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Abstract

Many computational methods have been developed for inferring causality among genes
using cross-sectional gene expression data, such as single-cell RNA sequencing
(scRNA-seq) data. However, due to the limitations of scRNA-seq technologies,
time-lagged causal relationships may be missed by existing methods. In this work, we
propose a method, called causal inference with time-lagged information (CITL), to infer
time-lagged causal relationships from scRNA-seq data by assessing conditional
independence between the changing and current expression levels of genes. CITL
estimates the changing expression levels of genes by “RNA velocity”. We demonstrate
the accuracy and stability of CITL for inferring time-lagged causality on simulation
data against other leading approaches. We have applied CITL to real scRNA data and
inferred 878 pairs of time-lagged causal relationships, with many of these inferred
results supported by the literature.

Author summary

Computational causal inference is a promising way to survey causal relationships
between genes efficiently. Though many causal inference methods have been applied to
gene expression data, none considers the time-lagged causal relationship, which means
that some genes may take some time to affect their target genes with several reactions.
If relationships between genes are time-lagged, the existing methods’ assumptions will
be violated. The relationships will be challenging to recognize. We demonstrate that
this is indeed the case through simulation. Therefore, we develop a method for inferring
time-lagged causal relationships of single-cell gene expression data. We assume that a
time-lagged causal relationship should present a strong association between the cause
and the effect’s changing. To calculate such correlation, we first estimate the derivative
of gene expression using the information from unspliced transcripts. Then, we use
conditional independent tests to search gene pairs satisfying our assumption. Our
results suggest that we could accurately infer time-lagged causal gene pairs validated by
published literature. This method may complement gene regulatory analysis and
provide candidate gene pairs for further controlled experiments.

Introduction 1

Single-cell RNA sequencing (scRNA-seq) is a technology capable of measuring the 2

expression level of RNA at the single-cell resolution [1]. Rapidly growing scRNA-seq 3
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data opens the door to a sufficiently powered inference of causality among genes. 4

Several computational methods have been developed for causal inference from 5

cross-sectional data (e.g., [2–4]) or time-series data (e.g., [5]). These methods have been 6

applied with some success on biological data [6–8]. 7

With reference to the time factor in causal inference, casual relationships among 8

genes can be categorized into instant relationships and time-lagged relationships. In this 9

study, we focus on the second. A time-lagged relationship is illustrated in Fig 1. The 10

expression level of gene i at t0 will affect the expression level of gene j at t1, which is 11

denoted by the black arrow connecting gene i with gene j. Note that with a time-lagged 12

relationship, the expression level of gene i may not be related to the expression level of 13

its target gene j at a specific time t0. 14

Fig 1. Illustration of a time-lagged relationship across three time points. The
gray rectangles represent different individual cells. Multi-trace measurements of three
cells (top) and one cell’s continuous measurements (bottom) are shown.

There are two main challenges to infer time-lagged causality on scRNA-seq data: the 15

collection of longitudinal data and the presence of latent variables. First, it is difficult 16

to continuously monitor the whole transcriptome within one cell. Of note, even when 17

cells can be sequenced at different time points [9], such data cannot be considered as 18

real time-series data because they capture different cells instead of the same set of cells. 19

In Fig 1, the connections between time points are broken because distinct cell 20

populations are studied. That is, we are not able to trace the evolutions of cells across 21

different time points. We refer to such data as multi-trace data, where cells are collected 22

from different time points. We will investigate whether such data may help us infer 23

causality among genes through simulation studies. The reason why continuous measures 24

matter is that there are natural confounders in inferring time-lagged causality on 25

cross-sectional scRNA-seq data. For every cell, only the expression levels of genes (the 26

colored ovals in the bottom part of Fig 1) at time point t1 can be obtained from 27

sequencing. For time-lagged relationships, the expression levels of the causal genes at 28

the previous time point, i.e., t0, act as confounders between the current expression levels 29

of the causal genes and their targets’ expression levels. As shown in Fig 1, the 30

time-lagged causal gene pairs are not linked directly. If the expression levels of causal 31

genes at previous time points are not considered, the association between the current 32

expression levels of the causal genes and their targets can be low or even in the opposite 33

direction. Throughout this paper, we refer to such confounders as natural confounders. 34

This problem was noted previously [10] but has not been well addressed in the existing 35

literature. 36

The second challenge is that unmeasured variables, also referred to as latent 37

variables, are common in scRNA-seq experiments. scRNA-seq can capture the 38

expression levels from 2000 to 6000 genes in a cell, where many genes with 39

low-expression levels may not be captured. Besides, the causal path from one gene to 40

another often involves many biological molecules which cannot be detected by 41

scRNA-seq, such as proteins, metal ions, and saccharides. Together with low-expression 42

genes, these latent variables are common for scRNA-seq data. However, many existing 43

methods for causal inference assume the absence of latent variables, and as a result, 44

may have difficulty in inferring causality from scRNA-seq data. 45

Here, we propose CITL (causal inference with time-lagged information), a method to 46

infer the time-lagged causal relationships among genes in scRNA-seq data capable of 47

overcoming the two challenges mentioned above. CITL uses RNA velocity information 48

inferred from scRNA-seq data to estimate the changing expression levels of genes. By 49

assessing conditional independence between the changing and current expression levels, 50

CITL can more accurately infer time-lagged relationships than a commonly-used 51
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cross-sectional causal inference algorithm, the PC-stable algorithm [4] in simulations. 52

Compared with [8], which also uses RNA velocity to infer causality, CITL is more stable 53

in simulation studies and may better identify time-lagged causality from extensive real 54

data. On real scRNA-seq data, we show the concordance between the time-lagged 55

causal relationships inferred by CITL and regulatory pathways curated by published 56

literature. Our results also suggest that time-lagged causality may represent the 57

relationships involving multi-modal variables. 58

Materials and methods 59

Causal inference with time-lagged information (CITL) 60

We make the following assumption for our causal inference: 61

Time-Lagged Assumption: if the current expression level of gene i Xcur
i is strongly 62

correlated with the changing expression level of gene j Xcha
j , then gene i is inferred to 63

be the cause of gene j in a time-lagged manner. 64

A strong correlation means that Xcur
i and Xcur

j are dependent conditioning on other 65

variables, which can be assessed by the conditional independence (CI test). With this 66

assumption, the Xcha of a gene is not related to its Xcur value but is correlated with the 67

Xcur of its causal genes. Therefore, the Xpre
i , the natural confounder between Xcur

i and 68

Xcur
j , does not directly influence Xcha

j . Xpre
i can influence Xcha

j only through Xcur
i , 69

which means it is not a natural confounder for the correlation between Xcur
i and Xcha

j . 70

RNA velocity [11] offers a way to estimate gene expression changes based on spliced 71

mRNA and unspliced RNA information. CITL uses RNA velocity for a unit of time as 72

the changing expression level Xcha and the extrapolated expression levels in a unit of 73

time as the subsequent expression level Xsub. Note that we use a fixed unit time in this 74

manuscript as an approximation, although the length of time that different genes exert 75

effects on other genes may differ. For consistency, we used the same parameters 76

described in [11] to calculate RNA velocity. 77

To infer time-lagged causal relationships, CITL first constructs an undirected graph 78

(UG) through both Xcur and Xcha. Each node in the UG represents the Xcur or Xcha
79

of a gene. Each edge in the UG represents the dependency between the Xcur (or Xcha) 80

of a gene and that of another gene. The dependency is assessed by CI test conditional 81

on at most k (≤ the number of nodes n) genes. CITL then focuses on the edges linking 82

the Xcur of some genes to the Xcha of others. If the Xcur of a gene is linked to the 83

Xcha of another in the UG, the former gene is assigned as the cause of the latter gene. 84

We note that the Xcur (or Xcha) of some genes can be linked to each other. We assume 85

that these connections do not represent time-lagged relationships. Thus they are not the 86

focus of this work. We provide an open-source command-line tool of CITL at 87

https://github.com/wJDKnight/CITL. 88

Comparisons with other methods 89

We compared the performance of CITL versus a commonly-used causal Bayesian 90

network method, PC-stable [4], and a recently published causal inference method for 91

scRNA-seq data [8], Scribe. PC-stable first constructs a UG as well. Therefore, CITL 92

adopts the same strategy to construct the UG by using the bnlearn package [12]. The 93

difference is that PC-stable uses probabilistic dependency to determine causal direction 94

under three assumptions: Causal Sufficiency, Causal Markov Assumption, and 95

Faithfulness [2, 13]. We compare the performance of CITL with the PC-stable through 96

simulations under different approaches of analyzing scRNA-seq data as detailed in the 97

following. 98
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� Approach 1: PC-stable, using only Xcur. This is the simple adoption of the causal 99

inference methods to scRNA-seq data. As discussed above, it will not be able to 100

infer time-lagged relationships. We include this approach to assess the lack of 101

power to identify time-lagged relationships with only Xcur. 102

� Approach 2: PC-stable, using Xcur and Xsub, where Xsub is the extrapolated 103

expression levels at the subsequent time point. For this approach, PC-stable is 104

applied to time-lagged data. However, natural confounders may still exist between 105

Xcur and Xsub. Consequently, we consider this scenario to assess the effect of 106

natural confounders on causal inference. 107

� Approach 3: PC-stable, using Xcur and Xcha but without time-lagged assumption. 108

This approach infers causality by PC-stable itself based on PC-stable’s 109

assumptions. We include this approach to investigate the usefulness of 110

time-Lagged Assumption. 111

We note that any method which can identify a strong correlation between Xcur and 112

Xcha may be suitable for the proposed framework. In addition to the above three 113

approaches, we also consider another approach, Approach 0, which is the simplest 114

version of the proposed framework using Pearson’s correlation coefficient to discover a 115

strong correlation between Xcur and Xcha. If the absolute value of Pearson’s 116

correlation coefficient between Xcur
i and Xcha

j is above a threshold, we infer gene i as 117

the cause of gene j as baseline prediction. 118

We also consider a recently published causal inference method for scRNA-seq 119

data [8], Scribe. It uses restricted directed information (RDI) to evaluate the causal 120

effect of the current expression levels on the subsequent expression levels. Similar to 121

Approach 2, Scribe assumes that if the RDI of Xcur
i and Xsub

j is higher than a 122

threshold, gene i is the cause of j. The default values of the parameters of Scribe were 123

used in simulation studies. 124

Simulation 125

Some experiments sequence cells at one time point while others sequence cells at 126

multiple time points. We refer to the former as single-trace data and the latter as 127

multi-trace data. We considered both scenarios in our simulations. For single-trace data, 128

we simulated 3000 cells. For multi-trace data, we simulated from three traces with each 129

trace having 1000 cells. We carried out 500 simulations for each set-up. For each 130

simulation, we randomly generated a causal graph Gtrue that contained 50 nodes 131

(genes) and 50 directed edges on average. The probability of an edge between nodes was 132

4.1%, and its direction was randomly assigned. Time-lagged relationships were 133

simulated in the following manner: 134

Xcur
i = f1(Xpre

i ) + f2(causalpre(Xi)) + ecur

Xsub
i = f1(Xcur

i ) + f2(causalcur(Xi)) + esub

Xcha
i = Xsub

i −Xcur
i

(1)

For each cell, we simulated four values related to each of the 50 genes’ expression 135

levels, including previous Xpre
i , current Xcur

i , subsequent Xsub
i , and changing Xcha

i . 136

Based on the collected values of Xpre
i and the causal graph, Xcur

i , Xsub
i , and Xcha

i were 137

generated through Eq (1) using causalpre(Xi) (the previous values of the causes of Xi) 138

and causalcur(Xi) (the current values of the causes of Xi). e
cur and esub represent 139

standard Gaussian noise N(0, 1). 140
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Here, we used linear functions to describe time-lagged relationships. The coefficient 141

of Xpre or Xcur in the linear function f1() was 0.8, simulating the transcripts of genes 142

that spontaneously degrade over time. The coefficients of all causal genes in f2() were 143

set to 1, assuming all causal genes had the same effect on their effector genes. In 144

addition, we assumed that Xpre
i did not interact with causalpre(Xi), meaning there 145

was no feedback, and we could add f1(Xpre
i ) and f2(causalpre(Xi)). 146

For single-trace data, Xpre
i was assumed to follow a log-normal distribution with a 147

constant mean and standard deviation (ln(X) ∼ N(0, 0.04)). We chose a log-normal 148

distribution because RNA sequencing data are often skewed, rather than like a normal 149

distribution. For every run of multi-trace simulation, we simulated three separate sets of 150

data (trace). In each trace, Xpre
i followed a log-normal distribution 151

(ln(X) ∼ N(µ, 0.04)) with its mean (µ) randomly drawn from a uniform distribution 152

between 0 and 2. Then, the three traces were merged into one data set, taking into no 153

account of the trace information. For simulations considering latent variables, we 154

randomly removed a certain proportion of the nodes (genes) after data generation. 155

In our simulations, we also investigated whether CITL can infer non-time-lagged 156

relationships, referred to as instant causal relationships. This assumes that the current 157

expression level of a gene results from its previous expression level and the current 158

expression level of its causes. These data were generated in a similar manner as the 159

time-lagged except for the method used to generate Xcur
i and Xsub

i . For instant 160

simulation, we considered Eq 2(2), where causalsub(Xi) is the subsequent values of the 161

causes of Xi. 162

Xcur
i = f1(Xpre

i ) + f2(causalcur(Xi)) + ecur

Xsub
i = f1(Xcur

i ) + f2(causalsub(Xi)) + esub
(2)

To equally benchmark CITL against Scribe, the simulation data in [8] were used. 163

The simulation was based on a core network of neurogenesis with 12 genes forming 13 164

directed pairs and two bidirectional pairs. Data were simulated according to the 165

differential equations of these genes. We tested the performance of CITL and Scribe in 166

simulations under both Qiu’s and our set-ups. In all simulations, the k of the CI test 167

was set to be equal to the square root of the number of genes n. 168

Evaluation 169

We used precision, recall, and F-measure for the inferred node adjacency versus the data 170

generating model as the primary evaluation measures to compare the performance of 171

different approaches. In addition, we used the ability of determining directions (ADD) 172

to evaluate how well a method was able to define directions given true causal edges. To 173

compute these metrics, we first calculated three basic statistics: true positives (TP), 174

false positives (FP), and false negatives (FN) that are related to inferring edges. TP is 175

the number of adjacencies in both the output graph Goutput from an analytical approach 176

and the true graph Gtrue. FP represents the number of adjacencies in Goutput but not 177

in Gtrue. FN is the number of adjacencies in Gtrue but not in Goutput. Precision is the 178

ratio TP/(TP+FP), recall is the ratio TP/(TP + FN), and F-measure is the ratio 2 * 179

precision * recall / (precision + recall). For evaluating the directions, TPdirection 180

represented the number of directed edges in both Goutput and Gtrue with consistent 181

directions. FP represents the number of inconsistent edges in Goutput compared with 182

Gtrue, including absent, undirected, and reverse. FN represents the number of edges in 183

Gtrue but not correctly directed in Goutput. ADD was calculated by TPdirection/TPedge. 184

January 15, 2021 5/13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429525doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429525
http://creativecommons.org/licenses/by/4.0/


Data sets 185

We considered two data sets. Data set 1 was from mouse P0 and P5 dentate gyrus [14], 186

and RNA velocity information was estimated with the same parameters as the example 187

dentate gyrus in Velocyto (http://velocyto.org/). There were more than 18,000 cells 188

and an average of 2,160 genes for each cell in data set 1 after preprocessing. Data set 2 189

was the human week ten fetal forebrain data set in Velocyto, containing 1,720 cells and 190

an average of 1,488 genes for each cell. According to La Manno et al. (2018), the 191

forebrain, as identified by pre-defined markers, can be divided into eight developing 192

stages (0-7). The stage information was only exploited in data visualization. 193

Results 194

Simulation results 195

Simulation results of Approach 0 196

The performance of Approach 0 largely depends on the threshold of Pearson’s 197

correlation coefficient. We tested its performance at 18 thresholds from 0.1 to 0.9 198

through 500 simulations for each setting. Fig 2 summarizes the performance of 199

Approach 0 in single-trace simulations (top row in Fig 2) and multi-trace simulations 200

(bottom row in Fig 2). In single-trace simulations, the precision increased, and the recall 201

decreased, as the threshold increased for both finding edges and determining causal 202

directions. The more stringent the threshold was, the more accurate Approach 0 was, 203

but the fewer edges Approach 0 could find. When the threshold was around 0.2, 204

Approach 0 achieved the highest F-measure in single-trace simulations. In contrast, the 205

highest F-measure of Approach 0 in multi-trace simulations was achieved when the 206

threshold was around 0.75. The overall performance of Approach 0 in multi-trace 207

simulations was much worse than that in single-trace simulations. It suggests that 208

multiple traces induce many false positives for both finding edges and determining 209

causal directions in Approach 0.

Fig 2. Results of Approach 0 for single-trace simulations (top row) and
multi-trace simulations (bottom row) at different thresholds of ”the strong
correlation”.

210

Comparisons CITL with PC-stable and its variant approaches 211

The simulation results for the single-trace scenario for the other approaches are 212

summarized in Table 1. For finding edges, Approach 0 achieved the lowest precision, 213

which is expected as PC-stable applied to current expression levels will miss time-lagged 214

causal edges via single-trace data. The recall of Approach 2 was lower than others, 215

which suggests that the natural confounders in Approach 2 clearly influenced the 216

discovery of casual edges. Approach 3 and CITL derived the same UG, which performed 217

the best in both recall and F-measure, demonstrating that changing information is 218

useful when identifying edges between causal pairs from single-trace data. When 219

determining the causal direction, CITL performed best, and Approach 1 had the worst 220

performance. Both Approach 1 and Approach 2 performed worse than Approach 3 in 221

recall and F measure, indicating that natural confounders influence the determination of 222

causal directions. CITL was better than Approach 3 for all three metrics, 223

demonstrating that CITL was most effective in determining causal directions than the 224

assumptions of PC-stable. As for multi-trace simulations, we obtained similar results, as 225
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shown in Table A in S1 Appendix. Comparing the results of CITL with those of 226

Approach 0, CITL outperformed Approach 0 in multi-trace simulations (Fig 2, Table A 227

in S1 Appendix). In summary, CITL had the best performance among the approaches 228

and was less sensitive to the type of data applied. 229

As for the results for inferring instant causality, the type of simulation affected the 230

determination of directions. Comparing with results in single-trace simulations (Table B 231

in S1 Appendix), the F-measure for determining the directions of Approach 1 decreased 232

while that of CITL increased in multi-trace simulations (Table C in S1 Appendix). This 233

suggests that natural confounders, the previous expression levels of causes, could have a 234

larger effect on instant causal relationships for multi-trace data. In this case, CITL was 235

still a good choice for identifying instant causality. 236

Table 1. Comparisons of different approaches based on PC-stable.

Edges Approach 1 Approach 2 Approach 3/CITL
Precision 0.651 (0.279) 0.975 (0.049) 0.974 (0.033)
Recall 0.434 (0.275) 0.262 (0.081) 0.597 (0.104)
F-measure 0.540 (0.264) 0.407 (0.099) 0.734 (0.081)
Directions Approach 1 Approach 2 Approach 3 CITL
Precision 0.201 (0.154) 0.838 (0.180) 0.573 (0.247) 0.859 (0.143)
Recall 0.137 (0.132) 0.224 (0.084) 0.334 (0.137) 0.512 (0.104)
F-measure 0.213 (0.124) 0.348 (0.113) 0.420 (0.169) 0.636 (0.108)

The average values from 500 single-trace simulations are shown with standard deviation
values in parentheses.

Comparisons with Scribe under different simulation settings 237

We also evaluated the performance of Scribe. Since the runtime of Scribe for one 238

simulation (about 20 minutes) was longer than others (a few seconds), we only applied 239

Scribe to one replicate of each simulation. In single-trace simulation, Scribe calculated 240

the RDI of the 2450 edges (all possible combinations of 50 nodes) and removed the 241

edges with smaller RDI leaving 1225 edges where all 50 real edges and 25 real directions 242

were captured. Among the top-100-RDI edges, about four edges were true causal 243

relationships, suggesting that the performance of Scribe was not better than random. 244

Similar results were obtained for multi-trace and instant simulations where Scribe could 245

not reveal causal relationships from the simulated data. We further compared Scribe 246

with CITL through simulations conducted as previously described by [8]. In the 247

simulation, the standard deviation of the intrinsic noise in the differential equations was 248

set to be equal to 0.01 or 2; this represented the randomness of the causal effect, the 249

temporal fluctuation, and random error. The results are shown in Table 2. Under the 250

low-noise setting, the top 9 RDI edges inferred by Scribe were better than the CITL 251

results. On the other hand, CITL performed better under the high-noise setting; CITL 252

discovered more true positive edges and directions than the top 19 of Scribe. The 253

performance of Scribe under our simulation set-up and Qiu’s set-up was very different. 254

In contrast, CITL performed well in both sets of simulations. 255

Simulation with latent variables 256

To evaluate the impact of latent variables on CITL to infer time-lagged causality, we 257

performed single-trace simulations by randomly removing 0%, 10%, 30%, and 50% of 258

the total genes. As illustrated in Fig 3(a, b), as the number of latent variables increased, 259

the performance of all approaches reduced for both finding causal edges and 260
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Table 2. Comparisons between CITL and Scribe under the simulation
setting of Qiu et al. with two different noise levels.

sd = 0.01 CITL Scribe(top 9) Scribe(top 19)
All edges 9 9 19
TPedges 4 4 7
TPdirection 1 4 7
sd = 2 CITL Scribe(top 9) Scribe(top 19)
All edges 19 9 19
TPedges 13 6 11
TPdirection 10 6 9

sd: standard deviation

determining causal directions. This showed that latent variables had a negative effect 261

on all approaches as expected. CITL performed the best across all the simulation 262

settings. We used ADD to evaluate how well an approach inferred the causal directions 263

in the presence of latent variables. The distribution of ADD in the simulations is shown 264

in Fig 3c. The ADD of CITL concentrated at a higher level, while other approaches 265

were not stable. This shows that CITL is more robust than other approaches. Similar 266

results were obtained for multi-trace simulations (Fig A in S1 Appendix). 267

Fig 3. Results of single-trace simulation with latent variables. a: The
performance of discovering edges. b: The performance of determining directions. c:
Ability of determining directions.

Applications to real data sets 268

Evaluation of the information in RNA velocity for inferring causal 269

relationships 270

For real data sets, we estimated the changing expression levels and the subsequent 271

expression levels by RNA velocity. Before adopting the estimated Xcha to infer 272

causality, we investigated how much information it contained. First, we observed that 273

using the estimated Xcha to calculate the correlation led to different correlated pairs 274

than when using Xcur in data set 1 (Fig 4a) and data set 2 (Fig 4b). This suggests that 275

the information for the estimated Xcha was different from that of Xcur. A similar 276

method recently developed drew the same conclusion [15]. Second, we applied Approach 277

0 to both data sets, and the resulting networks showed that the distribution of indegree 278

and outdegree was very different (Fig A in S2 Text). In addition, the molecular function 279

of low-outdegree genes was associated with gene regulation (S2 Text). Taken together, 280

the unique information of the estimated Xcha suggests that CITL could use RNA 281

velocity to estimate the changing expression levels. 282

Causal inference using CITL on real data sets 283

We applied CITL to data set 1 and data set 2 with 2,508 and 878 time-lagged causal 284

pairs (TLPs) inferred, respectively. We also applied PC-stable on the data sets with 285

current-only expression data and compared the gene pairs inferred by PC-stable to 286

TLPs. For computational efficiency, the value of k for both CITL and PC-stable was set 287

to be equal to the square root of the number of genes for each data set. A total of 3,998 288

and 4,459 pairs were inferred by PC-stable from data set 1 and data set 2, respectively. 289
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Fig 4. The distribution of intersections as measured by different methods in
two data sets. We compared the most correlated genes derived from Xcur, Xcha, and
Xsub. Pearson’s correlation coefficient is used to describe three different correlations:
[1] correlation between Xcur

i and Xcur
j (denoted as cur cur), [2] correlation betwee Xcur

i

and Xsub
j (denoted as cur sub); and [3] correlation between Xcur

i and Xcha
j (denoted as

cur cha). For each gene, 100 genes with the largest (50 positive and 50 negative)
cur cur, cur sub, or cur cha values were collected into three gene sets Scc, Scs, and Sch,
respectively. We recorded the number of genes in the intersections between the three
sets. In addition, we recorded the intersection between Scc and 100 randomly selected
genes as controls. a: The distribution in data set 1. b: The distribution in data set 2.

In data set 1, only four gene pairs were found by both approaches, and there was no 290

overlap for data set 2. These results suggest that CITL infers different types of causality 291

from previous methods that only used the current expression level of genes. 292

CITL accurately infer time-lagged causal pairs 293

Because we do not know the ground truth for time-lagged causality, we investigated the 294

biological relationships of TLPs to evaluate the performance of different methods. 295

Pathway Studio (http://www.pathwaystudio.com/) enables searching interactions 296

between molecules, cell processes, and diseases from the literature. Almost any pair of 297

two genes could be related, directly or indirectly, through Pathway Studio. Each 298

interaction is annotated by a sentence from the literature. Not all interactions are 299

regulatory, such as binding. We reviewed the annotation of every searched interaction to 300

find TLPs with regulatory interactions. For the regulatory interactions, we divided 301

them into two categories. The ”PROT” type refers to interactions that only involve 302

proteins, such as increasing or reducing protein activity, co-activating or antagonizing, 303

and phosphorylating or dephosphorylating. The ”TRSC” type refers to interactions 304

relating to proteins regulating the transcription of specific genes, including activation 305

and repression. Considering manually filtering interactions taking considerable time, we 306

only investigated the biological functions of a subset of the pairs. 307

In the following, we describe how we chose the subset of TLPs to consider. 308

Single-trajectory developmental cells in data set 2 are easier to visualize time-lagged 309

relationships than multi-trajectory differentiating cells in data set 1. Therefore, we 310

focus on the TLPs in data set 2, where 37 transcription factors were involved in 68 311

TLPs. Transcription factors (TFs) were taken from the TRRUST database, a repository 312

of curated TF-target relationships of human and mouse [16]. We investigated these 68 313

TLPs in Pathway Studio and manually checked the interactions of each TLP. 314

All the 68 pairs had indirect relationships, forming paths with one or more 315

intermediates. Most of the interactions among these paths were ”non-regulatory”. We 316

focused on the regulatory paths ended with a TRSC interaction, since the causality 317

among genes’ transcripts, rather than proteins, was of interest in scRNA-seq. 14 TLPs 318

with regulatory relationships (rTLPs) and their regulatory paths are shown in Table 3. 319

The interaction types are listed from the left of the corresponding path to the right. 320

CITL achieved an accuracy of 0.93 (13/14) for correctly inferring the causal directions 321

of rTLPs. The regulatory effect (activation or repression) of 11 pairs were correctly 322

described. Only one rTLPs was assigned an inconsistent direction with its path (the 323

cur cha of MAGED1 – EOMES was -0.19). 324

To evaluate the significance of the accuracy of CITL, we first investigate how likely a 325

random gene could be the target of a TF. We randomly chose 11 TFs from the 37 TFs 326

and investigated their regulatory relationships with randomly selected genes. For each 327

TF, a randomly selected gene was assigned as its effect. Then, the functional connection 328
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Table 3. Detailed paths of the causal pairs with regulatory relationships.

rTLP Path cur cur cur cha Type of each step
TCF7L2 → FTH1 TCF7L2 → RELA → FTH1 -0.98 0.96 PROT, TRSC
YBX1 → EPS8 YBX1 → NF-κ-B signaling → EPS8 0.04 0.95 PROT, TRSC
NFIA 9 EIF4A2 NFIA 9 ERK pathways 9 PPARGC1A 9 EIF4A2 0.81 -0.98 PROT, TRSC, TRSC
SATB2 9 UBB2B SATB2 9 MAPK7 → NEUROG2 → UBB2B 0.71 -0.95 PROT, PROT, TRSC
VHL 9 ABCD2 VHL 9 WNT → AMPK → ABCD2 0.63 -0.58 PROT, PROT or TRSC, TRSC
VHL 9 PCDH9 VHL → TP53 9 PCDH9 0.39 -0.88 TRSC, TRSC
TSC22D1 9 PTPRD TSC22D1 9 MTOR 9 MYCN 9 PTPRD 0.03 -0.92 PROT, PROT, TRSC
TSC22D1 9 ZBTB18 TSC22D1 → TGFB1 9 ASCL1 → ZBTB18 0.01 -0.84 PROT or TRSC, PROT, TRSC
MLLT3 9 FLRT3 MLLT3 → E2F1 9 WNT → FLRT3 -0.19 -0.99 PROT, PROT, TRSC
NFKB1 → HSPA8 NFKB1 → MYB → HSPA8 0.69 0.99 TRSC, TRSC
SFPQ 9 JUND SFPQ 9 PGR → JUND -0.67 -0.96 PROT, TRSC
HDAC2 9 HSP90AA1 HDAC2 9 MIR15A 9 HSP90AA1 -0.80 -1.00 TRSC, TRSC
TSC22D1 9 KDM5B TSC22D1 → transforming growth factor → KDM5B 0.40 -0.82 PROT, TRSC
EOMES → MAGED1 EOMES ← ERK1/2 ← MAGED1 -0.03 0.97 TRSC, PROT
cur cur: the Pearson’s correlation coefficient between the current expression levels of the cause and the target; cur cha: the
Pearson’s correlation coefficient between the current expression level of the cause and the changing expression level of the target.
→: up-regulation. 9: down-regulation.

Fig 5. MLLT3 → FLRT3. a: Scatter plot of the current expression levels of MLLT3
and FLRT3. b: Scatter plot of the current expression level of MLLT3 and the changing
expression level of FLRT3. n: Box plots of the normalized current expression levels of
MLLT3 and FLRT3 at eight stages, which was identified by pre-defined markers [11].

between the gene pair, referred to as randomly-selected-and-direction-assigned pair 329

(RAP), was searched using Pathway Studio. Like the TLPs inferred by CITL, most 330

RAPs did not have regulatory relationship. To find a gene having a regulatory 331

relationship with each TF, we searched 35 RAPs. In the 11 RAPs with regulatory 332

relationships (rRAPs), only two rRAPs’ assigned directions were consistent with their 333

known causal directions. Therefore, we speculate that, for a TF, there are more 334

upstream genes than downstream after excluding non-regulatory genes. We compared 335

the accuracy of CITL to the accuracy of random selection using Fisher’s exact test. The 336

p-value of the test was 0.00024, suggesting the excellent performance of CITL. 337

A example of time-lagged causal pair 338

We highlight a time-lagged causal pair, ”MLLT3 → FLRT3” in Fig 5. ”MLLT3 → 339

FLRT3” is a gene pair with a small negative cur cur correlation (−0.19) and a large 340

negative cur cha correlation (−0.99). Though the correlation between the current 341

expression levels was weak, this gene pair showed a strong negative correlation in terms 342

of time-lagged association. The inconsistency can be explained as follows. The decrease 343

of FLRT3 in stages 5 and 6 is due to the high expression level of MLLT3 in stages 3 344

and 4 (Fig 5c). We further investigated whether this pair had a transcriptional causal 345

relationship. MLLT3 participated in the activity of E2F1 protein [17], which could 346

repress WNT signaling [18]. WNT signaling could control the expression of FLRT3 [19]. 347

In short, MLLT3 could repress the expression of FLRT3, which is consistent with the 348

result of CITL. 349
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CITL overcomes the limitations of scRNA-seq 350

Indirect regulations involved more biological reactions than direct regulations, making it 351

more reasonable to consider time-lagged relationships. Due to technical limitations, 352

some intermediates in the indirect regulations were difficult to be detected by 353

scRNA-seq. Therefore, researchers often have to deal with indirect relationships. Here, 354

the only path in which all genes were detected was ”YBX1 → NF-κ-B → EPS8”. The 355

protein encoded by YBX1 can activate NF-κ-B signaling [20], which then induces the 356

transcription of EPS8 [21]. The cur cur correlations between ”YBX1 – NFKB1”, 357

”NFKB1 – EPS8”, and ”YBX1 – EPS8” were −0.72, −0.70, and 0.04, respectively. 358

None of these could explain the relationship between YBX1 and EPS8 in the literature. 359

On the other hand, the cur cha correlation between ”YBX1 – EPS8” was 0.95, 360

consistent with the relationship between the genes. The results demonstrates that 361

indirect relationships can be time-lagged relationships and that CITL is a better way of 362

discovering these relationships. 363

Furthermore, some intermediates were not RNA at all. As shown in Table 3, most 364

paths involved PROT steps. The best way to describe ”YBX1 → EPS8” would need 365

the expression level of YBX1, the protein activity of NF-κ-B and the expression level of 366

EPS8. Although many single-cell multi-omics technologies have been developed, none of 367

these can ensure that all of the necessary molecules in each cell are quantified. However, 368

CITL accurately inferred indirect relationships without any protein-level information. 369

Consequently, the CITL, discovering time-lagged relationships, was more practical than 370

previous methods which focused on instant interactions in scRNA-seq data. 371

Discussion 372

The changing expression levels of genes are crucial to CITL. Thus, the approach used to 373

estimate these levels can have major impact on the results. There are two main 374

challenges to correctly estimate the changing expression levels with RNA velocity. First, 375

scRNA-seq technologies have limitations on quantifying transcripts. The quality of raw 376

data is of great importance to results. Second, the inference of RNA velocity depends 377

on some tuning parameters [11]. There is no gold standard to evaluate the estimated 378

changing expression levels. Despite the two obstacles, RNA velocity has proved its 379

usefulness to estimate transcriptional changes of genes in many applications [22,23]. 380

Also, Qiu et al. investigated three approaches to deriving single-cell time-series data and 381

concluded that RNA velocity was the most appropriate way to estimate real time-series 382

data through simulations [8]. 383

A drawback of CITL is that it cannot distinguish whether the type of relationships 384

is time-lagged or instant. In biology, the relationships between genes can be a mixture 385

of time-lagged and instant relationships. If we can confirm the interactional type of each 386

gene pair and adapt CITL to the type, the overall accuracy may be greatly improved. 387

Conclusion 388

In this article, we propose CITL to infer the time-lagged causality of genes using 389

scRNA-seq data. Specifically, we adopt the changing information of genes estimated by 390

RNA velocity in our approach. We further present the superior performance of CITL 391

against other methods in simulations under different set-ups. The proposed approach 392

CITL achieves promising results on a human fetal forebrain scRNA-seq data set, which 393

accurately provides time-lagged causal gene pairs curated by published articles. We 394

note that most methods for analyzing scRNA-seq data did not consider the 395

relationships between genes that could be time-lagged. The results of simulations and 396
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real data sets from this paper suggest that we cannot ignore such common relationships. 397

Therefore, we foresee that CITL can provide more insights that may help to guide 398

future gene regulatory research. 399

Supporting information 400

S1 Appendix. Supplementary simulation results of different set-ups. 401

S2 Text. The degree distribution of genes and their molecular function. 402

Acknowledgments 403

This work was supported by the National Key R&D Program of China 404

[2018YFC0910500], the Neil Shen’s SJTU Medical Research Fund, and SJTU-Yale 405

Collaborative Research Seed Fund. The funders had no role in study design, data 406

collection and analysis, decision to publish, or preparation of the manuscript. 407

References

1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq
whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.
doi:10.1038/nmeth.1315.

2. Spirtes P, Glymour C, Scheines R. Causation, prediction, and search, 2nd
Edition. MIT press; 2001.

3. Ramsey J, Zhang J, Spirtes PL. Adjacency-Faithfulness and Conservative Causal
Inference. arXiv e-print. 2012; p. 1206.6843.

4. Colombo D, Maathuis MH. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research. 2014;15(1):3741–3782.

5. Runge J. Causal network reconstruction from time series: From theoretical
assumptions to practical estimation. 2018;28(7):075310. doi:10.1063/1.5025050.

6. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP. Causal
protein-signaling networks derived from multiparameter single-cell data. Science.
2005;308(5721):523–9. doi:10.1126/science.1105809.

7. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al.
Integrated systems approach identifies genetic nodes and networks in late-onset
Alzheimer’s disease. Cell. 2013;153(3):707–720. doi:10.1016/j.cell.2013.03.030.

8. Qiu X, Rahimzamani A, Wang L, Ren B, Mao Q, Durham T, et al. Inferring
Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics
Using Scribe. Cell Syst. 2020;10(3):265–274.e11. doi:10.1016/j.cels.2020.02.003.

9. Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, et al.
Single-cell analysis of experience-dependent transcriptomic states in the mouse
visual cortex. Nat Neurosci. 2018;21(1):120–129. doi:10.1038/s41593-017-0029-5.
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12. Nagarajan R, Scutari M, Lèbre S. Bayesian Networks in R. vol. 48. Springer;
2013.

13. Pearl J. Causality: Models, Reasoning and Inference. 2nd ed. Cambridge
University Press; 2009.

14. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J,
et al. Molecular Architecture of the Mouse Nervous System. Cell.
2018;174(4):999–1014.e22. doi:10.1016/j.cell.2018.06.021.

15. Eghbalnia HR, Wilfinger WW, Mackey K, Chomczynski P. Coordinated analysis
of exon and intron data reveals novel differential gene expression changes. Sci
Rep. 2020;10(1):15669. doi:10.1038/s41598-020-72482-w.

16. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded
reference database of human and mouse transcriptional regulatory interactions.
Nucleic Acids Res. 2018;46(D1):D380–d386. doi:10.1093/nar/gkx1013.

17. Hallstrom TC, Mori S, Nevins JR. An E2F1-dependent gene expression program
that determines the balance between proliferation and cell death. Cancer Cell.
2008;13(1):11–22. doi:10.1016/j.ccr.2007.11.031.

18. Hughes TA, Brady HJ. Cross-talk between pRb/E2F and Wnt/beta-catenin
pathways: E2F1 induces axin2 leading to repression of Wnt signalling and to
increased cell death. Exp Cell Res. 2005;303(1):32–46.
doi:10.1016/j.yexcr.2004.09.014.
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