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Abstract Reconstructing complex and dynamic visual perception from brain activity remains a
major challenge in machine learning applications to neuroscience. Here we present a new
method for reconstructing naturalistic images and videos from very large single-participant
functional magnetic resonance imaging data that leverages the recent success of image-to-image
transformation networks. This is achieved by exploiting spatial information obtained from
retinotopic mappings across the visual system. More specifically, we first determine what
position each voxel in a particular region of interest would represent in the visual field based on
its corresponding receptive field location. Then, the 2D image representation of the brain activity
on the visual field is passed to a fully convolutional image-to-image network trained to recover
the original stimuli using VGG feature loss with an adversarial regularizer. In our experiments, we
show that our method offers a significant improvement over existing video reconstruction
techniques.

Introduction
A long-lasting interest of sensory neuroscience is understanding how sensory information is repre-
sented in neural activity patterns. Decoding visual stimuli from neural activity using deep learning
is a promising approach for bringing us closer to such understanding. Recent advances allow the
successful decoding of static images from brain data [5, 10, 45, 30, 32, 17, 25, 12, 41]. Reconstruct-
ing natural movies is significantly more challenging [34] yet important given that neurons respond
to signals that unfold over both space and time [33]. The difficulty with reconstructing natural
movies is in large part due to the limited temporal information provided by imaging methods such
as fMRI as well as the complex dynamics of the natural world that the model must learn.

Convolutional image-to-image models have recently achieved unprecedented results in multi-
ple tasks such as semantic segmentation [29, 36, 35, 28, 50], style transfer [52, 11, 42, 22], coloriza-
tion [48, 20, 49] and super-resolution [24, 6, 51]. Convolutional image-to-image networks have the
great advantage of preserving the topography of input images throughout all the layers of the net-
work. Consequently, the network does not need to learn a remapping between locations and can
focus on processing local features. The reconstruction of perceived natural images from brain re-
sponses can be considered as a form of image-to-image problem since the visual cortex processes
information in a topographically organized manner [14, 15, 21] such that the topology of the input
images is preserved within each visual area. The retinotopic mapping of visual neurons defines
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Figure 1. A) Illustration of the brain2pix model. First, the voxels of each region of interest (ROI) voxels areextracted. The voxel receptive fields are then projected onto the input (visual) space. Using this mapping theRSFimages are created, which reflect voxel activity at the locations of their receptive fields in the visual space.To account for the hemodynamic delay, these activities are taken with a fixed delay of 5 TR (i.e. the activitiesare taken from the volume recorded approximately 4 seconds after stimulus presentation). The input to the
generator are the RSFimages, and the outputs are the reconstruction (end-to-end modeling). The loss isestimated between the target (original) image and this reconstruction as a feature loss (VGG loss). Thereconstruction is also passed through the discriminator, concatenated with the RFSimages. The BCE lossestimated on the discriminator’s output is summed with the VGG loss, and this sum of losses is thenbackpropagaged to update the parameters of the generator. The loss for training the discriminator isobtained by summing its output based on the reconstructed image and the target image (concatenated withthe RFSimages), using a BCE loss. B) Example reconstruction on the test set. The end-to-end modelreconstructs static video frames, using the brain signal of the participant watching Doctor Who in the fMRIscanner as the input.

relationships between the visual field and its cortical representation in individual subjects and has
uncovered many important aspects of the visual cortex across different species [18, 7]. However,
it is not straightforward to exploit this in an image-to-image ConvNet architecture. The cortex itself
can be roughly seen as a pair of topological spheres embedded in a 3D space. Several separate
visual representations are embedded in this cortical space, corresponding to several visual areas
(e.g. V1, V2, V3). These representations are furthermore distorted by the geometry of the cortex
and by the uneven sampling of different parts of the visual field. Therefore, there is no natural
way of constructing a convolutional architecture that exploits the image-to-image nature of the
problem by preserving the topography between voxel responses and pixel brightness and color.

In this paper, we exploit the receptive field mapping of visual areas to convert voxel responses
defined in the brain to activations in pixel-space. Early visual areas V1, V2 and V3 were identified
using retinotopy. The voxel activations of each area are then converted to images via the mapping
of the receptive fields. Importantly, these images (visual representations) do have a pixel-to-pixel
correspondence with the images used as stimuli. We then transform these visual representations
into realistic images using an image-to-image U-network trained using a combination of pixelwise,
feature and adversarial losses.
Related work
Recent work on image reconstruction from fMRI data has demonstrated the success of employing
deep neural networks (DNNs) and generative adversarial networks (GANs) in neural decoding [34,
16, 12, 47, 41, 13, 43, 44]. For instance, [41] used a GAN to reconstruct grayscale natural images
as well as simpler handwritten characters. Another approach was voxel-wise modeling by [34],
where they modeled responses to complex natural stimuli to estimate the semantic selectivity of
voxels. More recently, [43] showed that even with a limited set of data – in the order of thousands
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compared to millions that the field is accustomed to – it was possible to train an end-to-endmodel
for natural image stimulus reconstruction by training a GAN with an additional high-level feature
loss. Their reconstructions matched several high-level and low-level features of the presented
stimuli. However, a comparable performance has not yet been achieved for naturalistic video
stimuli. Themost recent notable video reconstruction study by [13] made use of a variational auto-
encoder and was able to reconstruct low-level properties of the images, where the reconstructions
resembled shadows or silhouettes of the stimulus images. Reconstruction of perceived videos can
thus be considered a very challenging problem.

The simplest way to apply convolutional neural networks (ConvNets) on fMRI voxel responses
is to treat fMRI slices as separate images stacked on the channel dimension [38]. However, these
images do not respect the topography of neural representations and contain a large fraction of
non-responsive voxels corresponding to white matter and cerebrospinal fluid. This results in most
of the contrast of the images depending on irrelevant anatomical factors. Another possibility is to
use spatial 3D convolutions on the brain volume [1]. This method has the benefit of preserving the
topography of the neural responses but otherwise has the same issues as the 2D approach. These
shortcomingsmake suchmethods unsuitable for brain decoding and reconstruction. Amore viable
strategy is to map the voxel responses on a mesh representing the cortical surface [9] and apply a
geometric deep learning technique [31, 8, 4, 26].
Material and Methods
Our brain2pix architecture has two components: 1) a receptive field mapping that transforms the
brain activity of visual regions to a tensor in pixel (input) space, exploiting the topographical orga-
nization of the visual cortex; 2) a pix2pix network that converts the brain responses in pixel space
to realistically looking natural images. In the following, we describe the two components in detail.
From voxels to pixels
A receptive field mapping is a (potentially many-to-one) function that maps the 3D coordinate of
the voxels of a visual area to Cartesian coordinates in the stimulus space. This coordinate is defined
as the region of the image that elicits the highest response in the voxel. Given a visual ROI, we can
refer to these mappings using the following notation:

RF(r1, r2, r3) = (x, y) , (1)
where (r1, r2, r3) are the voxel coordinates and (x, y) are Cartesian coordinates in stimulus / pixel
space in the image space. Since visual areas are topographically organized, this map can be seen
as an approximate homeomorphism (i.e. a function that preserves the topology). Note that RF
does not respect the metric structure of the image since the representation of the fovea is inflated
while the periphery is contracted. We denote the function associating ameasured neural activation
(BOLD response) to each voxel as n(r1, r2, r3). Using the receptive field mapping, we can transport
this activation map to pixel space as follows:

n(x′, y′) = 1
M(x′, y′)

∑

r1 ,r2 ,r3;RF(r1 ,r2 ,r3)=(x′ ,y′)
n(r1, r2, r3) , (2)

whereM(x′, y′) is the number of voxels that map to the coordinates (x′, y′). Eq. 1 is limited to the
case of point-like receptive fields. More generally, the RF transport map can be written as a linear
operator:

n(x′, y′) =
∑

r1 ,r2 ,r3

W x′ ,y′
r1 ,r2 ,r3

n(r1, r2, r3) , (3)
where the weight tensor W is a (pseudo-)inverse of the linear response function of the cortex
under single pixel simulations. This second formulation has the benefit of allowing each voxel to
contribute to multiple pixels and to be suitable to gradient descent training.
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In this paper we use two strategies for determining W . The first approach, is to apply an off-
the-shelf receptive field estimator and to use Eq 1. The second, more machine learning oriented
approach, is to learn aweightmatrix togetherwith the network. In order to preserve the topograph-
ical organization, we include the learnable part as a perturbation of the receptive field estimation:

n(x′, y′) =
∑

r1 ,r2 ,r3

⎛

⎜

⎜

⎝

�(x
′ ,y′)RF(r1 ,r2 ,r3)

M(x′, y′)
+ V x′ ,y′

r1 ,r2 ,r3

⎞

⎟

⎟

⎠

n(r1, r2, r3) , (4)
where �yx is the discrete delta function and the weights V x′ ,y′

r1 ,r2 ,r3
are learnable parameters.

Image-to-image network
The input to the pix2pix network is a tensor obtained by stacking the voxel activation maps, one
map for each combination of ROI and time lag. In fact, the network needs to integrate the topo-
graphically organized information contained in several layers of the visual hierarchy (V1, V2 and V3
in our case) but also the responses at different time lags (the network selects from the 5 provided
RFSimages).
Architecture
The architecture of the brain2pix model is inspired by the pix2pix architecture [22] which com-
prises a convolutional U-Net-based generator [36] and a convolutional PatchGAN-based discrimi-
nator (Figure 1). The first and the last layers of the generator are respectively convolutional and
deconvolutional with four standardU-net skip blocks in-between. All five layers of the discriminator
are convolutional with batch normalization and a leaky ReLU activation function.

The discriminator was trained to distinguish stimuli from their reconstructions by iteratively
minimizing a loss function with a sole adversarial loss (binary cross-entropy (BCE)) and using a
history buffer to encourage the discriminator to remember past errors.

The generator was trained for converting brain responses to stimulus reconstructions by iter-
atively minimizing a loss function with three weighted components: i) pixel-loss, which was taken
to be the absolute difference between ground-truths and predictions, ii) feature loss, which was
taken to be the Euclidean distance between pretrained layer 10 VGG features of ground-truths and
predictions and iii) adversarial loss, which was taken to be the "inverse" of the adversarial loss that
was used to train the discriminator.

All models were implemented in Python with the MXNet framework [3]. They were trained and
tested on Nvidia GeForce 2080 Ti GPUs.
Receptive field estimation
Receptive fields for dorsal and ventral visual regions V1, V2 and V3 were estimated in a data-driven
way using neural information flow [39]. Grayscale video sections were passed through three 3D con-
volutional neural network layers corresponding to the visual ROIs. Before the ROI-specific layers a
linear layer with a single 1 × 3 × 3 channel was used to allow learning retinal and LGN preprocess-
ing steps. Average pooling was applied after each layer to account for increasing receptive field
sizes, the temporal dimension was average pooled to a TR of 700ms before applying the obser-
vation models, and spatio-temporal receptive fields were constrained to be positive. For training
this neural network, a low-rank tensor decomposition was applied to estimate voxel-wise spatial,
temporal and channel observation (readout) vectors, which were used to predict voxel-wise activ-
ity from the neural network activity tensors. The receptive field location (x, y) for every voxel was
then estimated as its center of mass of the low-rank receptive field maps.
Data acquisition
Wemade use of a public large fMRI dataset from single-participant responses to naturalistic video
stimuli [40]. The exact experiments are described in detail in the original study [40]. In short, the
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participant fixated the center of the screen and watched 30 episodes of BBC’s Doctor Who while
their BOLD activity was measured. The videos were presented in multiple sessions, using a head
cast for positional stability and consistency. The recording comprised presenting 30 full episodes
once (forming the training set, here used for model estimation), and 7 short clips – teasers and
short stories, taken from a different Doctor to avoid train-test overlap – repeatedly shown at the
end of most sessions (forming the test set). The 22–26 repetitions of the test set were averaged
and used for evaluation of the brain2pix model. The averaged test set is common in neural coding
and most reconstruction research to provide a version of the individual’s BOLD response patterns
with high signal-to-noise ratio, freed of the substantial noise contained in fMRI data. To assess
the implications of reconstruction research it is important to understand that the presented re-
constructions have so far usually been estimated on data from specific individuals averaged over
multiple presentations in highly controlled settings.
Data preprocessing
Prior to using the inputs for training themodel, 3Dbrainmatriceswere transformed to 2D receptive
field signal images (RFSimages) in two main steps. First, regions of interests (ROIs) were selected
from the brain (V1, V2, V3), based on their corresponding masks. Second, voxels in each brain
region were mapped onto their corresponding visual space based on the retinotopic map. The 2D
RFSImages were resized to 96 × 96 pixels and separated by five time channels (TRs) and amount
of brain regions (V1, V2, V3).

The videos were downsampled spatially (96 × 96 × 3) and temporally to match the TRs of the
fMRI recordings (one frame every 0.7 s). This resulted in a total of approximately 119.000 video
frames for training and 1034 video frames for model evaluation. To incorporate the haemody-
namic delay we realigned the stimuli and brain signals such that the current signals correspond
to the stimuli that were presented at 3 TRs before, allowing a time window of 2.1 s – 4.2 s delay
from stimulus presentation (since we are incorporating 3 TRs). Finally, each frame underwent a
fish-eye transformation, which mimics biological retinal eccentricity [2]. The receptive field centers
we used for mapping brain signals onto the visual space were based on images that underwent
this transformation.
Experimental design
We compared our final model with alternative reconstruction models. This included a baseline
comparison where brain2pix was compared with previously suggested models. Since we wanted
to focus on early visual areas, we also trained our model on V1, V2, and V3 individually (which we
called the ROI experiment). Finally, we tested whether our model was robust to various ablations.

The same four evaluation metrics were used in all experiments, namely Pearson’s product-
moment correlation coefficient (corr.) and Euclidean distance (dist.) between the features of the
presented test stimuli and their reconstructions. Features were extracted from the pool2, pool5
and fc6 layers of the AlexNetmodel [27] and the C3Dmodel [46]. The Alexnetmodel was pretrained
on ImageNet [37] and the c3dmodel was pretrained on Kinetics-400~[23]. Additional details of the
experiments, additional results and a link to the source code are provided in the supplementary
materials.
Results
Experiments
This paper consists of 7 experiments: 1) The brain2pix architecture trained on synthetic data with
fixed receptive field locations, 2) training brain2pix using real fMRI data with a fixed receptive
field (Fixed RF) for reconstruction, 3) training brain2pix on real data with learnable receptive fields
(LearnedRF) for reconstruction, 4) training traditional models for comparison with the brain2pix
model (baseline experiment), 5) training brain2pix on fMRI data from various brain regions with
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Figure 2. Sequential of reconstructed frames: Consecutive frame sequence from a video fragment of thetest data (ground truth (GT) ) and the corresponding reconstructions (Recon.).

fixed RF (ROI experiment), 6) removing essential components from the brain2pix architecture with
fixed RF (ablation experiment) and 7) experimenting with various sizes of training data with a fixed
RF.
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Brain2Pix on synthetic data
Before experimenting on real data, we used synthetic data to test feasibility and tune hyperpa-
rameters of brain2pix. Instead of mapping BOLD reponses for each ROI and voxel onto the pixel
space, we mapped target stimuli onto pixel space using the same exact method. This filtering of
target images with the RF centers gave us the same amount of input pixels for the model, all at
the same location. However, their activations were not based on actual brain signals, but rather
on the pixels of the target images, which resulted in the same number of pixels as the number
of voxels provided by the three brain regions used. We got clear reconstruction images from this,
which confirmed that the number of RF pixels provided by V1 + V2 + V3 ROIs could theoretically
carry enough spatial information for the model to generate realistic and accurate results.
Brain2Pix variants
The brain2pix variants described in detail below differed in how they transformed brain responses
from volumetric representation to image representation.
FixedRF
The protocol for our main model is to use the (fixed) receptive field estimates. Once the brain sig-
nals were mapped onto visual space and the model was assembled, we ran it to obtain reconstruc-
tions (see Figure 2 and Figure 3 under Brain2pix > Fixed RF). The results show individual frames
from a snippet of the fMRI test set. The figure contains a selection of frames from the test set and
their corresponding reconstructions. This figure shows that the model successfully reconstructed
frames that contained head shapes, silhouettes, facial expressions, and also objects (such as a
white blanket in frames 289-292). The figure also depicts a smooth transitioning between frames,
which allows better reconstruction of video clips. Table 1 and Table 2 contain the quantitative re-
sults of the model under "B2P-FixedRF". This model achieves the highest performance in terms of
correlation for most of the studied feature layers. However for the distance values, it shows the
best results for only one layer.
LearnedRF
The second variant (referred to as Learned RF) used a dense layer to perturb the image represen-
tation in the Fixed RF variant as a function of the volumetric representation in order to imrpove it
even further. Reconstructions of this model are shown in Figure 3 under Brain2pix > LearnedRF.
We found that the LearnedRF variant has the highest performance in terms of correlation for the
Alexnet pool2 and Alexnet fc6 layers (see Table 1 and Table 2).

The differences in the quantitative and qualitative results between LearnedRF and FixedRFwere
not large, suggesting that both the RF models capture the correct topographical structures. Both
brain2pix variants contain significantly above chance level performance (p < 0.05; Student’s t-test)
and significantly outperformed both baselines (p < 0.05; binomial test) (Figure 3).
Baselines
Nishimoto Baseline
We compared our brain2pix results with baseline models based on state-of-the-art reconstruction
models. The first baseline is based on themethod introduced by Nishimoto et al., which used a set
of naturalistic videos as an empirical prior [32, 34]. In our experiment, we used a smaller but more
targeted natural image prior constructed from the training set. In short, we trained an encoding
model, consisting of a dense layer, that predicts BOLD activity from c3d features extracted from
training samples, which we used as the likelihood. Then we constructed the images by averaging
the 10 clips with the highest likelihood.

The reconstructions resulting from this method are shown in Figure 3 in the columns under the
header "Baselines > Nishimoto et al. > Rec.". Unlike our method, this method did not make use of
retinotopic information, and could be overfitted to the training image distribution. This resulted in
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Table 1. Baseline experiment correlation values: Correlation values between the features of thereconstructions of the baseline experiment and features of the target taken from various layers obtainedfrom passing target / reconstructions through a pretrained network (Alexnet and C3D). Here comparisons aredone for the brain2pix models and baseline models. Bold values indicate the highest correlation values.
B2P-learnRF B2P-fixedRF Nishimoto et al. Shen et al. FC-layers

AlexNet pool2 0.4573 0.4615 0.2526 0.4141 0.0479
AlexNet pool5 1.3983 0.3507 0.2318 0.3269 -0.0394
AlexNet fc6 0.4653 0.4608 0.2016 0.4196 -0.0214
C3D pool2 0.4831 0.4869 0.3662 0.4212 0.1284
C3D pool5 0.2356 0.2426 0.0489 0.2030 0.0427
C3D fc6 0.2426 0.2519 0.0412 0.2185 0.0434

Table 2. Baseline experiment distance values: Distances between reconstruction and target features ofvarious layers obtained from passing reconstructions / targets through a pretrained network (Alexnet andC3D). Here comparisons are done for the brain2pix models and baseline models. Bold values indicate thelowest distance values.
B2P-learnRF B2P-fixedRF Nishimoto et al. Shen et al. FC-layers

AlexNet pool2 4.6089 4.6252 5.5266 5.3511 56.8820
AlexNet pool5 1.2425 1.2692 1.2432 1.2532 3.3593
AlexNet fc6 1.4062 0.0899 1.7322 1.4861 5.5175
C3D pool2 1.3842 1.3983 1.4238 1.8132 31.6262
C3D pool5 3.4850 3.4626 2.6601 3.8881 9.6941
C3D fc6 0.9269 0.9332 0.8655 1.1847 4.8835

difficulty of the model in reconstructing things that are not present in the training set, such as the
Ood character. Additionally, some reconstructions do not come close to the target perceptually,
such as the 10th row in Figure 3 where a computer is reconstructed although it is supposed to be a
person. Quantitative results are shown in Table 1 and Table 2, which indicates all lower correlation
values and mainly higher distances (except for C3D pool5 and C3D fc6) compared to our model.
The correlations (performance estimation) are generally lower than the Shen baseline, but higher
than a model with only FC-layers.
Shen Baseline
The second baseline model we trained was a generative adversarial network with a feature loss,
which is based on the end-to-end reconstructionmodel from Shen et al. [43]. We used the genera-
tor and discriminator modules present in brain2pix, however, we did not construct RFSimages for
the input of the model. Instead, this baseline model takes in raw fMRI data as input signals, and
thus does not exploit the topographical information of the visual cortex and the spatial nature of
the stimulus.

Reconstructions of this method is shown in Figure 3 below "Baselines > Shen et al. > Rec.".
Although we trained both the models with the same amount of epochs and the same amount
of data, quantitative and qualitative results show that our model outperforms the Shen et. al.
baseline model (see Table 1 and Table 2. For instance, some static black and white noise is present
in the reconstructions of row 2, 4, 6. Additionally, theOod character is not recognizable. Thismodel
appeared to perform better than the Nishimoto et al. baseline on the Doctor Who dataset.

Our analyses indicates that our method outperforms both baselines. Implementation details
can be found in the source codes of these baselines which are included in the supplementary
material in the github repository.
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Figure 3. Baseline experiment: Comparison between the reconstructions of the brain2pix and the baselinemodels. The reconstructions of brain2pix are shown in columns 2 and 4, with their corresponding groundtruth (GT) in the middle column 3, and inputs in columns 1 and 5. The reconstruction of the baseline modelsare shown in columns 6 and 8 together with their corresponding GT in the middle column 7.
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Figure 4. ROI experiment: Reconstructions from the brain2pix FixedRF method trained on various brainregions. Columns 1–3 show the inputs (in), reconstructions (re) and ground truths (gt) of all combined regions(V1–V3), respectively. Columns 4–6 show these results for only V1, columns 7–9 for V2, and finally columns10–12 are results belonging to the model trained only on V3.

ROI experiments
In order to isolate the role of the regions of interest, we performed a series of follow up experi-
ments where only data from one ROI was provided to the network. We used a fixed receptive field
matrix (Eq. 1). All the experimental details are identical to the main experiment. Figure 4 shows
the ROI-specific reconstructions. Reconstructions based on V1 tend to have sharper pixelwise cor-
respondence, whereas some high-level features, such as global illumination, were not captured
very well. The combined brain2pix model with all ROIs (V1-V3) on the other hand was able to cap-
ture the color profile of the scenes very well. These two models generated images that captured
further readily interpretable high-level information such as the existence of a person in the scene
and even the expressions on the faces of individuals in the scenes. It is interesting to note that the
ROIs did not contain higher-level brain regions, such as lateral occipital cortex that play a large role
in object perception and fusiform face area that specializes in face processing.

The quantitative results are given in Table 3 and Table 4. The combined model performs sub-
stantially better than the individual models with the V1 model having the worst performance. V2
and V3were similar to each other in quantitative performance. The poor performance of V1 is likely
due to the fact that the adversarial and feature losses had a larger weight in the training process,
biasing the model towards using higher-order features for reconstruction.
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Table 3. ROI experiment correlation values: Correlation between Alexnet and C3D features for the ROIexperiment. V1, V2, V3 are the individual regions of interests and V1–V3 are all three visual layers combined.
V1–3 V1 V2 V3

AlexNet pool2 0.4615 0.2626 0.4247 0.4178
AlexNet pool5 0.3507 0.1920 0.3387 0.3294
AlexNet fc6 0.4608 0.2704 0.4453 0.4304
C3D pool2 0.4868 0.2640 0.4704 0.4685
C3D pool5 0.2426 0.1299 0.2224 0.2157
C3D fc6 0.2519 0.1349 0.2302 0.2228

Table 4. ROI experiment distance values: Distances between Alexnet and C3D features for the ROIexperiment. V1, V2, V3 are the individual regions of interests (ROIs) and V1–V3 are all three ROIs combined.
V1–3 V1 V2 V3

AlexNet pool2 4.6252 5.9592 4.8401 5.1095
AlexNet pool5 1.2691 1.6985 1.2673 1.2898
AlexNet fc6 0.0899 2.0553 1.4820 1.4877
C3D pool2 1.3983 1.8996 1.3949 1.4288
C3D pool5 3.4626 4.5135 3.5756 3.5542
C3D fc6 0.9332 1.1592 0.9873 0.9417

Ablation experiments
The ablation studies were performed to test the impact of VGG-loss and adversarial loss on the
performance of the model (see Table 5 and Table 6). "No adversarial" refers to the brain2pix with-
out a discriminator loss, using only the VGG-feature loss to optimize the model. In this ablation
case, the model did not learn to reconstruct images but rather outputted square patterns that re-
peated across all images. The second model is the "no feature" model, which was trained without
the VGG-loss, thus only making use of the adversarial loss. This resulted in images that look like
reconstructions but did not approximate the target.
Experiment with various data size
Finally, we wanted to see how the model performs when less data is fed into the network. This
was done by training our model on a selected amount of Doctor Who frames from the training set.
The full training set, which was worth ≈ 24 hours of data was split into the following: 4

5
≈ 19ℎr, 3

5
≈

14ℎr, 2
5
≈ 10ℎr, 1

5
≈ 5ℎr which resulted in training sizes of 95.200, 71.400, 37.600, and 23.800 frames

with 50 epochs for each condition. The reconstructions of the splitted data is then compared with

Table 5. Ablation experiment correlations values. Correlation between Alexnet and C3D features of the teststimuli and their reconstructions. The brain2pix is compared with two models with either no feature loss orno adversarial loss.
brain2pix No feature No adversarial

AlexNet pool2 0.4615 0.3950 0.1626
AlexNet pool5 0.3507 0.3168 0.1301
AlexNet fc6 0.4608 0.4273 0.1567
C3D pool2 0.4868 0.4396 0.16286
C3D pool5 0.2426 0.2123 0.0396
C3D fc6 0.2519 0.2255 0.0495
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Table 6. Ablation experiment distance values. Distances between reconstruction and target features ofvarious layers obtained from passing through a pretrained network (Alexnet and C3D). Here comparisons aredone for the brain2pix models and ablation models.
brain2pix No feature No adversarial

AlexNet pool2 4.6252 5.6450 13.1021
AlexNet pool5 1.2691 1.4201 1.5935
AlexNet fc6 0.0899 1.5991 2.1505
C3D pool2 1.3983 1.5988 7.5023
C3D pool5 3.4626 3.6445 5.6622
C3D fc6 0.9332 0.9657 2.7328

the full ∼ 24hr worth of data (also trained on 50 epochs). The reconstructions of this experiment
are shown in Figure 5. Although the highest amount of data shows the best reconstructions, we
still see notable reconstructions based on smaller amounts of data, which suggests that it is not
necessary to record 23 hours worth of data to achieve reconstructions with the brain2pix model.
The quantitative results can be found in Table 7 and Table 8.
Table 7. Splitted data correlation values: the model was trained on data worth of 5, 10, 14, 19, and 24 hours.

B2P (∼24h) B2P (∼19h) B2P (∼14h) B2P (∼10h) B2P (∼5h)
AlexNet pool2 0.4615 0.4388 0.4262 0.4132 0.4342
AlexNet pool5 0.3507 0.3289 0.3236 0.3195 0.3206
AlexNet fc6 0.4608 0.4399 0.4270 0.4339 0.4376
C3D pool2 0.4869 0.4797 0.4270 0.4558 0.4714
C3D pool5 0.2426 0.2037 0.1933 0.2061 0.2057
C3D fc6 0.2519 0.2171 0.2061 0.2325 0.2226

GT ~24hr 
fmri data

~19hr 
data 

~14hr 
data

~10hr 
data

~5hr 
data

Figure 5. Time experiment: Reconstructions from the brain2pix fixed RF method trained on variousamounts of fMRI data after 50 epochs of training. Ground truth (GT), ∼24hr is the entire dataset, ∼19hr is 4
5 ,

∼14hr is 3
5 , ∼10hr is 2

5 , ∼5hr is 1
5 of the dataset.
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Table 8. Splitted data distance values: the model was trained on data worth of 5, 10, 14, 19, and 24 hours.
B2P (∼24h) B2P (∼19h) B2P (∼14h) B2P (∼10h) B2P (∼5h)

AlexNet pool2 4.6252 4.5781 4.6371 4.8827 4.4931
AlexNet pool5 1.2692 1.2459 1.2602 1.2399 1.2485
AlexNet fc6 0.0899 1.4191 1.5028 1.4302 1.4385
C3D pool2 1.3983 1.3372 1.3657 1.4069 1.3307
C3D pool5 3.4626 3.6748 3.6790 3.6987 3.6451
C3D fc6 0.9332 0.9942 1.0039 1.0900 1.0114

Discussion
In this paper, we introduced a new brain reconstruction method, brain2pix, which exploits the
topographic organization of the visual cortex by mapping brain activation to a linear pixel space
where it is then processed with a fully convolutional image-to-image network. To the best of our
knowledge, this is the first end-to-end approach capable of generating semantically accurate recon-
structions from a naturalistic continuous video stream. Furthermore, our approach was shown to
outperform other baseline decoding methods.

One of the next challenges that we can try to tackle is decoding at higher frame rates rather
than using the same number of frames as brain signals in order to reconstruct even finer tempo-
ral details. Additionally, in our current experiments we focused mainly on optimizing our model
based on responses from the early visual regions V1, V2, V3. A natural extension of the current
work is to extend our focus to the higher level areas in the temporal and parietal cortex. Since
these areas process coarse-grained semantic information, experiments feeding their responses to
deeper layers of the network could reveal reconstructions driven by semantics. We can also apply
the model on imagery data.

Neural decoding studies are crucial for understanding the functioning of the human brain,
broadly benefiting the field of neuroscience. Furthermore, neural decoding algorithms make up a
major component of brain-computer interfaces (BCIs). Brain-computer interfaces enable disabled
people to perform tasks that theywould not be able to performotherwise, by substituting their lost
faculties. These technologies can range from a communication interface for a locked-in patient, to
a neuroprosthetic limb, and more. While the algorithms that we develop and study in this paper
are specialized to reconstruct visual stimuli from brain responses, we foresee that the suggested
principles can be applied to different applications, with some adaptations. For instance, we use a
relatively slow signal (BOLD response), which reflects the neural responses that take place several
seconds prior to them. A time-critical BCI system would need to make use of a signal with no such
delays to perform well.

While admittedly the promise of algorithms that reconstruct internally generated or externally
induced percepts is yet to be fully achieved, scientists that attempt to extract information from the
brain should ensure the safety and privacy of the users [19]. Future studies should make sure to
follow similar strict regulations, ensuring only a positive impact of these fascinating methods that
allow us to peek into the human mind.
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