and older individuals. 8 

Caption: (A) Illustration of the 6 different phases along the depolarization transition (a, b, c, 9 

d, and e) and the hyperpolarization transition of the slow wave (f). (B and C) EEG connectivity 10 

graphs, using Phase-Locked connectivity (PLI) metrics and statistically assessed by non-11 

parametric statistics for the slow (upper level) and fast- (lower level) switchers with sleep 12 

spindles, in young (B) and older (C) individuals. (D and E) Global Connectivity Index (GCI) 13 
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values at each phase of the slow wave, obtained by the summation of the PLI values across the 1 

significant electrode pairs. Slow switchers are represented in cyan whereas the fast switchers 2 

are in dark blue. Graphs have a common scale and can therefore be compared.  3 

 4 

DISCUSSION 5 

In the present work, we have identified two types of slow waves: the slow and fast 6 

switchers. Slow and fast switchers showed distinct distributions of their transition frequency 7 

(down-to-up state transition) and were detected in both age groups with the older participants 8 

showing a higher proportion of slow switchers. We demonstrated that slow and fast switchers 9 

are characterized by a specific EEG connectivity signature along the depolarization transition, 10 

with slow switchers presenting an overall higher EEG connectivity than fast switchers. 11 

Connectivity across slow waves was lower in older individuals as compared to younger ones.  12 

Most importantly, when looking at homeostatic regulation, fast switchers showed a steeper 13 

decline between the sleep cycles across the night as compared to slow switchers. Using a data-14 

driven approach, the results of this study thus distinguish two types of slow waves present in 15 

younger and older individuals, with specific characteristics that could embody complementary 16 

functional roles. 17 

Sleep Slow Waves are either slow or fast switchers 18 

While the distinction between slow waves and EEG slow oscillation based on frequency 19 

is often made in sleep research, the present work introduces for the first time an intrinsic 20 

parameter that objectively classifies sleep slow waves in humans into two categories: the slow 21 

and fast switchers. This new parameter is the transition frequency which is strictly associated 22 

with the half-waves from the down-to-up state transition. At the physiological level, this 23 

frequency is associated with the synchronized depolarization of neurons. In the last year, 24 

Nghiem et al. (2020) found two types of slow waves by analyzing temporal patterns of slow 25 
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waves’ down-states and up-states. While this distinction is seen in sleep, it does not seem to be 1 

present in anesthesia, which could point to a specific implication of one type of slow wave in 2 

sleep-dependent memory consolidation mechanism during sleep specifically. Our results add 3 

crucial information to the recent published articles, showing that the two types of slow waves 4 

are underpinned by a different EEG connectivity network dynamic across the depolarization 5 

transition itself and confirming the distinct homeostatic decline pattern. The use of a parameter 6 

free of the amplitude characteristic of the slow wave and associated specifically with the 7 

depolarization transition allows us to describe its intrinsic changes in aging. Taken altogether, 8 

these findings finally expand our understanding of the dichotomy described in the delta 9 

frequency of humans for years and how it is changing in the older population. 10 

Slow and fast switchers show distinct EEG connectivity dynamics  11 

Chauvette (2010), described that in the cat’s cortex, active states begin with the firing of a 12 

single neuron, leading to another neuron firing, then leading to a cascade of firing neurons. 13 

Here, we observed at a much larger scale, that the EEG connectivity also increases as the 14 

depolarization occurs and could be linked to the higher communication and increased synaptic 15 

activity during the depolarization phase (Chauvette, Volgushev, & Timofeev, 2010). In 16 

particular, the slow switchers in young adults involved a significant increase in EEG 17 

connectivity to reach a maximum at the depolarization state of the slow waves. A study from 18 

Heib et al. (2013) showed that a longer duration of the depolarization phase of the slow wave 19 

was associated with better memory consolidation. Their hypothesis is that a longer 20 

depolarization phase could represent an increased possibility to effectuate an initial transfer of 21 

recent memory from the hippocampus to the cortex (Heib et al., 2013). Since our identified 22 

slow switchers show slower transition frequency, their specific role in sleep-dependent 23 

cognitive processes should be investigated. 24 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429396
http://creativecommons.org/licenses/by/4.0/


  19 
 

The increase in EEG connectivity at the scale of the oscillation seems to be 1 

complementary to the global disconnection we described in previous work in the delta band of 2 

N3 in the first sleep cycle of younger individuals (Bouchard et al., 2019). With the results of 3 

both studies, we can conjecture that this increase of connectivity during the depolarization 4 

transition of the slow switchers in young adults requires a global disconnection at a larger scale 5 

to make possible such transient variation. The fast switchers however, involved a lower 6 

connectivity index in young adults. Interestingly, if you look at figure 1B, it seems that there 7 

exists a threshold (around 2.5 Hz) in the transition frequency above which fast switchers are 8 

more difficult to produce. This critical frequency can be converted into a characteristic 9 

duration, which corresponds to a period around 200 msec. Interestingly, this specific 200 msec 10 

duration was set up as the minimal time required for the establishment of connectivity 11 

networks, as recently measured by fMRI during resting states (Baker, 2014). We may 12 

hypothesize that if the connectivity of the slow wave is transiently associated with the 13 

establishment of a dynamic network, the depolarization of the slow wave can’t be faster than 14 

the temporal scale needed for the setting of the network. Additionally, slow waves with a faster 15 

transition (the fast switchers with frequency higher than 2.5Hz), would not allow enough time  16 

for the dynamic network to take place. 17 

It is also worth noting the variability of the connectivity index involved at each phase 18 

of the slow switchers’ depolarization transition in younger individuals. This variability may 19 

reflect the diversity of networks recruited during such slow waves in those young adults. This 20 

idea of the transient reorganization of networks of a ‘flexible brain’ has been described in adults 21 

(Baker et al., 2014; Spielberg et al., 2015) and more recently in young children (Yin et al., 22 

2020). Our results show that the flexibility of the slow switchers connectivity, with or without 23 

spindles, is reduced in aging. Aging also significantly impacts the overall connectivity involved 24 

with the switchers. Although minimal connectivity persists for slow switchers in older adults, 25 
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it was completely abolished for the fast switchers. This reduction in connectivity at the scale 1 

of the slow waves’ depolarization transition in older individuals may be related to the general 2 

observation that the sleeping brain in aging remains functionally more connected at the scale 3 

of the sleep stages, namely N3 (Bouchard et al., 2019). It remains to be investigated if this 4 

change in connectivity dynamics could have precise functional consequences in aging, but the 5 

lack of EEG connectivity in older individuals suggests a decrease of flexibility in the ability to 6 

connect/disconnect and to mobilize the underlying network involved in slow waves. To our 7 

knowledge, our study is the first to provide a functional connectivity analysis at different phases 8 

along the depolarization transition of the slow wave in humans and it is the first to describe its 9 

changes in the context of aging. 10 

The presence of spindles over a slow wave modifies EEG connectivity in both slow and 11 

fast switchers. For instance, our results show that the EEG connectivity seems delayed when 12 

there is a concomitant spindle. For the younger adults, the EEG connectivity increase observed 13 

during the depolarization transition of the slow wave happened to be concomitant with the 14 

beginning of the spindle whereas this connectivity had already risen in the absence of a spindle. 15 

This observation is not without recalling recent findings regarding the relationship between 16 

neural oscillations and the dynamics of functional connectivity (Tewarie et al., 2019): The 17 

spindling oscillation emerging on the top of the slow wave requires a ‘static connectivity’ from 18 

the later (Daffertshofer & van Wijk, 2011). This is especially true for the most represented slow 19 

waves produced by adults, i.e. the fast switchers of the young adults and the slow switchers of 20 

the older individuals. In aging, the presence of the spindle is associated with no changes in 21 

EEG connectivity as measured by the global connectivity index. A more exhaustive 22 

investigation of the dynamics of EEG connectivity in the interaction between slow waves and 23 

spindles connectivity networks in aging, could likely contribute to better explaining the 24 

changes in sleep dependent memory consolidation observed in the older population. 25 
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Slow and fast switchers show distinct homeostatic responses 1 

Our study shows that fast switchers undergo a steeper decline in the subsequent cycles, 2 

compared to slow switchers. When looking at the usual frequency of slow waves, Hubbard et 3 

al. (2020) showed that fast delta frequency in mice and humans showed a steeper decline than 4 

slow delta frequency after sleep deprivation. Other studies describing slow oscillations and 5 

delta waves using the usual frequency argued that low frequencies (< 1 Hz) are less modulated 6 

by homeostatic pressure (Achermann & Borbély, 1997; Campbell, Higgins, Darchia, & 7 

Feinberg, 2006). A recent study by Kim et al. (2019) using closed-loop optogenetic technique 8 

in rats was able to associate slow oscillations (< 1 Hz) with consolidation of memory while 9 

slow waves (delta waves; < 4 Hz) were involved in the forgetting process, showing dissociable 10 

and competing roles of the two rhythms in sleep-dependent memory consolidation.  11 

Kim et al. (2020) also argued that the brain could accelerate the up-state transition of 12 

slow waves to better dissipate homeostatic pressure. Although it is unknown whether slow or 13 

fast switchers respond differently to a homeostatic challenge, we can hypothesize that fast 14 

switchers would be more involved in the response to a sleep challenge such as sleep 15 

deprivation.  16 

Slow and fast switchers evolve differently with aging 17 

Older individuals in our study produced 60% of slow switchers compared to 40% for younger 18 

adults which means that the prevalence of this type of oscillation significantly increases with 19 

advancing age. Compared to older participants, younger participants seem to have more 20 

efficient initiation and termination of slow waves down-state and up-state as they are 21 

generating slow waves with a steeper slope (Carrier et al., 2011; Ujma, Simor, Steiger, Dresler, 22 

& Bódizs, 2019). This rationale could partially explain the higher prevalence of slow switchers 23 

observed in our aging population namely, that the latter might need an overall longer delay in 24 

polarity reversal.  Also, age-related changes in homeostatic response could be responsible for 25 
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changes in slow waves production (Tononi 2009). Indeed, older subjects show a significant 1 

decrease in their ability to increase the characteristics of slow waves (density, amplitude, slope 2 

and duration) after a sleep deprivation and these effects are more prominent in prefrontal and 3 

frontal derivations (Lafortune et al., 2012). One could hypothesize that these specific effects of 4 

aging on homeostasis response in frontal areas would reflect underlying changes specifically 5 

in fast switchers as compared to slow switchers. More studies are needed to understand the 6 

functional role of slow and fast switchers and their value for the aging brain, for instance with 7 

sleep deprivation studies. 8 

We showed that there is an age-related reduction in homeostatic response for both slow 9 

and fast switchers. However, the relative ratio of slow and fast switcher across all sleep cycles 10 

was maintained with age. While fast switchers were predominant in the first cycle, slow 11 

switchers predominated in all the other cycles for both young and old subjects. One could thus 12 

hypothesize that these oscillations have a different functional role to play across the night, both 13 

for young and older subjects. Interestingly, the early night generally benefits verbal memory 14 

consolidation while subsequent sleep cycles could be more beneficial for procedural memory 15 

(Philal & Born, 1997; Gais & Born, 2004). Future studies need to investigate the relative 16 

contribution of both fast and slow switchers for memory consolidation processes during sleep 17 

and overall sleep-dependent cognitive processes. 18 

CONCLUSION 19 

This study is the first to use the transition frequency of slow waves to introduce and to 20 

study the slow and fast switchers in the slow wave spectrum, that were identified in both young 21 

and older adults. Slow and fast switchers present different connectivity dynamics along their 22 

depolarization transition with slow switchers having a higher connectivity than fast switchers. 23 

They are also differently modulated during the night, with fast switchers showing steeper 24 

decreases at the beginning of the night. Aging was associated with a higher number of slow 25 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429396
http://creativecommons.org/licenses/by/4.0/


  23 
 

switchers than fast switchers, overall lower EEG connectivity across the depolarization 1 

transition of slow waves and a flatter homeostatic decline of both slow wave types across the 2 

night. Those results regarding slow waves likely imply different functional mechanisms 3 

associated with slow and fast switchers that could be modified in aging. 4 
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 4 

Supplementary Figure 1. Distribution of the transition frequency in central and parietal derivations. 5 

 6 

Caption: Supplementary Figure 1A and 1B are histograms of the transition frequencies (in pink) in the 7 

two groups (young and older) for the slow waves detected in central (A) and parietal (B) derivations. 8 

The fit of the distributions can be written as a sum of two Gaussians: One Gaussian (cyan) accounts for 9 

slow switchers, the other (dark blue) accounts for the fast switchers. The line in the middle (in Hz) stands 10 

for the intersection point (critical frequency) between the two Gaussian distributions. The last column 11 

stands for the Akaike Information Criterion graphs for the increasing number of Gaussians in the 12 

mixture. The lower the criterion, the better the mixture fit. 13 
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Supplementary Figure 2. Slow and fast switcher slow waves with and without sleep spindles 5 

 6 
Caption: Supplementary Figure 2 shows histograms of slow and fast switchers based on their transition 7 

frequency for the slow waves detected in all derivations “without spindles” and “with spindles” in 8 

young (left) and older (right) individuals. The curves show the distribution of the probabilities to make 9 

a slow switcher (cyan) versus a fast switcher (blue). 10 

 11 

 12 

 13 

 14 

 15 

 16 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429396
http://creativecommons.org/licenses/by/4.0/


  32 
 

 1 

 2 

 3 

Supplementary Table 1 Demographic and polysomnographic variables for young and older subjects 4 

 5 

  Young (YO) Older (OL) Main effect (p values) Effect 

  N = 30 N = 29 Age Sex Interactio
n 

  

Demographic Variables 

            

Sex (M/W) 16/14 11/18 N/A N/A N/A -- 

Education (year) 15.4 ± 2.2 15.4 ± 3.4 n.s. n.s. n.s. -- 

Polysomnographic 
Variables 

            

Sleep latency (min) 8.2 ± 5.9 9.0 ± 7.3 n.s. n.s. n.s. -- 

REM latency (min) 97.7 ± 49.4 78.6 ± 29.2 n.s. n.s. n.s.   

Sleep duration (min) 451.3 ± 36.0 408.9 ± 36.4 < 0.001 n.s. n.s. YO > OL 

Sleep efficiency (%) 93.1 ± 5.6 85.6 ± 6.8 < 0.001 n.s. n.s. YO > OL 

Stage NREM (%) 79.4 ± 5.0 81.3 ± 4.8 n.s. n.s. n.s. -- 

Stage REM (%) 20.6 ± 5.0 18.7 ± 4.8 n.s. n.s. n.s. -- 
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 NREM stage 
N1 (%) 

7.6 ± 4.2 10.6 ± 4.5 N/A N/A < 0.01 (M) YO < 
OL 

(W) n.s. 

NREM stage N2 (%) 53.0 ± 6.1 60.0 ± 7.6 < 0.001 n.s. n.s. YO < OL 

NREM stage N3 (%) 18.8 ± 5.9 10.7 ± 7.4 N/A N/A < 0.01 (M) YO > 
OL 

(W) n.s. 

Min. of wake (C1) 5,0 ± 17,9 4,8 ± 6,5 n.s. N/A N/A -- 

Notes: Data expressed as mean ± SD. P values were considered significant at p < 0.05. M, men; ms, 1 
millisecond; N/A, non-applicable; NREM, Non-rapid eye movement sleep; C1, Cycle 1; n.s., non-significant; 2 
OL, older subjects; REM, Rapid eye movement sleep; W, women; YO, young subjects 3 
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