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Abstract 

Publicly available genetic summary data have high utility in research and the clinic including prioritizing 
putative causal variants, polygenic scoring, and leveraging common controls. However, summarizing 
individual-level data can mask population structure resulting in confounding, reduced power, and 
incorrect prioritization of putative causal variants. This limits the utility of publicly available data, 
especially for understudied or admixed populations where additional research and resources are most 
needed. While several methods exist to estimate ancestry in individual-level data, methods to estimate 
ancestry proportions in summary data are lacking. Here, we present Summix, a method to efficiently 
deconvolute ancestry and provide ancestry-adjusted allele frequencies from summary data. Using 
continental reference ancestry, African (AFR), Non-Finnish European (EUR), East Asian (EAS), Indigenous 
American (IAM), South Asian (SAS), we obtain accurate and precise estimates (within 0.1%) for all 
simulation scenarios. We apply Summix to gnomAD v2.1 exome and genome groups and subgroups 
finding heterogeneous continental ancestry for several groups including African/African American (~84% 
AFR, ~14% EUR) and American/Latinx (~4% AFR, ~5% EAS, ~43% EUR, ~46% IAM). Compared to the 
unadjusted gnomAD AFs, Summix’s ancestry-adjusted AFs more closely match respective African and 
Latinx reference samples. Even on modern, dense panels of summary statistics, Summix yields results in 
seconds allowing for estimation of confidence intervals via block bootstrap. Given an accompanying R 
package, Summix increases the utility and equity of public genetic resources, empowering novel 
research opportunities. 

 
Introduction 

Genetic summary data is a cornerstone of modern analyses. Allele frequencies (AFs) from publicly 
available data such as the genome Aggregation Database (gnomAD)1,2 and Allele Frequency Aggregator 
(ALFA) from dbSNP3 can be used to prioritize putative causal variants for rare diseases and as pseudo 
controls in case-control analysis 4–7. Compared to individual-level data, genetic summary data often has 
fewer barriers to access promoting open science and the broad use of valuable resources. However, 
summary-level genetic data frequently contain fine-scale and continental-level population structure. For 
instance, unquantified continental ancestry exists in gnomAD’s African/African American, 
American/Latinx, and Other groups as well as in other publicly available data (e.g. BRAVO server for 
TopMED)2,8. Using public data without accounting for the underlying population structure can lead to 
confounded associations and incorrect prioritization of putative rare causal variants.  
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The use of mixture models to estimate population structure has a history going back over two decades 
beginning with IMMANC 9 and later the commonly-used STRUCTURE10, originally using Dirichlet priors 
for multinomial modeling. Inference was performed via Markov Chain Monte Carlo, which limits 
tractability to datasets with thousands to tens of thousands of markers. As datasets grew with the 
advent of genome-wide arrays, and later with sequencing, new methods were designed with improved 
convergence characteristics such as the maximum-likelihood methods FRAPPE 11 and Admixture 12, as 
well as the variational method FastSTRUCTURE 13. Along the way, methods were developed to leverage 
pooled data14, e.g. iAdmix 15, with improvements to enhance supervised analysis in the Admixture 
framework 16. However, no method was designed explicitly and efficiently to model mixtures with 
genome-wide, summary statistic data that is common in modern genomics. 

Individuals and samples from understudied or admixed populations are most likely to lack large public 
resources with precisely matched ancestry data. As a result, researchers and clinicians working with 
these populations are often left with a suboptimal choice: use the closest, but still poorly matched 
ancestral group or do not use the publicly available and highly useful resource 7. The former has the 
potential to produce biased results in the very populations where additional high-quality research is 
needed, while the latter is likely to suffer from smaller sample sizes and thus a loss of statistical power. 
This choice exacerbates inequities in research on understudied and admixed populations 17,18 . These 
issues are magnified in the context of precision medicine where genetic summary data will likely not be 
sufficiently matched for the majority of people who themselves are a mixture of continental or fine-
scale ancestries. Thus, methods to estimate and adjust for population structure within publicly available 
genetic summary data are needed. 

Here, we present Summix, an efficient method that identifies, estimates, and adjusts for the proportion 
of continental reference ancestry in publicly available summary genetic data. We demonstrate the 
effectiveness of Summix in over 5,000 simulation scenarios and in gnomAD v2.1, including the ability to 
produce ancestry-adjusted AFs to tailor analyses to less-studied populations. Ultimately, Summix, and 
the accompanying R, Python, and Shiny app software, help to increase the efficacy and, importantly, the 
equity of valuable publicly available resources, especially for understudied and admixed samples.  

 
Material and Methods 
Summix 
Estimating ancestry proportions 
An observed single nucleotide polymorphism (SNP) AF can be described as a mixture of AFs across 
unobserved subgroups (e.g. continental ancestral populations). We estimate the group-specific mixing 
proportions, 𝜋𝑘, by minimizing the least-squares difference between vectors of N SNPs for the observed 
AF, 𝐴𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, and the AF generated from a mixture of K reference ancestry groups, 𝐴𝐹𝑟𝑒𝑓, 𝑘, as shown 

in Equation (1).  
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝑓(𝜋) =  ( 𝐴𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − ∑( 𝜋𝑘 ∗ 𝐴𝐹𝑟𝑒𝑓, 𝑘)

𝐾

𝑘=1

)

2

  

Subject to constraints:  𝜋𝑘 ≥ 0,   𝑘 = 1, … ,  𝐾 and     ∑ 𝜋𝑘
𝐾
𝑘=1 = 1 

 

(1)  
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This objective function is quadratic and, as such, is continuous, convex, and easily differentiable; the 
inequality constraints are linear. Hence, a feasible minimizer will fulfill the Karush-Kuhn-Tucker (KKT) 
conditions for optimality. We use Sequential Quadratic Programming (SQP)19,20 a gradient-based, 
iterative algorithm for constrained, nonlinear optimization to efficiently estimate the proportion of each 
reference group. We obtain confidence intervals for the continental ancestry proportions using block 
bootstrapping as described below. 

 

Ancestry-adjusted allele frequencies 
Using estimated continental ancestry proportions, we update the AFs in the observed data matching the 
continental ancestry proportions of an individual or sample as follows in Equation (2). To estimate the 
ancestry-adjusted AF, K-1 homogenous reference ancestries are used. The ancestry not used is indexed 
as 𝑙. In theory, ancestry 𝑙 can be any of the non-zero reference ancestry groups. Here, we choose 𝑙 to be 
the most common ancestry present in the summary data.  
 

 

𝐴𝐹∗
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

𝜋𝑡𝑎𝑟𝑔𝑒𝑡,𝑙

𝜋𝑙̂
( 𝐴𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − ∑ 𝜋𝑘̂𝐴𝐹𝑟𝑒𝑓,𝑘

𝑘≠𝑙

) + ∑ 𝜋𝑡𝑎𝑟𝑔𝑒𝑡,𝑘  𝐴𝐹𝑟𝑒𝑓,𝑘

𝑘≠𝑙

 (2)  

 

Where,  

𝐴𝐹𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
∗  is the ancestry-adjusted allele frequency 

𝑙 - ancestry group for which the reference allele frequency data is not used 

𝑘 - ancestry group index 

𝜋𝑡𝑎𝑟𝑔𝑒𝑡,𝑘  - population k ancestry proportion for target individual or sample 

𝜋̂𝑘  - estimated ancestry proportion of population k for observed publicly available summary data 

 𝐴𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  - allele frequency for observed publicly available summary data (e.g. gnomAD) 

𝐴𝐹𝑟𝑒𝑓,𝑘 - reference allele frequency for ancestry k; K-1 homogenous reference ancestries are used.  

 

  

Equation (2) can be used to estimate ancestry-adjusted AF for a homogenous population or an admixed 
population with given ancestry proportions. We evaluate both scenarios as described below. 
 
Data 
All data were on genome build GRCh37. 
 
1000 Genomes and Indigenous American data 
We used four continental ancestry groups from 1000 Genomes v5 phase 3 20150502 20, African (AFR), 
East Asian (EAS), non-Finnish European (EUR), and South Asian (SAS), and an Indigenous American (IAM) 
sample for the reference data. The IAM Affymetrix 6.0 data were downloaded from 
ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130711_native_american_admix_train  (data 
accessed October 2018) and had been previously harmonized with the 1000 Genomes data 21. 1000 
Genomes AF were calculated as previously described 22. IAM AFs were calculated using PLINK 1.9. We 
excluded the admixed populations from the 1000 Genomes AFR continental ancestry: Americans of 
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African Ancestry in SW USA (ASW) and African Caribbeans in Barbados (ACB). We merged the 1000 
Genomes and IAM data keeping the subset of SNPs in both datasets. We limited further to biallelic non-
palindromic SNPs with minor allele frequency (MAF)>1% in at least one continental ancestral group 
resulting in 613,298 SNPs. 
 
gnomAD v2.1 
Variants from gnomAD v2.1 (data accessed April 2019) were limited to biallelic and PASS resulting in 
13,742,683 and 196,606,976 SNPs in the exome and genome gnomAD samples respectively. After 
limiting further to MAF >1% in at least one gnomAD group and merging with the reference data, 9,835 
and 582,550 SNPs remained in the exome and genome data respectively.  
 
ClinVar 
ClinVar VCFs (GRCh37/hg19) were downloaded on September 25, 2020 from 
ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/. GnomAD v2.1 AF and ClinVar variants were merged by 
chromosome, base pair, and alleles. For three variants, there were multiple ClinVar allele IDs in the 
same position with the same alleles. All duplicate positions were retained. After merging and restricting 
to ClinVar classifications of “Uncertain Pathogenicity”, and “Conflicting reports of pathogenicity”, 42 and 
122 variants were present in the exome and genome data, respectively. Ancestry-adjusted AFs were 
estimated for an African sample from the African/African-Amercian gnomAD control AFs using gnomAD 
EUR as the reference sample. 
 
The American College of Medical Genetics (ACMG) guidelines23 designate >5% MAF in a control 
population as stand-alone strong evidence of a variant having benign impact for a rare Mendelian 
disorder. As such, for the classifications of “Uncertain Pathogenicity”, and “Conflicting reports of 
pathogenicity”, we identified variants where the ancestry-adjusted AF differed from the unadjusted AF 
with respect to the MAF > 5% threshold. Additionally, we identified variants with the classification 
“Pathogenic”, “Likely_pathogenic”, or “Pathogenic/Likely_pathogenic” with either adjusted or 
unadjusted AF above 5%. 
 
Simulations 

Using the 1000 Genomes as reference data, we simulated SNP genotypes for all combinations and 
subsets of the five continental populations. SNP genotypes were simulated using the rmultinom R 
function with probability defined from the AFs for the continental reference ancestral populations 
assuming Hardy-Weinberg Equilibrium. Ancestry proportions were chosen randomly within an assigned 
proportion bin to ensure coverage across the range of possible values especially at the edges of the 
distribution: 0-0.015, 0.010-0.055, 0.05-0.105, 0.10-0.255, 0.25-0.505. The simulated proportion for the 
Kth ancestry group was chosen so that the ancestry proportions summed to one. 

Simulating across all combinations of continental ancestry groups and the ancestry proportion bins 
resulted in 5,360 simulation scenarios. We used 1000 replicates within each simulation scenario to 
assess accuracy and precision. For each simulation replicate, we randomly sampled 100,000 SNPs. We 
define accuracy as the difference between the mean estimated ancestry proportion and simulated 
ancestry proportion. We define precision as the standard deviation of the simulation replicates. The 
simulation code is provided on the method’s GitHub site: 
https://github.com/hendriau/Summix_manuscript. 
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Real Data Application 
Estimating ancestry proportions 
Continental reference ancestry proportions were estimated using the summix R function for gnomAD 
v2.1 African/African American, American/Latinx, East Asian, Other, Non-Finnish European, and South 
Asian exome and genome including all subgroups (e.g. controls, non-neuro). To estimate the ancestry 
group proportions, the freezes of 9,830 and 582,421 SNPs in the exome and genome samples 
respectively were used. To assess stability of the estimates over different numbers of SNPs, we 
estimated the ancestry proportions from 1000 random samples of sets of N SNPs: 10, 50, 100, 500, 
1000, 2500, 5000, 10k, 50k, 100k for genomes, and 10, 50, 100, 500, 1000, 2500, 5000, 7500, 9000 for 
exomes. Finally, estimates of continental ancestry proportions from Summix using summary AF data 
were compared to estimates from ADMIXTURE 12 using individual-level data for a sample of N=85 
unrelated individuals from the Peruvian 1000 Genomes data. 

 
Block bootstrapping  
We used block bootstrapping to estimate uncertainty for the ancestry proportion estimates. We used 
the sex-averaged centimorgan (cM) map created from Bherer et al 24 to define 1 cM blocks throughout 
the genome. The na.approx function 9,25 from the zoo R package 25 was used to linearly interpolate cM 
for SNPs in our dataset that were not observed in Bherer et al. This resulted in 3357 1cM blocks across 
the genome. Five and 129 SNPs in the exome and genome data respectively that were outside the 
genetic regions contained in the Bherer et al data set were not linearly interpolated. This resulted in 
9,830 and 582,421 SNPs in 2206 and 3353 1cM blocks for the exome and genome gnomAD samples 
respectively. This final sample was used for all real data analysis. We used 1,000 bootstrap replicates to 
estimate 95% block bootstrap confidence intervals.  The lower and upper confidence intervals were 
estimated from the 2.5 and 97.5 percentiles of the block bootstrap distribution. 
 
Estimating ancestry-adjusted allele frequencies 
We estimated and assessed ancestry-adjusted AFs for two samples: (1) an African sample (100% African) 
estimated from the African/African American gnomAD AFs and (2) an admixed Peruvian sample with 
average ancestry proportions of 74.6% Indigenous American, 19.9% European, 2.8% African ancestry, 
2.7% East Asian ancestry estimated from the American/Latinx gnomAD AFs. The continental ancestry 
proportions for the admixed Peruvian population were estimated from a subset of unrelated individuals 
(N = 85) from the 1000 Genomes Peruvian sample using ADMIXTURE 12. For both the African sample and 
the Peruvian sample, ancestry-adjusted AFs were estimated using reference AF from either 1000 
Genomes or gnomAD. We used reference groups with ≥2% estimated ancestry proportion in the 
observed gnomAD v2.1 group and normalized the estimated ancestry proportions to total 1. This 
resulted in K=2 ancestry groups for the African/African American group and K=4 for the American/Latinx 
group. For the African/African American group with K=2 reference groups, non-Finnish European 
reference AFs were used (excluding African reference). For the Peruvian population where K=4, non-
Finnish European, African, and East Asian reference AFs were used (excluding Indigenous American 
reference). To estimate the Peruvian ancestry-adjusted AFs using gnomAD reference populations, 
ancestry-adjusted AFs for a 100% African sample were estimated from the gnomAD African/African 
American reference group.  
 
To assess the accuracy of the ancestry-adjusted estimates, we compared the ancestry-adjusted and 
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unadjusted gnomAD AFs to 1000 Genomes AFs for the target ancestral population (i.e. African or 
Peruvian Latinx). For these comparisons, we filtered out variants that were called in fewer than 25% of 
the gnomAD group. This removed 120 and 128 variants for African/African American and 
American/Latinx gnomAD exome groups and 8 and 11 variants for African/African American and 
American/Latinx gnomAD genome groups, respectively. We calculated both the absolute and relative 
difference as shown in Equation (3).  

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝐴𝐹∗ − 1000𝐺 𝐴𝐹|  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝐴𝐹∗  −  1000𝐺 𝐴𝐹|

1000𝐺 𝑀𝐴𝐹
  

 

where 𝐴𝐹∗is the ancestry-adjusted or unadjusted AF 

(3)  

 

To test whether differences varied by adjustment group, we use a linear mixed effects model with SNP 
and cM block as random effects with the lmer function from the lme4 package26. We tested all SNPs as 
well as within AF bins defined by the target 1000 Genomes reference ancestry (AF bin: <0.01, 0.01-0.02, 
0.02-0.05, 0.05-0.1, 0.1-0.3, 0.3-0.5, 0.5-0.7, 0.7-0.9, 0.9-0.95, 0.95-0.98, 0.98-0.99, ≥0.99). Pairwise 
comparisons were adjusted for post-hoc multiple testing using Tukey adjustment. We assessed 
agreement between 1000 Genomes and ancestry-adjusted AFs or unadjusted AFs using Lin’s 
Concordance Correlation Coefficient (Lin’s CCC) 27,28 and 95% confidence intervals estimated using the 
CCC function in the DescTools R package version 0.99.38 29.  
 
Reanalysis of PADI3 
To demonstrate the utility of Summix’s ancestry-adjusted estimates in case-control analysis using 
external controls, we reanalyzed data from Malki et al 7. Malki et al. used gnomAD v2.1 African/African 
American as controls in a case-control analysis to show that PADI3 is associated with Central Centrifugal 
Cicatricial Alopecia in women of African ancestry 7. We estimated the ancestry-adjusted AF for PADI3 
variants identified by Malki et al. for a sample with 100% African ancestry. Ancestry-adjusted allele 
counts (ACs) were estimated by multiplying the ancestry-adjusted AF by the variant specific allele 
number. The number of individuals in gnomAD v2.1 with at least one minor allele were calculated as the 
number of minor alleles minus the number of homozygotes. Using the case numbers reported from 
their manuscript, we repeated the case-control analysis using the original unadjusted gnomAD v2.1 data 
and the ancestry-adjusted gnomAD v2.1 results for a homogeneous African sample. As in Malki et al., we 
provide p-values for both a chi-square (𝜒2) test of independence and Fisher’s exact test. 
 
Software and code 
Summix is available in R and Python. The Python (v3.7) package, summixpy, contains two main Python 
scripts. The first function, summix.py, estimates the proportions of reference ancestry groups for an 
observed sample. The second function, adjAF.py, estimates the ancestry-adjusted AF. The package 
contains example genetic data and analysis presented in a Jupyter Notebook all of which are hosted, 
along with the package here: https://github.com/jordanrhall/summix_py. 
 
The Summix R package enables both estimation of reference ancestry groups using the summix function 
and ancestry-adjusted AFs using the adjAF function. More details including example data and 
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implementation are available in our package, which is hosted on Bioconductor and our GitHub site: 
https://github.com/hendriau/Summix.  
 

Shiny app 

The Shiny app can be found here: http://shiny.clas.ucdenver.edu/Summix. Within the Shiny app, users 
can estimate and visualize ancestry proportions for three gnomAD ancestry groups (i.e. African/African 
American, American/Latinx, Other) for both the exome and genome data.  

 

Results 
Simulations 
Summix achieved accuracy within 0.001% and precision within 0.1% across all simulation scenarios 
(Tables S1-S5, Figures 1, S1-S4). Accuracy of the proportion estimates was consistent across the range of 
simulated mixture proportions with a slight increase in bias near 0 and 1. While bias and variability in 
the estimates was small for all ancestral groups, AFR had the lowest variability followed by IAM, EAS, 
EUR, and then SAS with the highest variability across simulation replicates (Tables S1-S5, Figures 1, S1-
S4). For simulation scenarios with non-zero proportions simulated for all five ancestry groups, the 
standard deviation was: SDAFR=4.31E-05, SDIAM=5.53E-05, SDEAS=7.58E-05, SDEUR=9.18E-05, SDSAS=1.21E-
04. This trend was consistent across all simulation scenarios.  
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Figure 1. Simulation results for five ancestry parameters. Accuracy is defined as the absolute difference 
between the estimated ancestry proportions and given ancestry proportions within simulations. Five 
reference ancestries were used to simulate genotypes of an admixed population. A) Accuracy separated 
by ancestry. B) Accuracy separated by minor allele frequency. C) Accuracy separated by both ancestry 
and minor allele frequency. 
 
Application to gnomAD 
Estimating ancestry proportions 
We estimated the proportion of reference continental ancestry groups in gnomAD v2.1 African/African 
American, American/Latinx, East Asian, Other, Non-Finnish European, and South Asian groups and 
subgroups (e.g. controls, non-TopMED) for both the exome and genome data (Tables 1, S6, S7). As 
expected, the African/African American groups have primarily AFR (>80%) and EUR ancestry (~15%) 
likely due to contribution from African American individuals. The exome and genome American/Latinx 
gnomAD groups had high proportions of both EUR and IAM ancestry (i.e. >35%) and ancestry proportion 
estimates between 1-6% for the other reference groups. Interestingly, >1% SAS ancestry was estimated 
in both the exome and genome American/Latinx gnomAD groups perhaps due to misspecification from a 
limited number of reference groups. The exome and genome Other gnomAD groups were primarily EUR 
reference ancestry (>77%). The estimated reference proportions for Non-Finnish Europeans and East 
Asian were very homogeneous with >96% EUR and 100% EAS estimated reference ancestries, 
respectively. The South Asian gnomAD exome group had 85% estimated SAS ancestry and ~15% 
estimated EUR reference ancestry as expected due to the known ancient admixture events in the 
region30–32.  

Table 1. Estimated ancestry proportions for gnomAD groups (95% Block Bootstrap CI) 

Genome 

  African/ 
African American 

(N=4,359) 

American/ 
Latinx  

(N=424) 

Other 
(N=544) 

Non-Finnish 
European 
(N=7,718) 

East Asian 
(N=780) 

South Asian 
(N=0) 

AFR 0.825  
(0.824, 0.825) 

0.0581  
(0.0570, 0.0591) 

0.0467  
(0.0457, 0.0477) 

0.0000  
(0.0000, 0.0000) 

0.0000  
(0.0000, 0.0000) 

-- 

EAS 0.005  
(0.004, 0.006) 

0.0381  
(0.0355, 0.0408) 

0.0335  
(0.0315, 0.0355) 

0.0000  
(0.0000, 0.0001) 

1.0000  
(1.0000, 1.0000) 

-- 

EUR 0.157 
(0.156, 0.158) 

0.5048  
(0.5020, 0.5074) 

0.7928  
(0.7902, 0.7956) 

0.9644  
(0.9619, 0.9669) 

0.0000  
(0.0000, 0.0000) 

-- 

IAM 0.008  
(0.008, 0.009) 

0.3796  
(0.3775, 0.3818) 

0.0432  
(0.0418, 0.0447) 

0.0161  
(0.0149, 0.0171) 

0.0000  
(0.0000, 0.0000) 

-- 

SAS 0.005  
(0.004, 0.006) 

0.0194  
(0.0158, 0.0229) 

0.0838  
(0.0801, 0.0872) 

0.0195  
(0.0169, 0.0222) 

0.0000  
(0.0000, 0.0000) 

-- 

Exome 

  African/ 
African American 

(N=8,128) 

American/ 
Latinx  

(N=17,296) 

Other 
(N=3,070) 

Non-Finnish 
European 

(N=56,885) 

East Asian 
(N=9,197) 

South Asian 
(N=15,308) 

AFR 0.8402  
(0.8382, 0.8421) 

0.0430  
(0.0393, 0.0467) 

0.0339  
(0.0315, 0.0365) 

0.0000 
(0.0000, 0.0000) 

0.0000 
(0.0000, 0.0000) 

0.0020 
(0.0000, 0.0041) 

EAS 0.0052  
(0.0009, 0.0086) 

0.0487 
(0.0398, 0.0592) 

0.0460  
(0.0412, 0.0513) 

0.0000  
(0.0000, 0.0003) 

1.0000 
(1.0000, 1.0000) 

0.0000 
(0.0000, 0.0000) 
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Despite large differences in sample sizes, the estimated proportion of reference ancestry groups was 
similar (i.e. within 2%) between exome and genome samples for all groups except American/Latinx 
where the exome and genome estimates differed by >5% for the EUR and IAM reference proportions. 
The reference ancestry proportion estimates for the gnomAD v2.1 subgroups (i.e. controls, non_cancer, 
non_neuro, and non_topmed) were mostly similar, within ~2% of each other and of the overall gnomAD 
v2.1 group estimates. The exception was for the American/Latinx and Other genome groups, which 
sometimes varied by 5-10%. These groups had sample sizes (N<600) and thus were likely more 
susceptible to the inclusion or exclusion of subsamples of individuals. Complete results are shown in 
Table S6-S7. 
 

We evaluated Summix’s ability to estimate reference ancestry proportions using smaller numbers of 
randomly chosen SNPs. We find that the ancestry proportion estimates stay unbiased regardless of the 
number of SNPs used to estimate ancestry while the precision decreases as the number of SNPs 
decreases. The precision is still fairly tight for down to ~500 SNPs, especially when estimating the 
African/African American gnomAD samples (exomes: SDAFR=0.0039, SDIAM=0.0052, SDEAS=0.0054, 
SDEUR=0.0065, SDSAS=0.0067). This suggests that far fewer SNPs are likely needed to arrive at sample 
estimates of ancestry proportions (Figure 2, Figure S5).  

EUR 0.1461  
(0.1420, 0.1488) 

0.4320  
(0.4229, 0.4408) 

0.7800  
(0.7746, 0.7866) 

0.9752  
(0.9687, 0.9816) 

0.0000 
(0.0000, 0.0000) 

0.1504 
(0.1444, 01568.) 

IAM 0.0086  
(0.0055, 0.0117) 

0.4629  
(0.4553, 0.4707) 

0.0506  
(0.0473, 0.0541) 

0.0082  
(0.0049, 0.0115) 

0.0000 
(0.0000, 0.0000) 

0.0023 
(0.0000, 0.0051) 

SAS 0.0000  
(0.0000, 0.0061) 

0.0134  
(0.0000, 0.0269) 

0.0894  
(0.0799, 0.0976) 

0.0165  
(0.0089, 0.0234) 

0.0000 
(0.0000, 0.0000) 

0.8454 
(0.8377, 0.8520) 
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Figure 2.  Precision in ancestry estimates for AFR and AMR gnomad groups by number of SNPs. 
Number of SNPs (x-axis), estimated ancestry proportion (y-axis) for 1,000 replicates; A) AFR exome. B) 
AMR exome. 
 
Ancestry-adjusted allele frequencies 
For both exome and genome data, we estimated the ancestry-adjusted AF for gnomAD African/African 
American for a target sample with 100% continental African ancestry and for gnomAD American/Latinx 
for a target Peruvian sample with 74.6% Indigenous American, 19.9% European, 2.8% African ancestry, 
2.7% East Asian ancestry proportions. Compared to the unadjusted AFs, the ancestry-adjusted AFs had 
significantly smaller absolute and relative differences with the target group AF (Table 2, Tables S8-S9, p 
< 1E-16) regardless of reference data used (i.e. 1000 Genomes or gnomAD). The relative difference was 
greatest at small MAF while the absolute difference increased as AF increased, consistent with 
expectation. For SNPs with an alternative AF > 0.9 in 1000 Genomes, the absolute and relative 
difference between the unadjusted gnomAD and target 1000 Genomes AFs was especially large. This is 
likely due to both a relatively small number of SNPs in these groups and differences between 1000 
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Genomes samples and the reference genome. The absolute and relative differences in SNPs with AF > 
0.9 is considerably reduced for the ancestry-adjusted AFs (Figures 3-4, Tables 2, S8-S9). 
 

 

Table 2. Absolute and relative difference between unadjusted and adjusted gnomAD AF and target sample in the 
exome data. 

  means (95% CI) p-value 

  unadj (1) anc-adj  
1000G ref (2) 

anc-adj gnomAD 
ref (3) 

1 vs. 2 1 vs. 3 2 vs. 3 

AFR absolute 0.0268 
(0.0264, 0.0271) 

0.0117  
(0.0114, 0.0121) 

0.0114  
(0.0110, 0.0117) 

< 1E-16 < 1E-16 0.123 

relative 0.5592  
(0.5355, 0.5828) 

0.1539  
(0.1302, 0.1775) 

0.1387  
(0.1151, 0.1624) 

< 1E-16 < 1E-16 0.545 

AMR absolute 0.0457  
(0.0446, 0.0467) 

0.0349  
(0.0339, 0.0360) 

0.0350  
(0.0339, 0.0360) 

< 1E-16 < 1E-16 0.989 

relative 0.5318  
(0.5174, 0.5462) 

0.3610  
(0.3466, 0.3754) 

0.3631  
(0.3487, 0.3775) 

< 1E-16 < 1E-16 0.926 
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Figure 3. Ancestry-adjusted vs. unadjusted allele frequency for gnomAD African/African American 
exomes for a target sample with African ancestry. Ancestry-adjusted AF was estimated for a target 
sample with 100% African ancestry using gnomAD (orange) or 1000 Genomes (blue) Non-Finnish 
European as reference and compared to unadjusted AF (purple) for 9,710 SNPs. A) ancestry proportions 
for gnomAD African/African American exomes (AFR = 0.852, EUR=0.148) and target sample (AFR = 1); B) 
absolute difference between target sample AF (1000 Genomes African ancestry) and unadjusted or 
ancestry-adjusted gnomAD AF by 1000 Genomes AF category; C) relative difference between target 
1000 Genomes African ancestry AF and unadjusted or ancestry-adjusted gnomAD AF by 1000 Genomes 
AF category; unzoomed figures B and C are available in the supplemental (Figure S10). D) scatter plot of 
target sample 1000 Genomes AF (y-axis) and unadjusted (left), ancestry-adjusted with gnomAD 
reference (center), and ancestry-adjusted with 1000 Genomes reference (right) gnomAD AF (x-axis). 
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Figure 4. Ancestry-adjusted vs. unadjusted allele frequency for gnomAD American/Latinx exomes for a 
target sample of Peruvian ancestry. Ancestry-adjusted AF was estimated for a target Peruvian sample 
using gnomAD (orange) or 1000 Genomes (blue) East Asian, European, and African as reference 
ancestral populations and compared to unadjusted AF (purple) for 8,633 SNPs. A) normalized ancestry 
proportions estimated for gnomAD American/Latinx exomes (purple AFR = 0.044, orange EAS=0.049, 
blue EUR=0.438, green IAM=0.469) and target Peruvian ancestry proportions (purple AFR = 0.028, 
orange EAS=0.027, blue EUR=0.199, green IAM=0.746); B) absolute difference between target 1000 
Genomes Peruvian ancestry AF and unadjusted or ancestry-adjusted gnomAD AF by 1000 Genomes AF 
category; C) relative difference between target 1000 Genomes Peruvian ancestry AF and unadjusted or 
ancestry-adjusted gnomAD AF by 1000 Genomes AF category; unzoomed figures B and C are available in 
the supplemental (Figure S11). D) scatter plot of target 1000 Genomes AF (y-axis) and unadjusted (left), 
ancestry-adjusted with gnomAD reference (center), and ancestry-adjusted with 1000 Genomes 
reference (right) gnomAD AF (x-axis). 
 
The ancestry-adjusted AFs using 1000 Genomes or gnomAD as reference data were very similar. In the 
exome data, we observed no systematic significant absolute or relative differences between reference 
datasets (i.e. gnomAD reference vs. 1000 Genomes reference) with the exception of relative difference 
for the African 0-0.01 bin. Likely due to larger numbers of SNPs in the genome data, we do see 
significant, albeit very small, differences by reference ancestry between the ancestry-adjusted AF and 
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the AFs in the target 1000 Genomes sample (Tables S8-S9). These differences, while statistically 
significant, were 10 to 100 times smaller compared to the unadjusted AF. 
 
Lin’s CCC was used to estimate agreement between the target sample and the gnomAD AF. In gnomAD 
exomes, Lin’s CCC estimates were higher for the ancestry-adjusted compared to the unadjusted AFs 
regardless of reference data for both the African group (estimate [95% CI]: adj gnomAD_ref = 0.9977 
[0.9976, 0.9978]; adj 1000G_ref = 0.9976 [0.9975, 0.9977], unadj = 0.9866 [0.9862, 0.9870]) and 
American group (adj gnomAD_ref = 0.9689 [0.9676, 0.9702]; adj 1000G_ref = 0.9691 [0.9678, 0.9704]; 
unadj = 0.9438 [0.9417, 0.9458]). We found similar results for the gnomAD genome data. Both the 
ancestry-adjusted and unadjusted AFs differ more for the gnomAD American/Latinx group compared to 
the target 1000 Genomes Peruvian AFs than for the African comparison. This is perhaps due to a larger 
number of reference ancestry groups or more heterogeneity in Latinx compared to African American 
samples.  
 
Within the gnomAD genome data, we identified some SNPs with a large mismatch between 1000 
Genomes and gnomAD AF (Figures S6 – S9). These SNPs appear to be mostly multi-allelic with one or 
more indels as the additional alleles (Tables S10-S11). We recommend caution when using these multi-
allelic variants as more research and potentially external validation are likely needed to estimate the 
true AF of all alleles present. 
 
Summix vs ADMIXTURE Ancestry Estimates 
We estimated ancestry proportions for the 1000 Genomes Peruvian sample of 85 unrelated individuals 
using AFs with Summix and individual-level data with ADMIXTURE. Assuming four reference ancestry 
groups, we estimate 0.033 AFR (0.032, 0.035), 0.035 EAS (0.031, 0.039), 0.209 EUR (0.206, 0.212), 0.723 
IAM (0.719, 0.726) for Summix compared to 0.028 AFR, 0.027 EAS, 0.199 EUR, 0.746 IAM for 
ADMIXTURE.  
 
Reanalysis of PADI3 
Summix can be used to estimate and adjust for ancestry in analyses that use gnomAD and other 
summary data as external controls. As an exemplar, we repeated the case-control analysis of PADI3 
from Malki et al 7. We found the p-values were higher for the ancestry-adjusted allele counts (ACs) (chi-
squared p-value = 0.114, Fisher’s exact test p-value = 0.101) compared to the unadjusted gnomAD v2.1 
African/African American ACs (chi-squared p-value = 0.029, Fisher’s exact test p-value = 0.031) (Tables 
S12-S13). As expected, this shows that association results are not robust to differences in ancestry. It is 
likely that the cases used by Malki et al 7 were not 100% African ancestry. Summix could be used to 
estimate ancestry-adjusted AC in gnomAD given the exact ancestry proportions in the cases. We expect 
the p-values of association would likely lie between the unadjusted and adjusted p-values provided 
given the proportion of African ancestry is likely between gnomAD unadjusted (0.852) and adjusted (1).  
 
ClinVar 
As an exemplar for the potential utility of ancestry-adjusted AF in clinical settings, we compare the 
ancestry-adjusted AF for 100% African ancestry to the unadjusted AF for the gnomAD African/African 
American sample for a subset of Clinvar variants labeled as pathogenic, uncertain pathogenicity, or 
conflicting reports (Methods).  
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Based on previous ACMG guidelines23, we focused on variants labeled as either “Uncertain 
Pathogenicity”, and “Conflicting reports of pathogenicity.” We identified 68 unique ClinVar variants at 
67 positions on the exome and genome (including 11 variants that were identified on both the exome 
and genome) where the ancestry-adjusted AF was above 5% and unadjusted AF was below 5%; and 42 
variants at 41 positions where the ancestry-adjusted AF was below 5% and the unadjusted AF was above 
(5 of these variants were identified on both the exome and genome).  Overall, we find minor differences 
of less than 0.05 between ancestry-adjusted and unadjusted AF. Eleven variants had differences greater 
than 0.05 in AF (Table S14). Some of these variants likely warrant further follow-up.  
 
We identified 29 variants with unique ClinVar IDs (18 in the genome data, 2 in the exome data, and 9 in 
both the exome and genome data) listed as pathogenic or likely-pathogenic in ClinVAR with AF>5% for 
either the unadjusted or adjusted gnomAD African/African American samples respectively. All but three 
of these variants had adjusted and unadjusted AF>5% with most variants being very common (e.g. 
MAF>20%) (Table S15). Further inspection of these variants indicated little to no support for 
pathogenicity. Most of these (N=24) do not have assertion criteria provided and 13 were submitted to 
the ClinVar repository well before the 2015 update to the ACMG guidelines prompted by increased use 
of high-throughput sequencing33. These variants likely require further review. One of the variants 
identified as pathogenic and having a high AF is rs429358, one of two variants that defines the APOE-ε4 
allele that infers an increased risk of Alzheimers. The high AF for rs429358 is expected. The APOE-ε4 
allele confers increased risk of Alzheimer's Disease in various ancestries including European34 and 
African35,36 although heterogeneity is observed in effect size and allele frequency across ancestries37. 
 
Discussion 

Here we describe Summix, a fast, accurate, and precise method to estimate and adjust for population 
structure within publicly available genetic summary data. We evaluate Summix in over 5,000 simulation 
scenarios showing the accuracy and precision is within 0.001% and 0.1% respectively. In gnomAD, we 
find heterogeneous ancestry similar to what is expected in African/African American, American/Latinx, 
Other, and South Asian groups. We provide ancestry proportion estimates for all gnomAD groups and 
subgroups as well as ancestry adjusted AFs for an African sample and for a Peruvian sample for others to 
use.  

Using the estimated proportion of continental ancestry groups, we produce ancestry-adjusted AFs for 
target samples with either continental African ancestry or Peruvian ancestry. When comparing to a 
sample with matching ancestry, we find that the unadjusted AFs differ significantly more than the 
ancestry-adjusted AFs regardless of reference ancestry data used (i.e. gnomAD vs 1000 Genomes). The 
African ancestry-adjusted AFs are more similar to the target 1000 Genomes African AFs than the 
Peruvian ancestry-adjusted AFs are to the target 1000 Genomes Peruvian sample. The increased 
dissimilarity for the Peruvian sample may be due to more than two predominant reference ancestry 
groups, or ancestral differences (including admixture) between gnomAD American/Latinx and 1000 
Genomes Peruvian.  

While the AFs of putative causal variants from a breadth of ancestral populations in public databases is 
useful for assessing evidence for clinical pathogenicity of a genetic variant, checking the AF in an 
ancestral sample that matches the ancestry of the person with the disease is most useful. Summix can 
be used to provide ancestry-adjusted AFs to precisely match ancestry increasing clinical utility of public 
datasets that may not have an ancestry that matches the patient. Additionally, Summix can produce 
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ancestry-adjusted AFs matching the ancestry proportions for an external control sample. Here, we  
evaluate the potential utility of Summix by producing ancestry-adjusted AFs for ClinVar variants and for 
a case-control analysis of PADI3, a gene where gnomAD was used as external controls to identify 
association with Central Centrifugal Cicatricial Alopecia in women with African ancestry. While we find 
mostly minor discrepancies in the unadjusted and ancestry-adjusted AFs, we note that these differences 
can result in changed levels of evidence of association for case control analysis and for prioritization of 
putative causal variants for follow up. This emphasizes the importance of matching by or adjusting for 
ancestry differences whenever possible.  
Here, we estimate genome-wide continental ancestry proportions. While the mean local ancestry 
proportions for a sample often approach genome-wide ancestry proportions 38, there may exist regions 
of the genome, e.g. regions of selection, where the local ancestry for the sample differs substantially 

from genome-wide ancestry proportions 39, 40. We expect the ancestry-adjusted AF estimates may be 
less accurate in regions where the average local ancestry proportions differ from the genome-wide 
estimates. Our results suggest that Summix can estimate ancestry proportions accurately, although 
much less precisely, using a relatively small number of randomly chosen SNPs (e.g. ~100). This suggests 
that Summix may be able to estimate the proportion of local continental ancestry. Here, we evaluate 
subsets of randomly chosen SNPs, albeit reflecting genome-wide coverage. It could be that using 
ancestry informative markers (AIMs)41 or removing uninformative markers could increase the precision 
of Summix further enabling the estimation of local ancestry proportions. 

There are several drawbacks to our current method and implementation. First, our method is currently 
only able to estimate the proportion of provided reference ancestry groups. We recommend the user 
include all expected ancestral populations in the reference dataset. Second, here we only evaluate the 
ability of Summix to estimate five broad continental ancestries. We are actively working on an extension 
to identify and estimate the proportion of ancestry not in the reference data and are evaluating the 
performance of Summix on a broader reference panel including fine-scale ancestry.  Lastly, differences 
in ancestry is not the only aspect of public databases that can cause confounding in analyses using 
external public controls. Differences in sequencing technology and computational variant calling 
pipelines can also cause biases in allele frequencies due to non-exchangeability of individuals. Many 
methods have been and are being developed to adjust for this bias when using external controls 4–6,42,43. 

There are many extensions and applications for Summix beyond those evaluated here. First, Summix can 
be used with any reference ancestry data needing only AFs. While we provide ancestry-adjusted AFs for 
a sample, the ancestry-adjusted AFs could be used for individuals providing potential utility in the clinic. 
Summix has the potential to be applied to other summary datasets where AFs are provided or can be 
derived such as GWAS summary statistics, which are widely available online 44. Lastly, Summix has 
similarities to deconvolution methods used in single-cell and other ‘omics data types45–47, suggesting 
paths of future development and application.  

We provide an R package, Python function, Shiny app, and GitHub site to encourage reproducibility, 
broad use, and further development of our method. We hope that the methods presented here will be 
used and extended to improve the utility of valuable publicly available resources especially for 
individuals and studies with admixed or understudied ancestry.  
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Supplemental Data include eleven figures and fifteen tables. 
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available at https://github.com/hendriau/Summix and on Bioconductor. The Summix Python package is 
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