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Improved alpha-beta power reduction via combined
Electrical and Ultrasonic stimulation in a

Parkinsonian Cortex-Basal Ganglia-Thalamus
Computational Model

Thomas Tarnaud, Wout Joseph, Ruben Schoeters, Luc Martens, Emmeric Tanghe

Abstract—Objective: To investigate computationally the in-
teraction of combined electrical and ultrasonic modulation of
isolated neurons and of the Parkinsonian cortex-basal ganglia-
thalamus loop. Methods: Continuous-wave or pulsed electrical
and ultrasonic neuromodulation is applied to isolated Otsuka
plateau-potential generating subthalamic nucleus (STN) and
Pospischil regular, fast and low-threshold spiking cortical cells
in a temporally-alternating or simultaneous manner. Similar
combinations of electrical/ultrasonic waveforms are applied to a
Parkinsonian biophysical cortex-basal ganglia-thalamus neuronal
network. Ultrasound-neuron interaction is modelled respectively
for isolated neurons and the neuronal network with the NICE
and SONIC implementations of the bilayer sonophore underlying
mechanism. Reduction in α−β spectral energy is used as a proxy
to express improvement in Parkinson’s disease by insonication
and electrostimulation. Results: Simultaneous electro-acoustic
stimulation achieves a given level of neuronal activity at lower
intensities compared to the separate stimulation modalities. Con-
versely, temporally alternating stimulation with 50 Hz electrical
and ultrasound pulses is capable of eliciting 100 Hz STN firing
rates. Furthermore, combination of ultrasound with hyperpo-
larizing currents can alter cortical cell relative spiking regimes.
In the Parkinsonian neuronal network, high-frequency pulsed
separated electrical and ultrasonic deep brain stimulation (DBS)
reduce pathological α − β power by entraining STN-neurons.
In contrast, continuous-wave ultrasound reduces pathological
oscillations by silencing the STN. Compared to the separated
stimulation modalities, temporally simultaneous or alternating
electro-acoustic stimulation can achieve higher reductions in
α − β power for the same contraints on electrical/ultrasonic
intensity. Conclusion: Continuous-wave and pulsed ultrasound
reduce pathological oscillations by different mechanisms. Electro-
acoustic stimulation further improves α−β power for given safety
limits and is capable of altering cortical relative spiking regimes.
Significance: focused ultrasound has the potential of becoming a
non-invasive alternative of conventional DBS for the treatment
of Parkinson’s disease. Here, we elaborate on proposed benefits
of combined electro-acoustic stimulation in terms of improved
dynamic range, efficiency, resolution, and neuronal selectivity.

Index Terms—Ultrasonic neuromodulation, deep brain stimu-
lation, basal ganglia, intramembrane cavitation, computational
modeling

T. Tarnaud, W. Joseph, R. Schoeters, L. Martens, and E. Tanghe are with
the Department of Information Technology (INTEC-WAVES/IMEC), Ghent
University/IMEC, Technologypark 126, 9052 Zwijnaarde, Belgium. E-mail:
thomas.tarnaud@ugent.be

I. INTRODUCTION

IN the last decade, neuromodulation by ultrasound (UN-
MOD) has become more popular, due to its high spatial res-

olution (millimeter resolution in the transversal direction with
a single transducer), non-invasiveness, reversibility and safety
[1]–[6]. Furthermore, phased-arrays of ultrasound transducers
have been used for the non-invasive ablation of brain tumours
or for subthalamotomy (high intensity focused ultrasound)
[7]–[10]. Consequently, similar technology could in theory be
used with Low Intensity Low Frequency Ultrasound (LILFU)
in order to target deep brain structures non-invasively for
neuromodulation [4], [11]–[13].

For the treatment of Parkinson’s disease, the subthalamic
nucleus (STN) is an important target, also used in conventional
(electrical) deep brain stimulation (DBS). In electrical DBS,
an electrode lead is surgically implanted in the brain and
connected with an implanted pulse generator via wires that
run subcutaneously. Electrical pulses will then modulate the
activity of the neuronal tissue surrounding the implanted lead.
Conventional DBS has proven effective for the improvement
of Parkinsonian symptoms and motor scores. However, the
surgery carries a risk of complications such as infection or
haemmorhage [14]–[17]. Here, the potential application of
transcranial LILFU for non-invasive deep brain stimulation
has been considered before [4], [11]–[13], [18]. Furthermore,
recent in vivo studies in MPTP (1-methyl-4-fenyl-1,2,3,6-
tetrahydropyridine) lesioned Parkinsonian mice have demon-
strated ultrasound-induced striatal dopamine normalization
[19], [20], restored locomotion activity (open field test, pole
test) [19]–[22], and an increase in striatal total superoxide dis-
mutase (T-SOD) and glutathione peroxidase (GSH-PX) (neu-
roprotective antioxidant enzymes) [21]. Moreover, ultrasound
focused at the STN or globus pallidus (GP) downregulates
the Bax to Bcl-2 ratio (Bax and Bcl-2 are proapoptotic
and antiapoptotic, respectively), resulting in a reduction of
cleaved-caspase 3 activity in the substantia nigra [22]. Also, in
vitro, an increased dopamine release in PC12 cells upon low-
intensity continuous insonication is observed in [19]. These
first studies on ultrasonic neuromodulation for Parkinson’s
disease, indicate that transcranial LILFU could be a promising
alternative to conventional electrical DBS or L-DOPA (L-3,4-
di-hydroxy-phenylalanine) therapy. Here, UNMOD could be
applied for patient selection or to optimize the choice of the
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deep brain target for conventional DBS.
However, the underlying mechanism of ultrasonic neuro-

modulation is not well understood. Several tentative mecha-
nisms have been proposed, e.g., bilayer sonophores [23]–[25],
acoustic-radiation pressure [26]–[28], mechanosensitivity of
protein channels [29], [30], flexoelectricity [31], extracellular
cavitation [32], and thermodynamically-based models [33].
Here, computational models will help in order to compare
the predictions of a proposed mechanism with experimen-
tal observations. Similarly, computational models have been
used to improve understanding of deep brain stimulation
and Parkinson’s disease, i.a., DBS-induced normalization of
thalamic relay [34], [35], beta-oscillatory power [36], [37] and
GPi-bursting [38], importance of antidromic activation of the
hyperdirect pathway [39], [40], short-term synaptic depression
and axonal failure [41], mechanisms of the generation and
interaction of Parkinsonian beta-oscillations [37], [42], and
effects on learning and impulsivity [43], [44].

Consequently, in this study, our goal is to achieve the
following two novelties. First, to investigate the capability
and efficiency of ultrasonic neuromodulation to reduce beta-
oscillatory power, as a proxy for Parkinsonian bradykine-
sia, in a computational model of the cortex-basal ganglia-
thalamus neuronal (CTX-BG-TH) network. Here, we imple-
mented a fully biophysical Hodgkin-Huxley based network of
the cortex-basal ganglia-thalamus, based on earlier models of
the basal ganglia [34]–[36] and of the cortex [25], [45]–[47]. In
particular, a computational spiking-neuron model (as opposed
to firing rate based models) of the CTX-BG-TH has been
proposed in [36], with integrate-and-fire representations for
the cortical cells. We included biophysical cortical Pospischil-
models [45] with cortical short-term synaptic plasiticity [46].
We opted for a fully Hodgkin-Huxley network in order to have
a description of ionic channels, allowing future investigations
on the mechanisms of UNMOD in the neuronal network
via the interaction with mechanosensitive ion channels. For
ultrasonic neuromodulation, we focus in this study on the
bilayer sonophore model of intramembrane cavitation [23]–
[25]. We investigate the relative efficiency for the reduction
of Parkinsonian beta-oscillations with pulsed or continuous
ultrasound, compared to conventional electrical deep brain
stimulation.

Second, we explore the potential benefits of applying ul-
trasonic neuromodulation combined with electrostimulation in
tandem. Recently, in [48], ultrasonic neuromodulation was
combined with transcranial magnetic stimulation (TMS) to in-
vestigate the effect of ultrasound on single-pulse motor evoked
potentials and on paired-pulse TMS-metrics, such as short
interval intracortical inhibition (SICI) and intracortical facilita-
tion (ICF). In theory, UNMOD could potentially be combined
with all electrostimulation technologies (TMS, tDCS, DBS,
etc.), with the dual aim of improving understanding of these
technologies and improving their therapeutic effects (safety,
resolution, etc.). For the application of non-invasive transcra-
nial deep brain stimulation, an idea is to combine ultrasound
with temporal interference deep brain stimulation (TI-DBS)
[12], [49]. In TI-DBS, two high-frequency (f1 = 2 kHz and
f2 = f1 + 10 Hz) electrical currents are applied transcra-

nially, resulting in maximal modulation depth by temporal
interference at the targeted deep brain region, allowing non-
invasive deep stimulation in mice. However, computational
studies have predicted that results of TI-DBS in humans
might be less favourable [50], [51]. Besides improving the
placement, waveforms, and number of the TI-DBS anode-
cathode pairs, another option could be to combine the benefits
of TI-DBS and UNMOD by application in tandem. Here, to
our best knowledge for the first time, we study the response to
combined ultrasonic and electrical neuromodulation in isolated
neuron models. Then, we investigate the benefits of their
combined application in the neuronal CTX-BG-TH network.

II. METHODS

A. Cortex-Basal Ganglia-Thalamus Neuronal Network

A computational neuronal network model of the cortex-
basal ganglia-thalamus loop was realised in the DynaSim
MATLAB®-toolbox for neural modeling and simulation [52]
(Euler discretisation, time step ∆t = 10 µs for the Parkinso-
nian network, electrical DBS and continuous-wave ultrasound,
∆t = 5 µs for ultrasonic DBS, and ∆t = 2.5 µs for
combined ultrasound and electrostimulation: a lower temporal
discretization step is used for ultrasonic or combined electroa-
coustic stimulation, due to higher computational stiffness). All
simulations are run for 11 s, where initialisation-dependent
network transient effects during the first second are removed.
A schematic overview of the network topology is given in
Fig. 1(a). The cortical network (CTX) is based on [25],
[46], [47] and consists of twenty regular spiking (RS), five
fast spiking (FS), and five low-threshold spiking (LTS) cells.
Cortical cell numbers are in agreement with estimates that
about 30% of cortical cells are interneurons and 50% of
interneurons are fast spiking [46], [53]. Basal ganglia (BG)
cells included in the network are ten indirect striatal (iStr),
ten direct striatal (dStr), twenty globus pallidus external (GPe),
twenty globus pallidus internal (GPi) and twenty subthalamic
nucleus (STN) neurons. The basal ganglia network model is
based on [34]–[36], [54]. Finally, twenty thalamic (Th) cells
receive afferent input from the basal ganglia output nucleus
(GPi) and are connected with the regular and fast spiking
cortical cells [47].

1) Network topology: Cortical network topology is based
on [46], but with point neurons and a rescaled number of
neurons. Synaptic connections between cortical cells are as-
signed by selecting source neurons at random (excluding self-
connections) with network connectivity (netcon) probabilities
summarized in Table Ia [46]. The number of connections
between the cortex, basal ganglia and thalamus subsystems
is given in Table Ib. Basal ganglia model topology is deter-
ministic: the number of synaptic connections is summarized
in Table Ic [36]. Here, as in Kumaravelu et al. (2016), 50%
of globus pallidus cells chosen at random will not receive
subthalamic nucleus afferents.

2) Synaptic modeling: The synaptic current Isyn is given by
the product of the maximal synaptic gain gsyn, a synaptic pa-
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Fig. 1: (a) Schematical overview of the cortex-basal ganglia-thalamus model. GABAergic inhibitory and glutamatergic (AMPA
or NMDA) excitatory synapses are depicted with circular and triangular arrows, respectively. Red and blue arrows are used to
indicate facilitating and depressing short term synaptic plasticity. The dotted RS-STN line represents the hyperdirect pathway.
(b) Illustration of the bilayer sonophore interaction with ultrasound. The ultrasound-induced oscillations of the biphospholipid
layer is constrained by the surrounding protein islands. Abbreviations. CTX: cortex, RS: regular spiking, FS: fast spiking, LTS:
low threshold spiking, iStr: indirect striatum, dStr: direct striatum, GPe: globus pallidus externus, GPi: globus pallidus internus,
STN: subthalamic nucleus, Th: thalamus, US: ultrasonic stimulation, ES: electrical stimulation, GABA: gamma-aminobutyric
acid, AMPA: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, NMDA: N-Methyl-d-aspartic acid.

rameter s, a plasticity-factor P , and a potential term V −Esyn,
with Esyn the GABAergic or glutamatergic nernst potential:

Isyn = gsynsP (V − Esyn) (1)

Synaptic gains gsyn are summarized in Table II(a-c) for all
connections in the Parkinsonian network.

The synaptic channel parameter s is activated by presynaptic
spikes. For recurrent striatal GABA-A synapses, s is modeled
by [36]:

ds

dt
= αStr

[
1 + tanh

Vpre

4

]
(1− s)− βStrs. (2)

Here, Vpre is the presynaptic potential and αStr = 2 ms−1,
βStr = 0.0769 ms−1.

Cortical synapses are modeled as summed bi-exponentials
[46]:

s = A(τr, τd)

Nbuffer∑
i=1

[
e

−(t−tpre
AP

(i)−τdel)
τd θ(t− tpre

AP(i)− τdel)−

e
−(t−tpre

AP
(i)−τdel)
τr θ(t− tpre

AP(i)− τdel)
]

(3)

Here, τr and τd are the rise and decay time, respectively. θ is
the Heaviside function and A(τr, τd) = [(τr/τd)(−τr/(τr−τd))−
(τr/τd)(−τd/(τr−τd))]−1 is a normalisation factor. Synaptic
delays τdel are summarized in Table II(d). Presynaptic action
potential times are stored in a first in, first out buffer with
size Nbuffer = 10: tpre

AP(i) is the ith presynaptic spiking time
in the buffer (spikes are detected by crossing of the threshold
potential Vth = −10 mV).

Similarly, an alpha-synaptic current is a special case of a
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TABLE I: Cortex-Basal Ganglia-Thalamus Network topology
Source and target neurons respectively listed along rows and columns.
(a) Probabilities in %. (b-c) Number of connections. (†) 50% of the
target cells do not receive afferent input.

(a) CTX netcon probabilities

RS FS LTS
RS 6 43 57
FS 44 51 36

LTS 35 61 0

(b) CTX-BG-TH connectivity

Th RS/FS STN (i/d)Str
Th 0 1 0 0
GPi 1 0 0 0
RS 0 0 2 1

(c) Basal ganglia network connectivity

STN GPe GPi iStr dStr
STN 0 2† 2† 0 0
GPe 2 2 2 0 0
iStr 0 20 0 4 0
dStr 0 0 20 0 3

biexponential synapse (τd → τr in (3)) and is given by (the
normalisation factor A reduces to the number of Euler e):

s = e

Nbuffer∑
i=1

[ (t− tpre
AP(i))

τr
e

−(t−tpre
AP

(i)−τdel)
τr θ(t−tpre

AP(i)−τdel)
]

(4)
Glutamate synapses from pyramidal regular spiking (RS)

neurons are AMPAergic (alpha-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) and have rise and decay times
of 0.1 ms and 3 ms, respectively. GABA-A (gamma-
aminobutyric acid) synapses from fast spiking (FS) interneu-
rons have rise and decay constants of 0.5 ms and 8 ms, re-
spectively. The GABA-A synapse from low threshold spiking
(LTS) interneurons has a rise and decay constant equal to
0.5 ms and 50 ms [25], [46]. A synaptic delay of τdel = 1 ms
is introduced for cortical connections.

Short-term synaptic-plasticity is modeled as in [55], i.e.,
synaptic gains are multiplied with a plasticity-factor P = F
(RS → LTS: facilitating connection) or P = F · D1 · D2

(RS → FS: depressing connection), cfr. Fig. 1 (P = 1 in
connections without plasticity). Here, the dynamics of the
facilitating factor F is given by:

dF

dt
=

1− F
τF

+ f
∑
i

δ(t− tpre
AP(i)). (5)

The sum is over the presynaptic spike times tpre
AP(i) (δ is

the dirac-delta distribution). Consequently, F will decay ex-
ponentially with time constant τF to one in the absence of
presynaptic spikes (τF = 200 ms and τF = 94 ms for
the RS → LTS and RS → FS connections, respectively).
Conversely, after a presynaptic spike F is incremented with
f (f = 0.2 and f = 0.5 for RS → LTS and RS → FS,
respectively).

Similar dynamics holds for the depressing factor D, but here
the effect of a presynaptic spike is multiplicative:

dD

dt
=

1−D
τD

+ (d− 1)D
∑
i

δ(t− tpre
AP(i)). (6)

The time constants are τD1 = 380 ms and τD2 = 9200 ms.
The multiplicative d-factors are equal to d1 = 0.46 and d2 =
0.975.

TABLE II: Synaptic delays and gains of the Parkinsonian
neuronal network.
Source and target neurons respectively listed along rows and columns.
(a) Intracortical, (b) basal ganglia, and (c) cortex-basal ganglia-
thalamus synaptical gains [mS/cm2] and (d) delays, rise and decay
times [ms].
† Uniformly distributed around mean given in table
∗ Gain or time constant of AMPA and NMDA, respectively.

(a) CTX gain [mS/cm2]
RS FS LTS

RS 0.0171 0.0531 0.0368
FS 0.0737 0.8517 2.4448

LTS 0.6835 0.0681 0

(b) Basal ganglia gains [mS/cm2]
STN GPe GPi iStr dStr

STN − 1.089†, 0.00495†∗ 0.3225† − −
GPe 1.395 0.0375 0.45 − −
iStr − 0.225 − 0.025 −
dStr − − 0.15 − 0.033

(c) CTX-BG-TH gains [mS/cm2]

Th RS FS STN (i/d)Str
Th − 0.1935 0.271 − −
GPi 0.0336 − − − −
RS − − − 0.6041, 0.0072∗ 0.0181

(d) Synaptic delays, rise and decay time constants [ms]

Connection τdel τr τd Connection τdel τr τd
GPi→ Th 5 5 5 STN→ GPe 2 0.4, 2∗ 2.5, 67∗

GPe→ GPe 1 5 5 GPe→ STN 4 0.4 7.7
Str→ GPe 5 5 5 RS→ STN 5.9 0.5, 2∗ 2.49, 90∗

STN→ GPi 1.5 5 5 RS→ Str 5.1 5 5
GPe→ GPi 3 5 5 Th→ RS 5.6 5 5
Str→ GPi 4 5 5 Th→ FS 5.6 5 5

Finally, all glumatergic synapses have Nernst-potential
EAMPA = ENMDA = 0 mV. Glutamate-synapses are
AMPAergic, except for the STN → GPe connection and
the hyperdirect pathway (RS → STN) that also contain
NMDA-synapses. The GABAergic interstriatal connections
have EGABA,Str = −80 mV, while GABAergic Nernst-
potentials in other nuclei are set to EGABA = −85 mV.
Synaptic delays, time constants and gains of the Parkinsonian
network are summarized in Table II.

3) Neuronal models: A modified Hodgkin-Huxley equation
is used for the simulation of the neuronal response of the
different nuclei:

dQ

dt
= −

∑
i

Im,i −
∑
j

Isyn,j − Iapp (7)

Here, Im,i and Iapp are the neuron-type specific membrane
currents and externally applied current, respectively. Table III
lists an overview of the membrane currents present in the
different models and references to their dynamics. The current
Isyn,j represents the received synaptic current from source
population j.

4) Parkinson’s disease and deep brain stimulation: The
neuronal network of the cortex-basal ganglia-thalamus loop
was made Parkinsonian, by three modifications to the healthy
network. First, as in Kumaravelu et al. (2016) [36], the
maximal M-type potassium current gain is decreased from
gM,H = 2.6 µS/cm2 in the healthy (H) network to gM,PD =
1.5 µS/cm2 in the Parkinsonian (PD) condition, caused by
heightened striatal acetylcholine concentrations after dopamine
depletion [36], [56], [57]. Second, an additional external
current of −2 µA/cm2 is applied to the subthalamic nucleus
and globus pallidus (current additional to Iapp in Table III).
Third, synaptic gains in the reciprocally coupled STN−GPe
feedback loop and in the long loop (hyperdirect pathway
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TABLE III: Summary of Neuron Models
Na: sodium; K: delayed-rectifier potassium; M: M-type slow non-
inactivating potassium; KCa: calcium dependent potassium; T:
low-threshold T-type calcium; L: high-threshold L-type calcium;
A: A-type potassium; Ca: high-threshold calcium; ahp: after-
hyperpolarization; l: leak

Neuron Membrane currents Iapp Ref.
RS Na, K, M, l 0 µA/cm2 [25], [45]
FS Na, K, M, l 0 µA/cm2 [25], [45]

LTS Na, K, M, T, l 0 µA/cm2 [25], [45], [60]
STN Na, K, KCa, T, L, A, l 0 µA/cm2 [36], [61], [62]
GPe Na, K, Ca, T, ahp, l 3 µA/cm2 [36]
GPi Na, K, Ca, T, ahp, l 3 µA/cm2 [36]
Str Na, K, M, l 0 µA/cm2 [36], [57]
Th Na, K, T, l 1.2 µA/cm2 [36]

and back from thalamus to cortex) are increased to promote
propagation of beta oscillatory power into the Parkinsonian
basal ganglia network. A similar methodology of altering
synaptic gains and external applied currents to render the
network Parkinsonian, has been used in other computational
studies of the basal ganglia [34]–[38], [40], [54], [58]

Electrical deep brain stimulation is simulated by injection of
a 300 µA/cm2 current in the subthalamic nucleus cells with
pulse duration 300 µs and pulse repetition frequency between
10 Hz and 160 Hz [34]–[36], except when mentioned other-
wise in the figure caption. Ultrasonic subthalamic nucleus deep
brain stimulation is modeled with the multiScale Optimized
model of Neuronal Intramembrane cavitation (SONIC) [59],
cfr. section II-B.

5) Spectral analysis and beta-oscillations: Parkinsonian
bradykinesia is related with spectral density in the beta-band
[63]–[66]. Here, we follow the hypothesis that cortical beta-
band activity will enter the dopamine-depleted basal ganglia,
where it is strenghtened by the STN-GPe feedback loop [37],
[58], [64], [67]. Consequently, a beta-rhythm is imposed on
the pyramidal regular spiking cortical neurons, by intracellular
injection of 1 µA/cm2 with normally distributed pulse repe-
tition frequency (mean 20 Hz, standard deviation 3 Hz) and
normally distributed duty cycle (mean 50%, standard deviation
25%).

Spectral analysis was performed by the multi-taper method
(5 tapers, timebandwidth product equal to 3) in the chronux-
Matlab toolbox (chronux.org, [68]). As in [36], spectograms
are calculated with a sliding window of 1 s with step size 0.1 s
and the alpha-beta energy is the integrated spectral density
over the alpha-beta band (7 Hz− 35 Hz).

B. Ultrasonic neuromodulation

Computational modeling of ultrasonic neuromodulation is
based on the tentative bilayer sonophore (BLS) underlying
mechanism (cfr. Fig. 1(b)) [23]. Here, the ultrasonic pressure
wave is assumed to induce a sinusoidal oscillation of the
deflection of both bilipid layer leaflets. Consequently, the
membrane capacitance fluctuates in phase with the ultrasonic
pressure wave, resulting in capacitive displacement currents.
In the Neuronal Intramembrane Cavitation Excitation (NICE)
model, these capacitive currents will result in membrane
charge build-up, causing neuronal excitation [24], [25]. In

TABLE IV: Summary of UNMOD Parameters

Abbr. Value Description
aBLS 32 nm Radius bilayer sonophore
Cm0 1 µF/cm2 Rest capacitance
P0 105 Pa Static pressure
T 36 ◦C Temperature
δ0 2 nm Thickness leaflet
∆ 1.26 nm Intraleaflet gap at rest potential
µl 0.7 · 10−3 Pa · s Dynamic viscosity of the CSF
µs 0.035 Pa · s Dynamic viscosity of leaflets
ρl 1028 kg/m3 Cerebrospinal fluid density

this study, we adopt the NICE-framework for simulation of
ultrasonic neuromodulation in isolated point neurons, as also
used in previous studies [18], [23]–[25], [59], [69], [70]. The
general model parameters are given in Table IV.

The computational network model contains timescales
across six orders of magnitude: a microsecond timescale
of the ultrasound-neuron coupling, millisecond timescale of
action potentials and membrane gating, and a second timescale
of spike-frequency adaptation and network plasticity effects.
Consequently, multi-scale optimization is required in order
to prevent exorbitant simulation times. First, in the NICE-
implementation [24], computational stiffness is decreased by
the introduction of an update time step (here, Tup = 50 µs)
that decouples the mechanical (Rayleigh-Plesset) and electro-
dynamical (Hodgkin-Huxley) problems. Second, a multiScale
Optimized model of Intramembrane Cavitation (SONIC) was
proposed by [59], achieving significant further reductions of
computational stiffness and simulation time. In the SONIC-
model, effective voltage and rate parameters are pretabulated,
the modified Hodgkin-Huxley equation is charge recasted and
a Lennard-Jones fit is applied to the intramolecular pressure.
The introduction of the SONIC-tables effectively removes the
smallest microsecond timescale from the model, resulting in a
three-order of magnitude reduction in simulation time, while
maintaining qualitatively accurate results [59]. Consequently,
the multi-scale optimized SONIC-model is used for all neu-
ronal network simulations. For a description of the NICE and
SONIC model, we refer to Plaksin et al. (2014, 2016) [24],
[25] and Lemaire et al. (2019) [59], respectively.

III. RESULTS

A. Interaction of ultrasonic and electrical neuromodulation in
isolated neuron models

In this section, we investigate the potential benefits of
simultaneous electrical stimulation and insonication in isolated
cortical and subthalamic nucleus point neuron models. In
Fig. 2, the interaction of ultrasound with electrostimulation
is shown, by plotting the firing rate contours as function of
the injected electrical current and ultrasonic intensity.

First, we investigate interacting ultrasound and electrical
currents in a computational model of the plateau-potential
generating subthalamic nucleus [61], [62] (Fig. 2(a)). A
similar non-linear interaction between continuous-wave ul-
trasound and continuous (direct current) electrostimulation
is observed for the STN (Fig. 2(a)(top,left)), compared to
cortical cells (see below). However, here a silenced plateau
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Fig. 2: Combined ultrasonic and electrical neuromodulation firing rate contour plots.
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Fig. 2: (a) Subthalamic nucleus response to simultaneous electrical and ultrasonic continuous wave or pulsed (PRFUS =
PRFES = 100 Hz, fUS = 700 kHz) stimulation. Electrical and ultrasonic pulses are in phase (pulse durations τp,ES = 100 µs,
τp,US = 500 µs). (b) Cortical regular spiking (left), fast spiking (middle) and low threshold spiking (right) response to
simultaneous ultrasound and depolarizing (upper) and hyperpolarizing (lower) electrical currents

is generated for IUS ≥ 130 W
m2 , due to low-threshold T-

type and high-threshold L-type calcium currents. This re-
sult is in agreement with our previous computational study
on ultrasonic subthalamic nucleus stimulation [18]. Further-
more, combining pulsed ultrasound (PRF = 100 Hz) with
DC electrical (Fig. 2(a)(bottom,left)) currents, or vice versa
(Fig. 2(a)(top,right)), can achieve 100 Hz pulse-locked spiking
at lower pulsed intensities/currents. However, increasing the
DC-current or DC-intensity, will elicit neuronal spiking at
rates higher than the pulse repetition frequency. In contrast,
reliable pulse-locked spiking is achieved for simultaneous
and in-phase pulsed electrical and ultrasonic neurostimula-
tion (Fig. 2(a)(right,bottom)) at PRF = 100 Hz. Here, by
simultaneous application of ultrasound with electrical current,
100 Hz spiking can be elicited with lower intensities or current
injections.

Second, for depolarizing electrical current injections in
cortical regular spiking, fast spiking and low-threshold spiking
cells (Fig. 2(b)(upper)) a non-linear interaction is observed
between ultrasound and the current injection. I.e., by com-
bining ultrasound with electrostimulation, it is possible to
maintain a given level of neuronal response (e.g., 400 Hz
spiking) at a lower ultrasonic intensity and electrical current,
compared to separately applied ultrasonic neuromodulation or
electrostimulation. Here, we can also compare the neuronal
response to ultrasonic insonication and electrostimulation ap-
plied separately: for electrical current injections the maximal
spiking frequency is limited by depolarization block (region
of silenced neuronal response at higher values of IES in
Fig. 2(b)(upper)). In contrast, cortical neuronal response is not
affected by depolarization block for the range of simulated
ultrasonic intensities (up to IUS = 10 000 W/m2, which is
above the FDA-limit on the temporal average peak intensity
for diagnostic ultrasound (Ispta,FDA = 720 mW/cm2)) [71].
Consequently, the models predict that higher cortical firing
rates are possible with ultrasonic neuromodulation than with
electrostimulation.

Third, by combining ultrasound with hyperpolarizing elec-
trical stimulation (Fig. 2(b)(lower)), it is possible to achieve
a quiescent low threshold spiking cortical cell regime, while
regular and fast spiking neurons exhibit high-frequency tonic
spiking. In contrast, it is not possible to elicit high-frequency
(e.g., 400 Hz) spiking of FS and RS-neurons without the exci-
tation of LTS-cells, with non-simultaneous electrical currents
or ultrasound. This region in Fig. 2(b)(lower) of silenced LTS-
cells and spiking RS and FS neurons, obtained by combining
ultrasonic and electrical neuromodulation, is explained by the
observation that the LTS-neurons are most sensitive of the
studied cortical cells to hyperpolarizing electrical currents. As
a result, LTS-cells are inhibited faster than RS and FS neurons,
while tonic spiking is maintained by insonication for the latter.

Finally, in Fig. 3(lower), firing rate contours of the sub-
thalamic nucleus response to pulsed PRF = 100 Hz alter-
nating electrical and ultrasonic stimulation are shown. For
simultaneous application of alternating electrical depolarizing
pulses (PRFES = 50 Hz) of sufficient amplitude to induce
pulse-locked 50 Hz spiking and ultrasonic insonication with
amplitudes at about 500 W/m2 (PRFUS = 50 Hz), neu-
ronal spiking at 100 Hz is obtained. In Fig. 3 the different
stimulation modalities (ultrasound and electrical currents) are
separated in time (alternating pulses), in contrast with Fig. 2,
where the concurrent electrical current and ultrasonic pressure
wave stimulation modalities interact simultaneously. This sep-
aration of electrical and ultrasonic pulses is interesting from
the perspective of safety, under the assumption that possible
electrical/ultrasonic damage mechanisms are separated as well,
and resolution (e.g., with similar ideas to intersectional short
pulse stimulation [72]). From Fig. 3 it can also be observed
that pulsed ultrasound alone at PRFUS = 50 Hz is not capable
of reliable entrainment of neuronal spiking at 50 Hz. This
observation agrees with our previous results [18], that pulse-
locking for the subthalamic nucleus to ultrasound only occurs
for PRFUS > PRFmin > 90 Hz.

B. Electrical and ultrasonic deep brain stimulation in the
cortex-basal ganglia-thalamus computational network

1) Ultrasonic and electrical stimulation separately: First,
we compare the effects of ultrasonic and electrical subthalamic
nucleus deep brain stimulation on the cortex-basal ganglia-
thalamus network, when they are applied separately. Example
rastergrams of the Parkinsonian network in the absence of
neurostimulation and in the presence of electrical 160 Hz
and ultrasonic deep brain stimulation are shown in Fig. 4. In
Fig. 5(a-b,d-e,g-h), the dependency of the alpha-beta spectral
energy (α− β SE), mean and standard deviation of the firing
rate (µFR and σFR, respectively) are shown as function of the
pulse repetition frequency in pulsed electrical and ultrasonic
DBS (Fig. 5(a,d,g)) and as function of the ultrasonic intensity
IUS for continuous-wave ultrasonic deep brain stimulation
(Fig. 5(b,e,h)). In the Parkinsonian network, cortically imposed
synchrony and beta-oscillations (e.g., see the RS trace in the
PD rastergram in Fig. 4(left)) result in increased oscillations in
the basal ganglia nuclei (cfr. Fig. 4(left), the parkinsonian spec-
trograms in Fig. 5(i,l), and the power spectral density plots in
Fig. 5(c,f)). In Fig. 4, electrical and ultrasonic subthalamic nu-
cleus deep brain stimulation are applied between tstart = 3.5 s
and tend = 8.5 s. Electrical pulsed 160 Hz deep brain stimu-
lation entrains the subthalamic nucleus neurons at a firing rate
equal to the pulse repetition frequency, with negligible vari-
ation between different STN-neuron traces (Fig. 4(middle):
STN-trace). Consequently, globus pallidus neurons (GPi and
GPe) that receive STN-afferents manifest tonic spiking, while
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Fig. 3: Subthalamic nucleus response to combined electrical and ultrasonic pulsed out-phase stimulation (pulse repetition
frequency PRFUS = PRFES = 50 Hz, pulse duration τp,ES = 100 µs, τp,US = 500 µs, fUS = 700 kHz). (Upper) Membrane
charge traces. Arrows indicate the timing of ultrasonic (red) or electrical (blue) pulses. (Lower) Combined ultrasonic and
electrical neuromodulation firing rate contours. Markers indicate the waveform parameters for the corresponding membrane
charge traces.
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Fig. 4: Action potential rastergram (vertical lines mark the timing of neuronal spikes) for the Parkinsonian (PD) cortex-basal
ganglia-thalamus network without neuromodulation (left), with electrical deep brain stimulation (DBS: PRFES = 160 Hz, on
time at 3.5 s, off time at 8.5 s; middle) and for continuous ultrasonic neuromodulation (US: 200 W/m2, fUS = 500 kHz, on
time at 3.5 s, off time at 8.5 s; right). Abbreviations. StrMSN: striatal medium spiny neuron, GPe: globus pallidus external,
GPi: globus pallidus internal, STN: subthalamic nucleus, ThRT: thalamic rubin-terman neuron, LTS: low threshold spiking
cortical cell, FS: fast spiking cortical cell, RS: regular spiking cortical cell.

globus pallidus neurons that do not receive these afferents are
silenced via the GPe → GPe lateral inhibitory connections
and the GPe→ GPi-pathway (Fig. 4(middle): GPi and GPe).
Furthermore, thalamic cells receive topologically-structured
GPi GABAergic input. Therefore, the ThRT-rastergram is an
inversion of the GPi-rastergram (e.g., Fig. 4(middle): ThRT-
trace). The observations from the example rastergrams are
confirmed and placed in context by the dependency of firing
rates on pulse repetition frequency in Fig. 5(d,g): subthalamic
nucleus and globus pallidus mean firing rate increases with
electrical DBS pulse repetition frequency (Fig. 5(d)). While
STN firing rate eventually saturates to the PRF, resulting in
a decrease of the variability in firing between STN-neurons
with PRF (Fig. 5(d,g)), the σFR of globus pallidus neurons
increases with PRF (Fig. 5(g)). The alpha-beta spectral energy
in the basal ganglia nuclei decreases with pulse repetition fre-
quency (Fig. 5(a)), while a local worsening of α−β oscillatory
power is observed around PRF = 30 Hz. The effect of 160 Hz
electrical DBS on the power spectral density and the GPi-
spectogram, is shown in Fig. 5(c) and (j), respectively.

The results for ultrasonic pulsed deep brain stimulation are
similar to electrical pulsed DBS (Fig. 5(a,d,g), dashed). Alpha-
beta spectral energy desirably reduces with pulse repetition
frequency: here, no local worsening at low pulse repetition
frequencies is observed for the GPi and GPe spectral en-

ergies, while the increase in STN beta-oscillations at low
PRF is less pronounced. Although STN firing increases
with ultrasonic PRF, no complete entrainment of subthalamic
nucleus neurons at the pulse repetition frequency is observed
for IUS = 400 W/m2 (cfr. (Fig. 5(d)), dashed with dotted
line). For PRF = 160 Hz and IUS = 400 W/m2, 25%
of the STN-neurons have a firing rate that is not within
PRF±10%PRF. The neurons that are not yet pulse-locked re-
ceive strongly varying GABAergic GPe input, while entrained
neurons receive a more constant low or high level of afferent
inhibitory GPe current. At higher ultrasonic intensities all
neurons become pulse-locked, e.g., for IUS = 500 W/m2 and
PRF = 160 Hz, 100% of the STN-neurons fire at 160±1 Hz.
Here, we want to illustrate in Fig. 5(a) that α − β spectral
energy is already improved, without complete STN pulse-
locking to the ultrasonic stimulus.

Our model results predict that continuous-wave ultrasound
acts by silencing subthalamic nucleus neurons to a plateau
(Fig. 4(right, STN trace), Fig. 5(e)(blue dashed)). The lack
of STN activity results in highly synchronized GPi and GPe
activity in our network model (Fig. 4(right), GPe and GPi
trace and σFR drops to zero at higher ultrasonic pressures
in Fig. 5(h)). However, alpha-beta spectral energy and firing
rates are still reduced in the STN, GPi and GPe (Fig. 5(h)
and Fig. 5(e), respectively). Instead, globus pallidus external
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Fig. 5: Electrical and ultrasonic (fUS = 500 kHz) pulsed and continuous subthalamic nucleus deep brain stimulation: ES
and UNMOD are applied separately. (a-h) Parkinsonian network without neuromodulation represented by dotted lines. (a)
Electrostimulation (full) or pulsed ultrasound (τp,US = 500 µs, IUS = 400 W/m2) (dashed) frequency-dependent effect on
alpha-beta spectral energy (α−β SE). (b) Continuous ultrasound (dashed) intensity-dependent impact on α−β SE. (c) Power
spectral density (PSD) during 160 Hz electrical DBS. Mean (d-e) (µFR) and standard deviation (g-h) σFR of the firing rate
versus the pulse repetition frequency (d,g) and intensity in continuous-ultrasound (e,h). (f) PSD during 200 W/m2 continuous
ultrasound. (i-l) Spectograms in the Parkinsonian subthalamic nucleus (STN) (i) and globus pallidus internus (GPi) (l) without
neuromodulation. GPi spectogram during electrical 160 Hz DBS (j) and continuous UNMOD (k) ((j-l) are on the same colour
scale).

oscillatory power is increased outside the alpha and beta
bands, around 39 Hz and 78 Hz (Fig. 5(f), green dashed).
The effect of continuous-wave ultrasound on the parkinsonian
GPi-spectogram is shown in Fig. 5(k).

2) Ultrasonic and electrical stimulation in tandem:
The application of simultaneous electrical and ultrasonic neu-
romodulation for the suppression of α− β spectral energy in
the Parkinsonian network is presented in Fig. 6 and Fig. 7
for maximally out-of-phase and in-phase pulsed waveforms,
respectively. From Fig. 6, we observe that STN, GPi and GPe
α − β-oscillations decrease with the temporally alternating
electro-acoustic stimulation frequency fEUS, i.e., the pulse
repetition frequency of the outphase electrical or ultrasonic
pulse trains (fUS = 500 kHz, τp,US = 500 µs, τp,ES = 300 µs,
IUS = 500 W/m2, IES = 300 µA/cm2). In line with
separated pulsed ES and US (Fig. 5(d),(g)), mean firing
rates increase with frequency (Fig. 6(b)). Here, the firing
rate variability decreases and increases with pulse repetition
frequency, for the subthalamic nucleus and the globus pallidus,
respectively (Fig. 6(c)). The trends for the spectral energy,
mean and standard deviation of the firing rate for alternating
electrical and ultrasonic pulses with fEUS are in line with
these for ultrasound or electrostimulation applied separately,
but with twice the PRF (i.e., fDBS = 2fEUS, indicated with

the upper x-axis in Fig. 6(a-c)).
Next, in Fig. 7 phase-locked electro-ultrasonic stimulation is

applied to the subthalamic nucleus neurons in the network with
waveform parameters corresponding to Fig. 2(a,bottom right)
(i.e., PRFES = PRFUS = 100 Hz, fUS = 700 kHz, τp,ES =
100 µs and τp,US = 500 µs). Here, it is interesting to observe
the discrepancy in the firing rate contours of the subthalamic
nucleus (cfr. Fig. 2(a,bottom right) and Fig. 7(b)). In particular,
while in the isolated STN 100 Hz firing was observed in a sig-
nificant area of the explored parameter space (e.g., for IES ≥
150 µA/cm2, Fig. 2), similar pulse-locked firing (100 Hz ±
1%) is only reached at two simulation points ((IES, IUS) =
(180 µA/cm2, 500 W/m2), (200 µA/cm2, 500 W/m2)) for
the mean firing rate of STN-neurons that receive synaptic
afferents. Furthermore, the variation in firing rate σFR in-
creases with electrical and ultrasonic strength in the param-
eter regions where pulse-locked mean firing is not achieved
(Fig. 7(c)), indicating that the GABAergic and glutamatergic
synaptic currents in the network model result in a reduction
in reliable spiking and pulse-locking, compared to isolated
STN-neurons. The GPi (Fig. 7(e,f)) and GPe (Fig. 7(h,i))
mean and standard deviation on the firing rate increase with
the interacting electrical and ultrasonic intensity. Finally, we
can observe from Fig. 7(a,d,g) that the Parkinsonian α − β
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Fig. 6: Effect of temporally alternating electrostimulation and ultrasonic (500 kHz, τp,US = 500 µs) neuromodulation (cEUS,
dotted, with marker) on alpha-beta spectral energy (a), mean firing rate (µFR) (b) and standard deviation of the firing rate
(σFR) (c), in comparison with electrostimulation (ES, full lines) and insonication (US, dashed lines) applied separately.

oscillations are reduced faster by combining electrical and
ultrasonic stimulation (i.e., spectral energy contours are not
horizontal or vertical).

IV. DISCUSSION

A. Combined UNMOD and electrostimulation

First, interaction of simultaneous (Fig. 2) and non-
simultaneous (Fig. 3) ultrasound and electrical currents was
investigated in isolated neuron models. We observe that non-
linear interaction of UNMOD with electrostimulation can
achieve a given level of neuronal response (firing rate contour),
at lower ultrasonic intensity and electrical current than would
be required if these stimulation modalities are used separately.
These results predict an increase in firing rate dynamic range
for EUS-stimulation, or conversely an improvement of safety,
with respect to damage mechanisms that are separated for
ultrasound and electrostimulation. For example, the probability
of damage by ultrasound-induced inertial cavitation and via
electrochemical effects is likely not influenced by the presence
of electrical current and ultrasound, respectively. Another
potential application of the observed interaction of ultrasound
with electrical currents, is the construction of stimulation
modalities that leverage this interaction for improved targeting
resolution (e.g., combined TI-DBS and focused ultrasound
with partially or fully overlapping foci). In theory, any elec-
trostimulation technology (transcranial magnetic stimulation

(TMS), transcranial direct current stimulation (tDCS), elec-
trical deep brain stimulation (ES-DBS), etc.) can be com-
bined with transcranial focused ultrasound (tFUS) in order
to combine the benefits and mitigate the downsides of the
neurostimulation methods. E.g., tFUS has the benefit of high
millimeter size resolution and transcranial focusing, while
electrostimulation is energetically more favourable (ultrasound
requires six orders of magnitude more energy than direct cur-
rent injection for action potential initiation [24]). Furthermore,
our simulations predict that it is possible to achieve altered rel-
ative spiking regimes, by combining continuous UNMOD with
hyperpolarizing currents. Here, RS and FS cell high-frequency
tonic spiking activity could be induced in the absence of LTS-
cell activity with EUS, which was not possible for continuous
ultrasound or electrostimulation separately. This observation
could have applications for therapy or research, because low
threshold-spiking cells are thought to protect the cortical
network against overexcitation [47]. In other words, combining
ultrasound with hyperpolarizing currents might be an efficient
approach to induce a cortical seizure.

B. Deep brain stimulation in a CTX-BG-TH neuronal network

In this study, a biophysically realistic computational model
of the cortex-basal ganglia-thalamus loop was constructed,
based on [25], [34]–[36], [46], [47], [54], and its interaction
with ultrasound and electrostimulation was investigated. Firing
rates in the healthy and Parkinsonian network are in corre-
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Fig. 7: Effect of phase-locked electrostimulation (τp,ES = 100 µs, PRFES = 100 Hz) and ultrasonic insonication (700 kHz,
τp,US = 500 µs, PRFUS = 100 Hz) on alpha-beta spectral energy (a,d,g), mean firing rate (µFR) (b,e,h) and standard deviation
of the firing rate (σFR) (c,f,i) as function of the electric current amplitude and ultrasound intensity in the subthalamic nucleus
(a-c), globus pallidus interna (d-f) and globus pallidus externa (g-i).

spondence with recordings in healthy and 6-OHDA dopamine
depleted rats [73]. The Parkinsonian network demonstrated
increased basal ganglia oscillatory beta power, that is re-
duced by deep brain stimulation to the STN. Here, deep
brain stimulation efficiency improves with increasing pulse
repetition frequency between 50 Hz and 130 Hz, as ob-
served in patients [74] and other basal ganglia models [35],
[36]. Similar to electrical DBS, ultrasonic pulsed stimulation
improves pathological network oscillations by driving the
subthalamic nucleus spiking rate (Fig. 4-5(a,d,g)). Further-
more, interaction of temporally alternating or simultaneous
ultrasonic and electrical pulses results in a higher obtained
firing rate or reduction of Parkinsonian oscillations for given
separated limits on electrical currents and ultrasonic intensity
(Fig. 6-7). Here, we observe that a dichotomous response of
globus pallidus neurons is obtained at therapeutic parameters
(Fig. 6(c), Fig. 7(f,i)), similar to Kumaravelu et al. (2016) [36]:
i.e., some globus pallidus neurons exhibit tonic spiking, while
others are silenced. This is not unexpected, since our basal
ganglia network is based on [36], in particular the presence of
two types of globus pallidus neurons, distinguished by whether
or not they receive subthalamic afferents (cfr. Table I(c)).

Conversely, continuous-wave ultrasound also reduces alpha-
beta oscillations in our model, but by silencing the STN to a
plateau-potential (Fig. 4-5(b,e,h)). Here, silencing of the STN
is functionally equivalent to subthalamotomy (i.e., ablation
of the STN), which is an alternative treatment option for
Parkinson’s disease, e.g., for patients that are unsuitable for

DBS-lead implantation due to access or medical reasons [75].
Computational modeling of Hahn and McIntyre (2010) also
predicts a decrease in pathological globus pallidus bursting
upon silencing of STN neurons [76]. However, in contrast
with this result, simulations of So et al. (2012) indicate a
worsening of thalamic relay error indices by removing STN
local cells alone [35], speculating that lesioning of the pal-
lidothalamic pathway is required for symptom improvement,
while lesions restricted to the STN might result in dyskinesias
or hemiballism. Our simulations seem to agree with Hahn and
McIntyre, in the sense that beta-oscillatory power is reduced
upon STN-silencing with ultrasound. However, globus pallidus
synchrony is increased and strong oscillations are observed
outside the alpha-beta band. Here, we hypothesize that the
exact response of proxies of Parkinsonian pathology to sub-
thalamotomy might be sensitive to the values of the synaptic
gains, network topology and externally applied currents. In line
with this thought, So et al. observed that GPe bursting was
dependent on lateral globus pallidus inhibition (gGPe→GPe)
[35].

C. Strengths, limitations and future work
In this paper, a fully biophysical ion-channel based neuronal

network of the cortex-basal ganglia-thalamus loop has been
used to quantify for the first time the applicability of ultrasonic
neuromodulation for the treatment of Parkinson’s disease with
the alpha-beta spectral energy proxy. Furthermore, simulations
in isolated neuron models and the neuronal network in this
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study show the benefits of simultaneous and alternating ultra-
sonic and electric neuromodulation.

Some important limitations and directions for future work
should be taken into account. First, simulations in the cortex-
basal ganglia-thalamus network and isolated neurons, are per-
formed in single-compartment point neurons. Consequently,
spatial effects are not taken into account and electrical deep
brain stimulation is simulated by direct current injection as in
earlier models [34]–[37]. Important spatial effects for electrical
deep brain stimulation are antidromic propagation and cortical
invasion via the hyperdirect pathway [39], [40], coactiva-
tion of fibers of passage [77] (e.g., the lenticular fasciculus
(GPi → Th) passes dorsally to the subthalamic nucleus),
decoupling of the somatic and axonal STN response [78], etc.
Further research will also be necessary in order to determine
the importance of spatial effects in ultrasonic neuromodulation
(e.g., location of the excitation node and its dependence on the
ultrasonic waveform). However, the construction of a multi-
compartmental morphologically realistic model of ultrasonic
neuromodulation by intramembrane cavitation is complicated
by the computational stiffness of the NICE-model, resulting
in solver instabilities, low solution accuracy and/or exorbitant
simulation times for neuronal models with a high number
of compartments. For this reason, we designed a multi-scale
optimized model SECONIC in [70] for the efficient integration
of multi-compartmental UNMOD-BLS models, including fast
charge oscillations and their impact on neuronal excitability.
As future work, we intend to apply SECONIC to morphologi-
cally realistic models, allowing us to investigate computation-
ally the spatial aspects of UNMOD. In this context, a recent
computational study of Lemaire et al. (2020) investigated
ultrasonic neuromodulation by intramembrane cavitation in
multi-compartmental myelinated and unmyelinated axons with
the SONIC-framework [79]. Here, spatially-extended multi-
compartmental neuron models could be integrated within
the point neuronal network (as done in [58], for a cortical
multi-compartmental cell) and coupled with finite-element and
finite-difference time-domain simulations of the electric and
ultrasonic field, respectively.

Second, the underlying mechanism for UNMOD is not
well-understood. Here, we focused on the proposed bilayer
sonophore mechanism [23], [24], in which oscillating in-
tramembrane cavities result in capacitive displacement cur-
rents and neuronal excitation. However, several other tentative
mechanisms have been proposed. E.g., instead of exerting its
influence by the harmonic pressure component as in the BLS-
mechanism, ultrasound could modulate neuronal activity via
the acoustic radiation force [26], [27]. The acoustic radiation
force mechanism could also be mediated via its effects on
the membrane capacitance [28]. Mechanosensitivity of ion
channels is another important tentative mechanism [29], [30],
[80], in which the harmonic pressure component or acoustic
radiation force alters the dynamics of the ion channels. Here,
interaction with the bilayer sonophore model or Prieto-model
of acoustic radiation force effect is possible: e.g., the NICE-
model predicts oscillating membrane tension, which could
impact the mechanosensitive ion channels. Furthermore, also
flexoelectricity [31], thermodynamic neuron models [33], me-

chanical surface and axial waves [81], [82], propagation via
acto-myosin cytoskeletal elements [83], etc., could be impor-
tant for a complete understanding of ultrasonic neuromodula-
tion. Here, computational modeling can be helpful to improve
understanding of the consequences and potential interactions
of the different tentative mechanisms. In this study, predictions
have been made on the interaction of bilayer sonophore me-
diated ultrasonic neuromodulation and electrical currents, the
comparative efficiency for the reduction of beta-oscillations of
UNMOD w.r.t. electrostimulation, efficacy of continuous-wave
ultrasound versus pulsed ultrasound, etc. These predictions
could be tested in future experimental studies. As future work,
we intend to incorporate also other tentative mechanisms of
ultrasound (acoustic radiation force, mechanosensitivity of
ion channels. . . ) into the models, in order to investigate the
interactions between them and to gain understanding under
which conditions (ultrasonic waveform, neuron type,. . . ) a
certain mechanism is expected to be dominant.

V. CONCLUSION

In this study, a computational biophysical (i.e., fully
Hodgkin-Huxley) neuronal network of the Parkinsonian cor-
tex, basal ganglia and thalamus was constructed and coupled
with ultrasound and electrostimulation. Here, the basal ganglia
receive cortical input via the hyperdirect and (in)direct path-
ways, while the thalamus relays the output from the globus
pallidus back to regular spiking pyramidal cortical cells and
fast spiking interneurons. Both electrical and ultrasonic pulsed
STN-stimulation is capable of reducing elevated alpha-beta
pathological oscillations at higher pulse repetition frequencies.
Continuous-wave ultrasound is also able of improving alpha-
beta power, but by the opposing mechanism of silencing
the subthalamic nucleus to an elevated plateau-potential. In
both the neuronal network and in isolated neuron models
it was observed that simultaneous or alternating application
of electro-acoustic waveforms is capable of obtaining higher
firing rates and better reduction in Parkinsonian oscillations
for given safety limits on the electrical current and ultrasonic
intensity. Furthermore, it was demonstrated in cortical cells
that combining hyperpolarizing (negative) electrode currents
with ultrasound can achieve altered relative cortical spiking
regimes: i.e., entraining regular and fast spiking neurons to a
high-frequency pulse train, while low-threshold spiking cells
are quiescent.

The results presented in this study indicate that the com-
bination of electrical and ultrasonic modalities has potential
to improve safety and dynamic range, targeting resolution,
recruitment selectivity, and energy efficiency. Furthermore,
it is predicted that both continuous and pulsed transcranial
focused ultrasound targeted to the STN is able to improve
Parkinsonian symptoms. Our computational model provides
novel testable predictions, that can be used to verify or falsify
the proposed underlying mechanisms of DBS and ultrasound-
neuron interaction.

As future work, we intend to perform a sensitivity study
of the efficiency of ultrasonic and electrical stimulation to
variations in the network topology and synaptic gains. Here,
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these variations could potentially be interpreted as inter-subject
variability. Furthermore, target locations other than the STN
(e.g., globus pallidus or thalamus) can be investigated, as well
as co-stimulation of fibres of passage.
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