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Abstract

A key question individuals face in any social learning envi-
ronment is when to innovate alone and when to imitate others.
Previous simulation results have found that the best performing
groups exhibit an intermediate balance, yet it is still largely un-
known how individuals collectively negotiate this balance. We
use an immersive collective foraging experiment, implemented
in the Minecraft game engine, facilitating unprecedented ac-
cess to spatial trajectories and visual field data. The virtual
environment imposes a limited field of view, creating a natural
trade-off between allocating visual attention towards individ-
ual innovation or to look towards peers for social imitation. By
analyzing foraging patterns, social interactions (visual and spa-
tial), and social influence, we shine new light on how groups
collectively adapt to the fluctuating demands of the environ-
ment through specialization and selective imitation, rather than
homogeneity and indiscriminate copying of others.

Keywords: social learning; spatial foraging; collective intelli-
gence; visual attention; producer-scrounger; Rogers’ paradox

Introduction

Social information is a valuable resource, yet it often comes at
the cost of lost opportunities for individual innovation. Previ-
ous research has shown that the best collective and individual
outcomes occur when there is an intermediate balance of in-
dividual and social learning (Miu, Gulley, Laland, & Rendell,
2020; Ehn & Laland, 2012). However, it is not yet known
how groups collectively negotiate this balance.

Here, we use a collective spatial search task to study the so-
cial dynamics of human behavior, under different reward en-
vironments designed to alter the effectiveness of social learn-
ing (Barkoczi, Analytis, & Wu, 2016; Rendell et al., 2010).
Our task is implemented in an immersive virtual environ-
ment, where a limited field of view creates an attention al-
location problem (Fig 1a). Visual attention can either be al-
located to focus on individual exploration or to look towards
peers for social imitation. We study how the predictability
of resources alters the balance between social and individual
learning. Employing high-resolution spatial tracking and au-
tomated transcription of visual field data, we provide an un-
precedented level of detail into the interaction dynamics that
negotiate this balance.

Between environments, we find that participants flexibly
adapt their level of social learning, relying more on social
information when profitable. In environments where pre-
dictable rewards favor social learning, participants reach a
mixed equilibrium through specialization and selective atten-
tion, rather than all individuals homogeneously converging

on the same intermediate strategy. Participants become spe-
cialized as either the target or the source of social attention.
This produces an asymmetric social attention structure where
the most observed individuals are those who specialize in in-
dividual learning. Thus, social learners selectively attend to
strongly individual learners, who innovate to discover new
reward patches, rather than copying other social learners.

Individual vs. social learning

In social environments, individuals can either explore on their
own or imitate the successes of others. This trade-off is en-
capsulated in the producer-scrounger dilemma (Barnard &
Sibly, 1981; Kurvers et al., 2009), where social imitation (i.e.,
scrounging) comes at the cost of reduced (attentional) re-
sources for individual search (i.e., producing). Attempted so-
lutions to this dilemma generally have frequency-dependent
payoffs, meaning one’s performance depends on the strate-
gies used by other individuals in the population. While so-
cial learning is cheap and effective among mostly individual
learners, it fails amidst an abundance of imitators, causing a
collapse in both individual and group performance. This phe-
nomenon is known as Rogers’ (1988) paradox.

However, more recent work has shown that Rogers’ para-
dox can disappear in a variety of more realistic setting. For
instance, when agents can flexibly switch between individ-
ual and social learning (Boyd & Richerson, 1995; Enquist &
Ghirlanda, 2007; Kameda & Nakanishi, 2002), when rewards
and agents are embedded in a spatial structure (Beauchamp,
2008; Rendell et al., 2010; Kobayashi & Ohtsuki, 2014) or
when social information is not copied verbatim, but adapted
in the process of transmission (Ehn & Laland, 2012; Boyd &
Richerson, 1995). Yet the majority of these results are de-
rived from simulations, with little experimental data about
how people flexibly arbitrate between social and individual
learning in realistic environments.

This motivates our use of an immersive virtual environment
(Fig. la), where a limited field of view constrains how par-
ticipants allocate visual resources. In this spatially-explicit
environment, visibility is naturally defined in terms of dis-
tance and orientation between participants (Fig. 1b). Thus,
the environment is only partially observable at any point in
time, with opportunity costs when learning either socially or
individually. Visual attention allocated towards individual
search detracts from social learning, and vice versa. Addi-
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tionally, the spatial distribution of participants influences the
ease of exploiting social information, since imitation incurs
travel costs depending on the distance to the target.

Methods
Participants and materials

Participants (N = 44) were recruited from the REDACTED
recruitment pool! and selected to be between the ages of
18 and 30 to minimize generational differences in exposure
to first person computer games (mean age: 26.5 + 4.6 SD;
25 Females, 1 non-binary). The study was approved by the
Institutional Review Board of REDACTED and participants
signed an informed consent form prior to participation. Par-
ticipants earned a base payment of €12 plus a bonus of €0.03
per reward, earning on average €17.21 4 0.88.

The experiment was conducted in a computer lab using a
modified Minecraft server, where participants controlled an
avatar from a first person perspective (Fig. 1a). Each round
of the experiment took place on a 60x60 field (bounded by a
fence), containing 400 resource blocks, laid out in a 20x20
grid with a two block gap between each block (Fig. 1b).
Each resource block (either watermelon or pumpkin, depend-
ing on environment) could be destroyed by continually hitting
it (holding down left mouse button) for 2.25 seconds, yielding
a binary outcome of either reward or no reward.

Rewards were indicated by a blue splash effect (Fig. 1a),
visible from any position on the map. Only resource blocks
(watermelon or pumpkin) were capable of being destroyed in
the experiment and were not renewed within the round. Addi-
tionally, blocks did not possess any a priori visual features in-
dicating whether or not they contained a reward. However, re-
wards in smooth environments were partly predictable, since
observing a reward predicts other rewards nearby (Fig. 1c).
Participants were incentivized to collect as many rewards as
possible, which were translated into a bonus payment at the
end of the experiment.

Design and procedure

Participants completed the task in randomly assigned groups
of four. Groups completed the task in the same room, and
were made aware they were interacting with these same peo-
ple. After an in-game tutorial and two practice rounds (see
below), participants completed 16 rounds of the task, each
lasting two minutes. We used a 2x2 within-subject design,
manipulating the reward environment (random vs. smooth)
and search condition (solo vs. group), with each combination
completed in four sequential rounds (Fig. 1d).

The reward environment of a given round was made salient
by the use of either pumpkin or watermelon blocks (Fig. 1c¢),
which was randomly assigned and counter-balanced across
groups. Both environments had the same number of re-
wards (25% of blocks), but with rewards either randomly or

IThe original target sample size was 128 participants, but we
were forced to pause lab-based experiments since March of 2020 due
to COVID-19. These current analyses thus focus on within-subject
and within-session comparisons for the highest statistical power.

Figure 1: Minecraft experiment. a) A first person screenshot
(cropped) from a social round, where a reward discovered by
another player (top) is visible as a blue splash in the air. b)
A bird’s eye recreation of the experiment, showing the full
60x60 field and participant trajectories (colored lines). The
blue blocks correspond to discovered rewards, while gaps in
the regular grid of green blocks indicates no reward. ¢) Ex-
amples of smooth and random reward environments, which
were mapped to either melons or pumpkins (counter-balanced
across sessions). Each pixel indicates either reward (black) or
no reward (white). Gaps between blocks are omitted. d) Ex-
perimental design. Participants first completed an interactive
tutorial, followed by one training round of each environment.
The main task was a 2x2 within-participant design, manip-
ulating reward environment (smooth vs. random; mapped to
melons or pumpkins) and search condition (solo vs. group).
Each of the four configurations was completed in four consec-
utive rounds of the same type. Each melon/pumpkin block in-
dicates one round. Round order was pseudo-randomized and
counterbalanced between sessions.

smoothly distributed. Random environments were generated
by uniformly sampling 25% of blocks (without replacement).
Smooth environments were designed to contain clustered re-
ward distributions, which varied smoothly over space. We
first sampled a bivariate reward function from a Gaussian
Process prior, where we used a radial basis function kernel
with the lengthscale parameter set to 4 (similar to Wu, Schulz,
Garvert, Meder, & Schuck, 2020). Sampled reward functions
were then binarized, such that the top quartile (25%) of block
locations were set to contain rewards. In the tutorial, partic-
ipants were given verbal descriptions of each reward condi-
tion, saw two fully-revealed illustrations of each environment
class from a bird’s-eye perspective (Fig 1¢), and interactively
destroyed a 3 x3 patch of both environments.

The search conditions were made salient by having partici-
pants either stand on an isolated teleportation platform (solo)
or on a common teleportation platform with the other partici-
pants (group) in order to start the round. In the solo condition,
participants searched on identical replications of the same en-
vironments but without interactions with one another. In the
group condition, participants searched on the same environ-
ment and could compete with and imitate one another.

After receiving verbal instructions, participants completed
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a tutorial to familiarize themselves with the controls, how to
destroy blocks, the difference between smooth and random
reward distributions, and the overall task structure (Fig. 1d).
They then completed two practice rounds in both smooth and
random environments, which were identical to the solo con-
dition of the main task (but without contributing to bonus
payments). Each round lasted two minutes, with the end of
the round corresponding to the sun setting below the hori-
zon. This served as an approximate in-game timer for each
round, and was communicated to participants in the tuto-
rial. A three second countdown timer was also shown on the
screen. At the end of the round, participants were given an
on-screen announcement indicating the number of rewards
they earned and notifying them of the reward environment
and search condition for the next round. Participants were
then teleported into a lobby (either separate lobbies for solo
or a communal lobby for group rounds), and were required to
all stand on a “teleportation” block to indicate readiness for
the next round. Then players were teleported into a random
position in the next environment, facing a random direction.
For the entire experiment the sound was turned off, partici-
pants could not see each other’s screens, and task-irrelevant
controls (e.g., crafting menu) were disabled.

Data collection

Experimental data was collected using a custom data logging
module programmed in Java, separated into player logs and
map logs. Player logs contained each player’s [x, y] spatial po-
sitions together with the pitch and yaw components of their
visual orientation sampled at 20hz (every 0.05s). Map logs
contained information about each player’s interactions with
resource blocks, also sampled at 20hz. Together, the player
and map logs allowed us to completely reconstruct the visual
fields from all participants using a simulation programmed
in the Unity game engine. This allowed us to automatically
transcribe visibility information. We simulated each player’s
field of view with all entities and other players rendered using
a unique RGB color mask. From each frame of the simula-
tions, we analyzed the pixels of the resulting image to deter-
mine which players and entities were visible at a given time.

Results

We first focus on task performance before analyzing social
interactions using visual and spatial data. Lastly, we model
social influence by detecting pull events in foraging patterns.

Task performance

Using a two-way within subjects ANOVA, we found that
participants acquired more rewards in smooth environments
(F(1,43) = 154.0,n* = .47, p < .001) and in the solo condi-
tion (F(1,43) = 8.54,m% = .02, p = .006), with an additional
interaction of smooth:solo (F(1,43) = 6.42, N> =.01,p=
.015; Fig. 2a). This improved performance in the smooth:solo
condition was mediated by learning over rounds (Fig. 2b).
We fit a Bayesian mixed effects regression using environ-
ment, search condition, and round number to predict reward,
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Figure 2: Behavioral results. a) Average reward across con-
ditions. Dots indicate group means with error bars showing
the standard error. b) Average over rounds, where each dot
and error bar show the mean and standard error, and the lines
and ribbons show the mean and 95% CI of a linear regression.
¢) The probability that a randomly sampled block contains a
reward at any given time. This illustrates the higher depletion
of rewards in more predictable environments (i.e., smooth)
and when more participants are competing for the same finite
number of resources (i.e., group). d) Normalized reward rate
shows the average rate of rewards, normalized by the expec-
tation of rewards (panel c). Lines and ribbons show the mean
and 95% CI of a generalized additive model. e) Foraging rate
defined in terms of blocks destroyed per second. f) The aver-
age distance between destroyed blocks.

while treating participants as random effects. The only re-
liable interaction with round was found in the smooth:solo
condition (b = 0.07, 95% Highest Posterior Density (HPD):
[0.01,0.12], p(b > 0) = .99). Thus, participants improved
their ability to detect rewards in smooth environments over
successive rounds when searching alone, but not in groups.
However, these reward differences were substantially influ-
enced by the dynamics of reward depletion (Fig. 2c), where
more predictable rewards (i.e., smooth) and more participants
searching for the same finite number of rewards (i.e., groups)
both contributed to a faster decay in the baseline probability
that one of the remaining blocks contained a reward. Thus,
we computed the normalized reward rate (Fig. 2d), by nor-
malizing the instantaneous reward rate by the current ex-
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pected reward rate P(reward|blocksRemaining). This mea-
sure shows how well participants perform relative to a dy-
namically changing random baseline. We found higher per-
formance in smooth environments (F(1,43) = 182.5, > =
.53, p < .001), but no difference between group or solo con-
ditions (F(1,43) = 0.33, n?> = .001, p = .57). We also no
longer found any significant interaction in the group:smooth
condition (F(1,43) =0.03, n? < .001, p=.863). Thus, when
accounting for differences in expected rewards due to de-
pletion, participants performed equivalently in the solo and
group conditions.

Participants’ foraging patterns were also influenced by the
environment and social search conditions. Figure 2e shows
the average foraging rate, which is defined as the number of
blocks destroyed per second. Participants were more selective
and foraged slower in smooth environments (F(1,43) =5.15,
n? = .02, p = .028) and in the group condition (F(1,43) =
7.39, 1‘|2 = .01, p =.009). There was also an interaction be-
tween search condition and environment (F(1,43) = 8.20,
n? = .003, p = .006), where participants were especially
slower when combining the predictably smooth rewards with
group dynamics.

These adaptive patterns of foraging selectivity are also
present when analyzing the distance between destroyed
blocks (Fig. 2f). Participants travelled further between for-
aged blocks in smooth environments (F(1,43) = 14.3, 1> =
.07, p < .001) and in the group condition (F(1,43) = 34.6,
p < .001, n? = .07). We again see the same interaction be-
tween search condition and environment (F(1,43) = 15.1,
p < .001, n%> = .03), where participants in the group:smooth
condition especially foraged over the longest distances.

Social Interactions

Next, we focus on the social interactions between participants
in the group rounds. By recreating all experimental data in the
Unity game engine (see methods), we were able to program-
matically annotate all field of view (FOV) data. This allowed
us to determine, when any given participant was visible to any
other participant at all points in time. We then computed the
average number of visible peers as a proxy for social attention
(Fig. 3a), which is higher when more peers were visible and
for longer durations. Consistent with the fact that social infor-
mation had no value in random environments (due to unpre-
dictable rewards), we found higher social attention in smooth
environments (paired t-test: 7(43) =2.7,d = 0.5, p = .011).
There was also a marginal interaction effect of round, where
social attention tended to decrease over rounds in the random
environment (Bayesian mixed effects regression: b = —0.01,
95% CI: [—0.02,0.01], p(b < 0) = .86; Fig. 3b). Thus, par-
ticipants observed other participants less in random environ-
ments (where social information had no value), with the mag-
nitude of this difference increasing over successive rounds.
In order to better understand the pairwise interactions be-
tween participants’ visual attention, we constructed visibility
networks for each round (Fig. 3c), where the directed edges
are weighted based on the amount of time one participant

i
o
@
=}

o
IS

b
028 H_/J/i
261

0.241 Environment

o
N

Avg. Visible Peers
o
w

Avg. Visible Peers
o

random
0.224 == smooth

o

random smooth 1 2 3 4
Environment Round

¢ Visibility 4 d random smooth
Network

&2

Out Degree
o
3
o

0.501
P3

0.50 0.75 1.00 0.7 0.8 0.9 1.0 1.1
In Degree
Environment

P1

e Proximity Pl fe
Network random

~e= smooth

P4

Avg. Reward

=~
@

P2

2 3
Eigen Centrality (Rank)

Figure 3: Social interaction results (group rounds only). a)
The average number of visible peers (at any point in time).
Each connected dot is a participant, with an overlaid Tukey
boxplot providing group-level statistics. The diamond show
the group means. The p-value is for a paired r-test. b)
Changes in social visibility over consecutive rounds. Dots
and error bars indicate the aggregate mean and standard er-
ror, while the line and ribbon show the mean and 95% CI of
a linear regression. ¢) An example of a visibility network,
where each node is a participant and the directed edges are
weighted by the proportion of time (within a round) that the
target participant is visible to the observer. d) A comparison
of the in- and out-degree of each participant (dot) with the
lines indicating a linear regression. e) An example of a spa-
tial network, where the undirected edges are weighted by the
average spatial proximity between participants. f) Correspon-
dence between the rank Eigen centrality (how connected one
is to other connected nodes) of each participant with their av-
erage reward. Dots and error bars show the aggregate mean
and standard error.

observed another. Based on these graphs, we computed the
weighted in- and out-degree for each participant (Fig. 3d).
Higher in-degree corresponds to being observed more fre-
quently (i.e., celebrity factor), while higher out-degree cor-
responds to observing others more frequently (i.e., paparazzi
factor). In smooth environments, we find a negative corre-
lation between in- and out-degree (r = —.37, p = .014), but
no correlation in random environments (r = —.07, p = .652).
We obtain similar results using rank correlation (smooth:
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re = —.21, p = .044; random: r; = —.11, p = .275). This
suggests that participants were more specialized in smooth
environments, with celebrities who were frequently observed
but rarely observed others, and paparazzi who observed oth-
ers intensely but were seldom observed themselves.

We also built proximity networks where the undirected
edges were weighted by the spatial proximity between par-
ticipants (stronger edge weights for closer average distance;
Fig. 3e). Based on these spatial relationships to other par-
ticipants, we computed the Eigenvector centrality (EC) of
each participant as a holistic measure of spatial proximity
to other participants. Figure 3f shows the relationship be-
tween the rank EC (computed within each group) and aver-
age rewards. In random environments there was a negative
but unreliable relationship between spatial proximity and re-
ward (r; = —.19, p = .081). But in smooth environments,
we find a non-linear relationship, where intermediate lev-
els of proximity produced the highest performance. Partic-
ipants with a rank EC of 2 performed better than their peers
with lower EC who were the most distant from the group
(#(20) =2.3, p=.032, d = 1.0), but with no significant differ-
ence to peers with higher EC (1(31) = 1.7, p=.107,d = 0.6),
who were more central. These results suggest that an inter-
mediate level of spatial proximity may have facilitated bet-
ter performance in smooth environments, although there was
no significant disadvantage to being more central. Thus, in
smooth environments where social information was predic-
tive of other rewards in the same area, it was better to be more
central—despite increased competition for rewards—than to
be at the outskirts, where imitation was more expensive due
to increased travel costs.

Social Influence

In order to more directly measure social influence, we
adapted methods developed to analyze the movement patterns
of geo-tracked Baboons in the wild (Strandburg-Peshkin,
Farine, Couzin, & Crofoot, 2015). This allows us to detect
discrete “pull” events over arbitrary time scales, where the
movement patterns of one participant (leader) pulls in another
(follower) to imitate and forage in the same vicinity (Fig. 4).

We first computed the pairwise distance between all partic-
ipants (Fig. 4a) and defined candidate pull events from min-
max-min sequences. These candidate sequences were then
filtered based on strength, disparity, leadership, and duration
in order to be considered a successful pull.

Strength S; ; defines the absolute change in dyadic dis-
tance relative to absolute distance:

g — |di,j(12) —di ;j(1)]|di,j(13) — di ;(12)]

Y (diy(n) + dij(1)) (di(2) + dij(13))
where d; ;() is the dyadic distance between participants i
and j at time k € [1,2,3] (corresponding to the timepoints of
the min-max-min sequence). We required pull events to have
a minimum strength of §; ; > .1, such that they correspond
to meaningful changes in spatial proximity rather than minor
“jitters” at long distance.
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Figure 4: Pull events. a) Candidate pull events were selected
from min-max-min sequences (dashed lines) of the pairwise
distances between participants. These candidate sequences
were then filtered by strength, disparity, leadership, and min-
imum duration (see text). b) An example of a successful
pull. The orange and pink lines indicate the trajectories of
the leader and follower (respectively), where the timepoints
[1,2,3] correspond to the min-max-min sequence in panel
a (dashed lines). The colored blocks illustrate the foraged
blocks up until #3. ¢) The average number of successful pull
events in each session (connected dots). The Tukey boxplots
illustrate the aggregate statistics, with the diamonds indicat-
ing the aggregate mean. The p-value is for a paired ¢-test.

Disparity §; ; defines the extent to which one participant
moves more than the other in each segment, relative to the
total distance moved by both participants:

A, ) — Axj(tn, )| |Axi (i, 13) — Axj(12,13))|

Y (At ) + Axj(t,0)) (Axi(t, 1) + Axj (12, 13)) ’(2)
where Ax;(11,1,) is the displacement between ¢; and 7,. We
filtered pull events to have a minimum disparity of §; ; > .1,
such that changes in spatial proximity were asymmetrically
driven by one of the interaction partners.

Leadership is a simple binary filter requiring that the
participant who moved more in the first segment (¢; to )
moved less in the second segment (#; to 73). We refer to
the participant who moved the most in the first segment
maXx,e(; jyAxq(t1,12) as the leader and the participant who
moved the most in the second segment max,c;, jy Axq(t2,13)
as the follower. Thus, successful pulls are defined as a # b,
where the leader and follower are separate participants.

Duration was the final filter, where we required pulls to be
at least 3 seconds in duration (since it takes 2.25s to destroy a
block). After all filters were applied, the average pull duration
was 15s + 0.73 (SEM).

Altogether, we detected 135 successful pull events from
the group rounds in our data. Figure 4a-b shows an example
of a successful pull in a smooth environment. At ¢, both the
leader (orange) and follower (pink) are in similar locations,
but begin to move in opposite directions. At t,, the leader has
found a new patch at the center of the map while the follower
has been unsuccessful at the south-east corner. Between 1,
and 13, the follower turns around and starts moving towards
the leader and begins foraging in the same proximity.

When comparing the influence of environment on the fre-
quency of pull events, we found a higher frequency of pulls

9
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in smooth than random environments (#(10) = 4.0, p = .003,
d = 1.9; Fig. 4c). This effect was also amplified over suc-
cessive rounds. We fit a Bayesian mixed effects Poisson
regression model to predict the number of pull events in
each round, using the reward environment and round num-
ber as predictors, and treating session as a random intercept.
Pull events increased over rounds in smooth environments
(b=0.42,95% HPD: [-0.02,0.89], p(b > 0) = .97), whereas
they tended to decrease over rounds in random environments
(b =-0.27,95% HPD: [—0.76,0.21], p(b < 0) = .86). This
adaptation of pull frequency was consistent with the fact that
social information was predictive of rewards in smooths en-
vironment, but had no value in random environments.

Discussion

Using a collective spatial foraging experiment implemented
in an immersive virtual environment, we were able to bring
together an unprecedented combination of behavioral data,
including spatial trajectories, visual field data, and their com-
plex social interactions. By analyzing foraging patterns, so-
cial interactions (visual and spatial), and social influence, we
were able to shine new light on how groups collectively ne-
gotiate the balance between social and individual learning.

By manipulating the structure of rewards in the environ-
ment, we were able study how groups adapt their search
strategies to the value of social information. Smooth envi-
ronments had more predictable rewards, such that observing
when another player finds a reward provided actionable in-
formation about where to search next. In contrast, random
environments had no predictable pattern of rewards, and thus
time spent observing other players came only at the cost of
lost opportunities for individual foraging without any ben-
efits. Accordingly, participants observed each other less in
random environments, and were less susceptible to social in-
fluence, as captured by a lower frequency of pull events.

Furthermore, our visibility analysis indicates that groups
achieved a balance between individual and social learning
through a mixed rather than a homogeneous equilibrium. In
smooth environments, participants specialized as either the
target of social attention or source of it. This asymmetric so-
cial attention structure may avoid the perils of maladaptive
information cascades (Toyokawa, Whalen, & Laland, 2019;
Tump, Pleskac, & Kurvers, 2020), since attention was selec-
tively directed towards participants who rely more on individ-
ual learning.

In sum, we have only begun to fully leverage the richness
of this spatial-visual dataset, where future work using compu-
tational models and more data will allow us to better under-
stand the interaction dynamics that shape our social learning
strategies.
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