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Abstract

A key question individuals face in any social learning envi-
ronment is when to innovate alone and when to imitate others.
Previous simulation results have found that the best performing
groups exhibit an intermediate balance, yet it is still largely un-
known how individuals collectively negotiate this balance. We
use an immersive collective foraging experiment, implemented
in the Minecraft game engine, facilitating unprecedented ac-
cess to spatial trajectories and visual field data. The virtual
environment imposes a limited field of view, creating a natu-
ral trade-off between allocating visual attention towards indi-
vidual search or to look towards peers for social imitation. By
analyzing foraging patterns, social interactions (visual and spa-
tial), and social influence, we shine new light on how groups
collectively adapt to the fluctuating demands of the environ-
ment through specialization and selective imitation, rather than
homogeneity and indiscriminate copying of others.
Keywords: social learning; spatial foraging; collective intelli-
gence; visual attention; producer-scrounger; Rogers’ paradox

Introduction
Most of what we learn, we learn from other people. Social
learning often provides a cheap alternative to individual trial
and error learning (Kendal et al., 2018), whereby observ-
ing and imitating the successful actions of others provides
an expedient pathway to rewards. However, social learning
can easily go awry: too many social learners in a popula-
tion can create maladaptive information cascades (Toyokawa,
Whalen, & Laland, 2019; Tump, Pleskac, & Kurvers, 2020)
of imitators imitating other imitators, with poor outcomes at
both the individual and collective level (Rogers, 1988).

Deciding when to learn socially or individually is a strat-
egy selection problem (Payne, Bettman, & Johnson, 1988).
Yet in contrast to previous work in purely individual domains
(Marewski & Schooler, 2011; Rieskamp & Otto, 2006), arbi-
trating between social and individual learning is complicated
by frequency-dependent fitness: one’s performance depends
on the frequency of strategies used by other individuals in the
population (Laland, 2004; Rogers, 1988). Thus the dominant
strategy depends on what strategy other people choose: so-
cial learning is profitable when rare, but fails amidst a glut of
imitators.

The trade-off between individual and social learning has
been well-studied in socially foraging animals (but less so
in humans) using the producer-scrounger game (Barnard &
Sibly, 1981; Kurvers et al., 2009). A group of animals are
typically placed in an environment with spatially distributed

reward patches, presenting a type of game theory dilemma:
playing the “producer” strategy is to use individual learning to
discover new reward patches, while playing the “scrounger”
strategy is to imitate others by foraging from patches they
have discovered. Because of the frequency-dependent nature
of scrounging, it is expected that over repeated interactions,
individuals in a group will theoretically gravitate towards a
mixed equilibrium of individuals who engage predominately
in producing and others who focus on scrounging, yielding
an intermediate balance of individual and social learning in
the population (Henrich & Boyd, 1998; Ehn & Laland, 2012;
Rogers, 1988). In line with these predictions, human par-
ticipants have been shown to assort themselves into balanced
mixtures of individual and social learners (Kameda & Nakan-
ishi, 2002).

While people are certainly capable of flexible arbitration
rather than itinerant deployment of a fixed strategy (Miu, Gul-
ley, Laland, & Rendell, 2020; Kendal et al., 2018), we lack
a clear descriptive understanding of the mechanisms that al-
low individuals to adapt to changes in both the asocial and
social environment. The predictability of rewards in the aso-
cial environment impacts the relative value of social learn-
ing over individual learning, which can change the optimum
ratio of strategies in the population. At the same time, the
frequency of social learning in a population presents a dy-
namically changing social environment, altering the optimal
individual strategy at a given point in time.

Previous work studying arbitration between individual and
social learning has typically used problems where the asocial
and social environments are static (e.g., bandit or lottery tasks
with advice from a fixed agent; Zhang & Gläscher, 2020; Dia-
conescu et al., 2020). However, in naturalistic human interac-
tions, the asocial reward environment is dynamic, as individ-
uals compete over finite resources and resource deplete over
time. The social environment is also dynamic as peers adapt
their learning strategies, and individuals create their own so-
cial interaction networks. Here we investigate the flexible and
dynamic arbitration between individual and social learning
in conditions where both the asocial and social environments
dynamically and naturally fluctuate over time.

Goals and scope
Our focus is two-fold. First, we want to understand meta-
cognitive control between social and individual learning
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strategies at the individual level, and test whether people can
flexibly adapt their strategy use to different reward environ-
ments that alter the relative value of social learning. For this,
we rely on visual field data, which provides a marker of so-
cial attention directed towards peers. Second, we want to un-
derstand the mechanisms that allow individuals in groups to
dynamically negotiate a balance between social and individ-
ual learning at the collective level, where we deploy network
analyses and measure social influence through “pull events”
in foraging trajectories.

We address these questions using a collective search task
implemented in an immersive virtual environment through
the Minecraft game engine (Fig 1a). The task is modeled on
the producer-scrounger game, where a limited field of view
creates an attention allocation problem: visual attention can
either be allocated to focus on individual exploration or to
look towards peers for social imitation. Employing high-
resolution spatial tracking and automated transcription of vi-
sual field data, we provide an unprecedented level of detail
into the interaction dynamics that negotiate the balance be-
tween individual and social learning.

Within subjects, we manipulate i) whether search is per-
formed alone or in groups of four, and ii) the predictability of
rewards in the environment, altering the relative effectiveness
of social and individual learning (Barkoczi, Analytis, & Wu,
2016; Rendell et al., 2010). Between environments, we find
that participants flexibly adapt their level of social learning,
relying more on social information when profitable. In en-
vironments where predictable rewards favor social learning,
participants use a combination of specialization and selective
attention. Rather than all individuals homogeneously con-
verging on the same intermediate strategy, participants be-
come specialized as either the target or the source of social
attention. This produces an asymmetric social network struc-
ture where those who specialize in individual learning are
the most observed. Thus, social learning is selective towards
strongly individual learners, rather than copying indiscrimi-
nately.

Methods
Participants and materials
Participants (N = 44) were recruited1 from the recruitment
pool of the Max Planck Institute for Human Development
in Berlin (MPIB) and selected to be between the ages of
18 and 30 to minimize generational differences in exposure
to first person computer games (mean age: 26.5 ± 4.6 SD;
25 Females, 1 non-binary). The study was approved by the
MPIB Institutional Review Board (A 2019-05) and partici-
pants signed an informed consent form prior to participation.
Participants earned a base payment of e12 plus a bonus of
e0.03 per reward, earning on average e17.21 ± 0.88.

1The original target sample size was 128 participants, but we
were forced to pause lab-based experiments since March of 2020 due
to COVID-19. These current analyses thus focus on within-subject
and within-session comparisons for the highest statistical power.

Figure 1: Experiment. a) Screenshot (cropped) from a social
round. A reward discovered by another player is visible as a
blue splash in the air. b) A bird’s eye depiction of the task,
showing the full 60×60 field and participant trajectories over
a two minute round. Blue blocks correspond to discovered re-
wards, while gaps in the regular grid of green blocks indicates
no reward. c) Examples of smooth and random environments,
which were mapped to either melons or pumpkins (counter-
balanced across sessions). Each pixel indicates either reward
(black) or no reward (white). Gaps between blocks are omit-
ted. d) Experiment design. Participants first completed an
interactive tutorial (https://youtu.be/bj55n8CI Nk), fol-
lowed by a training round of each environment. The main
task was a 2×2 within-participant design, manipulating re-
ward environment (smooth vs. random) and search condi-
tion (solo vs. group). Each of the four configurations was
completed in four consecutive rounds of the same type (16 in
total). Round order was pseudo-randomized and counterbal-
anced between sessions.

The experiment was conducted in a computer lab using a
modified Minecraft server, where participants controlled an
avatar from a first person perspective (Fig. 1a). Each round
of the experiment took place on a 60x60 field (bounded by a
fence), containing 400 resource blocks, laid out in a 20×20
grid with a two block gap between each block (Fig. 1b).
Each resource block (either watermelon or pumpkin, depend-
ing on environment) could be destroyed by continually hitting
it (holding down left mouse button) for 2.25 seconds, yielding
a binary outcome of either reward or no reward.

Rewards were indicated by a blue splash effect (Fig. 1a),
visible from any position on the map. Only resource blocks
(watermelon or pumpkin) were capable of being destroyed
in the experiment and were not renewed within the round.
Blocks did not possess any a priori visual features indicating
whether or not they contained a reward. However, rewards in
smooth environments were partly predictable, since observ-
ing a reward predicts other rewards nearby (Fig. 1c). In con-
trast, rewards in random environments were drawn from a
uniform distribution (without replacement) and thus not pre-
dictable. Participants were individually incentivized to col-
lect as many rewards as possible, which were translated into
a bonus payment at the end of the experiment.
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Design and procedure

Participants completed the task in randomly assigned groups
of four, with group members completing the task in the same
room and made aware they were interacting with each other.
After an in-game tutorial and two practice rounds (see below),
participants completed 16 rounds of the task, each lasting two
minutes. We used a 2×2 within-subject design, manipulating
the reward environment (random vs. smooth) and search con-
dition (solo vs. group), with each combination completed in
four sequential rounds (Fig. 1d).

The reward environment of a given round (random vs.
smooth) was made salient by the use of either pumpkin or
watermelon blocks (counter-balanced across groups; Fig. 1c).
Both environments had the same number of rewards (25% of
blocks), but with rewards either randomly or smoothly dis-
tributed. Random environments were generated by uniformly
sampling 25% of blocks (without replacement). Smooth en-
vironments were designed to contain clustered reward distri-
butions, which varied smoothly over space. We first sampled
a bivariate reward function from a Gaussian Process prior,
where we used a radial basis function kernel with the length-
scale parameter set to 4 (similar to Wu, Schulz, Garvert,
Meder, & Schuck, 2020). Sampled reward functions were
then binarized, such that the top quartile (25%) of block lo-
cations were set to contain rewards. In the tutorial, partici-
pants were given verbal descriptions of each reward condi-
tion, saw two fully-revealed illustrations of each environment
class from a bird’s-eye perspective (Fig. 1c), and interactively
destroyed a 3×3 patch of both environments.

The search condition of a given round was made salient by
having participants either stand on an isolated teleportation
platform (solo) or on a common teleportation platform with
the other participants (group) in order to start the round. In the
solo condition, participants searched on identical replications
of the same environments but without interactions with one
another. In the group condition, participants searched on the
same environment and could compete with and imitate one
another.

After receiving verbal instructions, participants completed
a tutorial to familiarize themselves with the controls, how to
destroy blocks, the difference between smooth and random
reward distributions, and the overall task structure (Fig. 1d).
They then completed two practice rounds in both smooth and
random environments, which were identical to the solo con-
dition of the main task (but without contributing to bonus
payments). Each round lasted two minutes, with the end of
the round corresponding to the sun setting below the hori-
zon. This served as an approximate in-game timer for each
round, and was communicated to participants in the tuto-
rial. A three second countdown timer was also shown on the
screen. At the end of the round, participants were given an
on-screen announcement indicating the number of rewards
they earned and notifying them of the reward environment
and search condition for the next round. Participants were
then teleported into a lobby (either separate lobbies for solo

or a communal lobby for group rounds), and were required to
all stand on a “teleportation” block to indicate readiness for
the next round. Then players were teleported into a random
position in the next environment, facing a random direction.
For the entire experiment the sound was turned off, partici-
pants could not see each other’s screens, and task-irrelevant
controls (e.g., crafting menu) were disabled.

Data collection
Experimental data was collected using a custom data logging
module programmed in Java, separated into player logs and
map logs. Player logs contained each player’s [x,y] spatial po-
sitions together with the pitch and yaw components of their
visual orientation sampled at 20hz (every 0.05s). Map logs
contained information about each player’s interactions with
resource blocks, also sampled at 20hz. Together, the player
and map logs allowed us to completely reconstruct the visual
fields from all participants using a simulation programmed
in the Unity game engine. This allowed us to automatically
transcribe visibility information. We simulated each player’s
field of view with all entities and other players rendered using
a unique RGB color mask. From each frame of the simula-
tions, we analyzed the pixels of the resulting image to deter-
mine which players and entities were visible at a given time.

Results
We first focus on task performance before analyzing social
interactions using visual and spatial data. Lastly, we model
social influence by detecting pull events in foraging patterns.

Task performance
Using a two-way within subjects ANOVA, we found that
participants acquired more rewards in smooth environments
(F(1,43) = 154.0, η2 = .47, p < .001) and in the solo condi-
tion (F(1,43) = 8.54, η2 = .02, p = .006), with an additional
interaction of smooth:solo (F(1,43) = 6.42, η2 = .01, p =
.015; Fig. 2a). This improved performance in the smooth:solo
condition was mediated by learning over rounds (Fig. 2b).
We fit a Bayesian mixed effects regression using environ-
ment, search condition, and round number to predict reward,
while treating participants as random effects. The only re-
liable interaction with round was found in the smooth:solo
condition (b = 0.07, 95% Highest Posterior Density (HPD):
[0.01,0.12], p(b > 0) = .99). Thus, participants improved
their ability to detect rewards in smooth environments over
successive rounds when searching alone, but not in groups.

However, these reward differences were substantially influ-
enced by the dynamics of reward depletion (Fig. 2c), where
more predictable rewards (i.e., smooth) and more participants
searching for the same finite number of rewards (i.e., groups)
both contributed to a faster decay in the baseline probability
that one of the remaining blocks contained a reward. Thus,
we computed the normalized reward rate (Fig. 2d), by nor-
malizing the instantaneous reward rate by the current ex-
pected reward rate P(reward|blocksRemaining). This mea-
sure shows how well participants perform relative to a dy-
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Figure 2: Behavioral results. a) Average reward across con-
ditions. Dots indicate group means with error bars showing
the standard error. b) Average over rounds, where each dot
and error bar show the mean and standard error, and the lines
and ribbons show the mean and 95% CI of a linear regression.
c) The probability that a randomly sampled block contains a
reward at any given time. This illustrates the higher depletion
of rewards in more predictable environments (i.e., smooth)
and when more participants are competing for the same finite
number of resources (i.e., group). d) Normalized reward rate
shows the average rate of rewards, normalized by the expec-
tation of rewards (panel c). Lines and ribbons show the mean
and 95% CI of a generalized additive model. e) Foraging rate
defined in terms of blocks destroyed per second. f) The aver-
age distance between destroyed blocks.

namically changing random baseline. We found higher per-
formance in smooth environments (F(1,43) = 182.5, η2 =
.53, p < .001), but no difference between group or solo con-
ditions (F(1,43) = 0.33, η2 = .001, p = .57). We also no
longer found any significant interaction in the group:smooth
condition (F(1,43)= 0.03, η2 < .001, p= .863). Thus, when
accounting for differences in expected rewards due to de-
pletion, participants performed equivalently in the solo and
group conditions.

Participants’ foraging patterns were also influenced by the
environment and social search conditions. Figure 2e shows
the average foraging rate, which is defined as the number of
blocks destroyed per second. Participants were more selective
and foraged slower in smooth environments (F(1,43) = 5.15,

η2 = .02, p = .028) and in the group condition (F(1,43) =
7.39, η2 = .01, p = .009). There was also an interaction be-
tween search condition and environment (F(1,43) = 8.20,
η2 = .003, p = .006), where participants were especially
slower when combining the predictably smooth rewards with
group dynamics.

These adaptive patterns of foraging selectivity are also
present when analyzing the distance between destroyed
blocks (Fig. 2f). Participants travelled further between for-
aged blocks in smooth environments (F(1,43) = 14.3, η2 =
.07, p < .001) and in the group condition (F(1,43) = 34.6,
p < .001, η2 = .07). We again see the same interaction be-
tween search condition and environment (F(1,43) = 15.1,
p < .001, η2 = .03), where participants in the group:smooth
condition especially foraged over the longest distances.

Social Interactions
Next, we focus on the social interactions between participants
in the group rounds. By recreating all experimental data in the
Unity game engine (see methods), we were able to program-
matically annotate all field of view (FOV) data. This allowed
us to determine when any given participant was visible to any
other participant at all points in time. We then computed the
average number of visible peers as a proxy for social attention
(Fig. 3a), which is higher when more peers were visible and
for longer durations. Consistent with the fact that social infor-
mation had no value in random environments (due to unpre-
dictable rewards), we found higher social attention in smooth
environments (paired t-test: t(43) = 2.7, d = 0.5, p = .011).
There was also a marginal interaction effect of round, where
social attention tended to decrease over rounds in the random
environment (Bayesian mixed effects regression: b =−0.01,
95% CI: [−0.02,0.01], p(b < 0) = .86; Fig. 3b). Thus, par-
ticipants observed other participants less in random environ-
ments (where social information had no value), with the mag-
nitude of this difference increasing over successive rounds.

In order to better understand the pairwise interactions be-
tween participants’ visual attention, we constructed visibil-
ity networks for each round (Fig. 3c), where the directed
edges are weighted based on the amount of time one par-
ticipant observed another. Based on these graphs, we com-
puted the weighted in- and out-degree for each participant
(Fig. 3d). Higher in-degree corresponds to being observed
more frequently (i.e., “celebrity” factor), while higher out-
degree corresponds to observing others more frequently (i.e.,
“paparazzi” factor). In smooth environments, we find a neg-
ative correlation between in- and out-degree (r = −.37, p =
.014), but no correlation in random environments (r = −.07,
p = .652). We obtain similar results using rank correlation
(smooth: rτ = −.21, p = .044; random: rτ = −.11, p =
.275). This suggests that participants were more specialized
in smooth environments, with celebrities who were frequently
observed but rarely observed others, and paparazzi who ob-
served others intensely but were seldom observed themselves.

We also built proximity networks where the undirected
edges were weighted by the spatial proximity between par-
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Figure 3: Social interaction results (group rounds only). a)
The average number of visible peers (at any point in time).
Each connected dot is a participant, with an overlaid Tukey
boxplot providing group-level statistics. The diamond show
the group means. The p-value is based on a paired t-test.
b) Changes in social visibility over consecutive rounds. Dots
and error bars indicate the aggregate mean and standard error,
while the line and ribbon show the mean and 95% CI of a lin-
ear regression. c) An example of a visibility network, where
each node is a participant and the directed edges are weighted
by the proportion of time (within a round) that the target par-
ticipant is visible to the observer. d) A comparison of the in-
and out-degree of each participant (dot) with the lines indicat-
ing a linear regression. e) An example of a spatial network,
where the undirected edges are weighted by the average spa-
tial proximity between participants. f) Correspondence be-
tween the eigenvector centrality rank (how connected one is
to other connected nodes) of each participant with their aver-
age reward. Dots and error bars show the aggregate mean and
standard error.

ticipants (stronger edge weights for closer average distance;
Fig. 3e). Based on these spatial relationships to other partic-
ipants, we computed the eigenvector centrality (EC) of each
participant as a measure of spatial proximity to others. Fig-
ure 3f shows the relationship between the rank EC (computed
within each group) and average rewards. In random envi-
ronments there was a negative trend between spatial proxim-
ity and reward (rτ = −.19, p = .081). In smooth environ-
ments, we find a non-linear relationship, where intermediate

levels of proximity produced the highest performance. Partic-
ipants with a rank EC of 2 performed better than their peers
with lower EC who were the most distant from the group
(t(20)= 2.3, p= .032, d = 1.0), but with no significant differ-
ence to peers with higher EC (t(31) = 1.7, p= .107, d = 0.6),
who were more central. These results suggest that an inter-
mediate level of spatial proximity may have facilitated bet-
ter performance in smooth environments, although there was
no significant disadvantage to being more central. Thus, in
smooth environments where social information was predic-
tive of other rewards in the same area, it was better to be more
central—despite increased competition for rewards—than to
be at the outskirts, where imitation was more expensive due
to increased travel costs.

Social Influence
In order to more directly measure social influence, we
adapted methods developed to analyze the movement patterns
of geo-tracked baboons in the wild (Strandburg-Peshkin,
Farine, Couzin, & Crofoot, 2015). This allows us to detect
discrete “pull” events over arbitrary time scales, where the
movement patterns of one participant (leader) pulls in another
(follower) to imitate and forage in the same vicinity (Fig. 4).

We first computed the pairwise distance between all partic-
ipants (Fig. 4a) and defined candidate pull events from min-
max-min sequences. These candidate sequences were then
filtered based on strength, disparity, leadership, and duration
in order to be considered a successful pull.

Strength Si, j defines the absolute change in dyadic dis-
tance relative to absolute distance:

Si, j =
|di, j(t2)−di, j(t1)||di, j(t3)−di, j(t2)|
(di, j(t1)+di, j(t2))(di, j(t2)+di, j(t3))

, (1)

where di, j(tk) is the dyadic distance between participants i
and j at time k ∈ [1,2,3] (corresponding to the timepoints of
the min-max-min sequence). We required pull events to have
a minimum strength of Si, j > .1, such that they correspond
to meaningful changes in spatial proximity rather than minor
“jitters” at long distance.

Disparity δi, j defines the extent to which one participant
moves more than the other in each segment, relative to the
total distance moved by both participants:

δi, j =
|∆xi(t1, t2)−∆x j(t1, t2)||∆xi(t2, t3)−∆x j(t2, t3)|
(∆xi(t1, t2)+∆x j(t1, t2))(∆xi(t2, t3)+∆x j(t2, t3))

,

(2)
where ∆xi(t1, t2) is the displacement between t1 and t2. We
filtered pull events to have a minimum disparity of δi, j > .1,
such that changes in spatial proximity were asymmetrically
driven by one of the interaction partners.

Leadership is a simple binary filter requiring that the
participant who moved more in the first segment (t1 to t2)
moved less in the second segment (t2 to t3). We refer to
the participant who moved the most in the first segment
maxa∈(i, j) ∆xa(t1, t2) as the leader and the participant who
moved the most in the second segment maxb∈(i, j) ∆xa(t2, t3)
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Figure 4: Pull events. a) Candidate pull events were selected from min-max-min sequences (dashed lines) of the pairwise
distances between participants. These candidate sequences were then filtered by strength, disparity, leadership, and minimum
duration (see text). b) An example of a successful pull. The orange and pink lines indicate the trajectories of the leader
and follower (respectively), where the timepoints [1,2,3] correspond to the min-max-min sequence in panel a (dashed lines).
The colored blocks illustrate the foraged blocks up until t3. c) The average number of successful pull events in each session
(connected dots). The Tukey boxplots illustrate the aggregate statistics with diamonds showing the group, and the p-value is
for a paired t-test.

as the follower. Thus, successful pulls are defined as a 6= b,
where the leader and follower are separate participants.

Duration was the final filter, where we required pulls to be
at least 3 seconds in duration (since it takes 2.25s to destroy a
block). After all filters were applied, the average pull duration
was 15s ± 0.73 (SEM).

Altogether, we detected 135 successful pull events from
the group rounds in our data. Figure 4a-b shows an example
of a successful pull in a smooth environment. At t1, both the
leader (orange) and follower (pink) are in similar locations,
but begin to move in opposite directions. At t2, the leader has
found a new patch at the center of the map while the follower
has been unsuccessful at the south-east corner. Between t2
and t3, the follower turns around and starts moving towards
the leader and begins foraging in the same proximity.

When comparing the influence of environment on the fre-
quency of pull events, we found a higher frequency of pulls
in smooth than random environments (t(10) = 4.0, p = .003,
d = 1.9; Fig. 4c). This effect was also amplified over suc-
cessive rounds. We fit a Bayesian mixed effects Poisson
regression model to predict the number of pull events in
each round, using the reward environment and round num-
ber as predictors, and treating session as a random intercept.
Pull events increased over rounds in smooth environments
(b= 0.42, 95% HPD: [−0.02,0.89], p(b> 0)= .97), whereas
they tended to decrease over rounds in random environments
(b =−0.27, 95% HPD: [−0.76,0.21], p(b < 0) = .86). This
adaptation of pull frequency was consistent with the fact that
social information was predictive of rewards in smooths en-
vironment, but had no value in random environments.

Discussion
Using a collective spatial foraging experiment implemented
in an immersive virtual environment, we were able to bring

together an unprecedented combination of behavioral data,
including spatial trajectories, visual field data, and their com-
plex social interactions. By analyzing foraging patterns, so-
cial interactions (visual and spatial), and social influence, we
were able to shine new light on how individuals in groups
negotiate the balance between social and individual learning.

By manipulating the reward structure, we were able to
study how individuals in groups adapt their search strategies
to the value of social information. Smooth environments had
predictable rewards, such that observing when another player
finds a reward provided actionable information about where
to search next. In contrast, random environments had no pre-
dictable pattern of rewards, and thus time spent observing
other players came only at the cost of lost opportunities for
individual foraging without any benefits. Accordingly, par-
ticipants observed each other less in random environments,
and were less susceptible to social influence, as captured by a
lower frequency of pull events. In both cases, these patterns
were amplified over successive rounds, suggesting a gradual
rather than sudden adaptation of social learning strategy.

Furthermore, our visibility analysis indicates that groups
achieved a balance between individual and social learning
through specialization rather than homogeneous strategy use.
In smooth environments, participants specialized as either the
target of social attention or source of it. This asymmetric so-
cial attention structure may help prevent runaway information
cascades. Attention selectively directed towards participants
who rely more on individual learning avoids creating highly
correlated social information, which is a key feature of mal-
adaptive information cascades (Toyokawa et al., 2019; Tump
et al., 2020) and also polarized echo chambers that develop
through online social media networks (Baumann, Lorenz-
Spreen, Sokolov, & Starnini, 2020).

The main limitation of these current results is our small
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sample size due to COVID-19 related restrictions on lab ex-
periments. Even though we have incredibly rich spatial-
temporal data from each participant, we have relatively weak
statistical power in comparing different groups. Therefore,
we have abstained from statistical analyses relating group-
level characteristics (e.g., social network characteristics and
pull events) to reward outcomes. For the same reason, we
have not yet studied the stability of individual differences in
strategy use. Recent work has found that differences in social
learning strategies (imitation vs. emulation) emerge early in
human ontogeny (Yu & Kushnir, 2020), which may persist
as stable personality traits. Exploring the interplay between
flexibility in social learning strategies, and consistent individ-
ual differences in social learning strategies is a fruitful avenue
for future work.

Finally, future work using computational models and
agent-based simulations will allow us to tackle a wider range
of research questions and improve our understanding of the
interaction dynamics that shape our social learning strategies.
In sum, we have only begun to fully leverage the richness of
this experimental paradigm.
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