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Individuals at risk for developing rheumatoid arthritis harbor differential intestinal 1 

bacteriophage communities with distinct metabolic potential 2 
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2

SUMMARY 27 

Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by 28 

the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal 29 

microbiota, yet the association of microbes with CCP serology and their contribution to RA is 30 

unclear. We describe intestinal phage communities of individuals at risk for developing RA, with 31 

or without anti-CCP antibodies, whose first degree relatives have been diagnosed with RA. We 32 

show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP 33 

serology, are dominated by Lachnospiraceae phages, and originate from disparate ecosystems. 34 

These phages encode unique repertoires of auxiliary metabolic genes (AMGs) which associate 35 

with anti-CCP status, suggesting that these phages directly influence the metabolic and 36 

immunomodulatory capability of the microbiota. This work sets the stage for the use of phages 37 

as preclinical biomarkers and provides insight into a possible microbial-based causation of RA 38 

disease development.  39 
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INTRODUCTION 53 

Rheumatoid arthritis (RA) is a systemic autoimmune disease with a global prevalence of 54 

approximately 1%. The development of RA in at-risk individuals is dependent on a combination 55 

of genetics, epidemiological factors, and systemic immune dysregulation [1]. The heritability of 56 

RA is estimated to be 40–60%, with increased familial risk evident among first-degree relatives 57 

(FDRs) of individuals with diagnosed RA [2, 3]. Analyses of at-risk FDRs, even those without 58 

serum RA-related autoantibodies, have identified patterns of mucosal inflammation whereby 59 

anti-cyclic citrullinated peptide (anti-CCP) antibodies and rheumatoid factors (RF), as well as 60 

cytokines and chemokines, are expressed locally in a subset of individuals [4-6]. In addition, 61 

anti-CCP and RF are present in the blood for years prior to the onset of RA, and their presence 62 

as well as circulating cytokine and chemokine biomarkers, are predictive of future RA 63 

development [7-9]. To probe the mucosal origins hypothesis [1] and the mounting evidence 64 

implicating intestinal microbiota perturbations in RA etiopathogenesis [10], it is necessary to 65 

characterize the ecological associations of the microbiota in at-risk individuals susceptible to 66 

RA.  67 

 Studies linking the role of the intestinal microbiota to systemic autoimmune diseases 68 

predominantly rely on 16S ribosomal gene analyses of bacteria within the microbiome, and have 69 

expanded our understanding of dysbiosis in the RA intestine. Individuals with established RA 70 

harbor a microbiota dominated by Prevotella copri [11, 12], enriched with Gram-positive bacteria 71 

[13], and decreased carriage of bifidobacteria [14], Gram-negative Bacteroides, and Firmicutes 72 

[13, 15]. The association of enriched Prevotellaceae, including P. copri, has also been 73 

described in individuals with preclinical RA [16], indicating that intestinal P. copri is immune-74 

relevant to the pathogenesis of RA [17]. The presence of P. copri may therefore represent a 75 

biological indicator and additional risk factor for RA development and progression [18]. 76 

However, associating a single organism to RA etiology neglects the interactions of bacteria with 77 
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their surrounding environment and other bacterial community members whose populations can 78 

be influenced by predatory bacteriophages (phages). 79 

In contrast to the recent enthusiasm for characterizing microbial links to the etiology of 80 

RA, relatively little is known concerning the composition of phage communities in the intestine 81 

as it relates to RA disease risk. Phages of the intestinal microbiota can fluctuate in community 82 

composition in response to immune system function and disease, which suggests that they 83 

could be exploited as biomarkers for early disease detection [19]. Metagenomic sequencing 84 

strategies have revealed extensive and diverse populations of phages in the human intestine 85 

[20-22], in which phage community dynamics correlate with distinct disease states [23-25]. 86 

Specific intestinal phage genomic signatures precede autoimmunity development of type 1 87 

diabetes in a cohort of diabetes-susceptible children, with disease-associated phages 88 

correlating to the bacterial component of the microbiota [26]. In addition to the direct impact of 89 

intestinal phages on bacterial community composition via classical predation and prophage 90 

mediated bacterial competition and metabolism, phages also adhere to mucosal surfaces, 91 

significantly impacting microbial colonization [27] and host mucosal immunity development [28]. 92 

Evidence is emerging that phages are also immunomodulatory through intrinsic anti-93 

inflammatory properties, and are capable of direct lymphocyte regulation through the ability to 94 

translocate to multiple tissues and organs [29]. Despite these observations and potential 95 

implications for systemic autoimmune diseases like RA, evaluation of intestinal phages in the 96 

context of RA disease risk has yet to be described.  97 

 The interplay between intestinal bacteria, their phages, and the host immune system, 98 

whose interactions have consequences not only for compositional dysbiosis but 99 

immunomodulation, must be considered in the etiopathogenesis of RA. The microbiome, and 100 

more recently the virome, have been implicated in a range of human diseases including cancers 101 

[30, 31], inflammatory bowel diseases [32, 33], and arthritis [11, 34]. By characterizing the 102 

phage populations in an at-risk RA FDR cohort; further sub-grouped with regard to autoantibody 103 
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status as defined by the presence of anti-CCP antibodies and compared to healthy controls, we 104 

have begun to address this question. The cohort contains individuals that do not have 105 

inflammatory arthritis or established RA disease but are FDRs to an individual with diagnosed 106 

RA, which alone increases RA risk. Studying the microbiomes of at-risk individuals in the 107 

preclinical RA state could lead to the identification of biomarkers and therapeutic targets 108 

independent of confounding by the use of drugs in subjects with active arthritis. 109 

We used metagenomics to define intestinal phage populations of anti-CCP positive 110 

(CCP+) and negative (CCP-) individuals in an at-risk FDR cohort. Phage matching to bacterial 111 

hosts showed divergent intestinal phage communities dependent on anti-CCP serology status. 112 

We observed an overabundance of phages targeting Bacteroidaceae and Sreptococcaceae 113 

bacteria in CCP+ at-risk FDRs as well as phages targeting Bacteroidaceae bacteria in CCP- at-114 

risk FDRs. Importantly, analysis of the metabolic traits encoded in phage metagenomes 115 

revealed intra-cohort profiles reflecting distinct immunomodulatory potential. Phages with 116 

auxiliary metabolic genes (AMGs) that modify lipopolysaccharide and other outer membrane 117 

glycans of host bacteria were differentially abundant, implicating modifications to bacterial 118 

antigenicity [35] and bacterial fitness [36] in RA-associated communities. Core phage metabolic 119 

genes, including 14 genes which are globally conserved among phages from multiple diverse 120 

environments [37], as well as bacterial surface modifying enzymes, were associated with 121 

phages targeting Flavonifractor sp. in the CCP+ cohort and Bacteroides sp. in the CCP- cohort. 122 

Phages targeting Lachnospiraceae (Clostridium scindens) and Actinomyces (A. oris), including 123 

several AMGs, were over-abundant among CCP+ and CCP- individuals, respectively, compared 124 

to healthy controls. Our data show that there are unique and abundant intestinal phages specific 125 

to RA-susceptibility status, and this highlights their potential as biomarkers for preclinical RA 126 

and the need for further pursuit of community-level bacteria-phage interactions during the 127 

development and progression of RA. 128 

 129 
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RESULTS 130 

First-degree relatives to individuals with rheumatoid arthritis. 131 

A total of 25 human subjects were identified from the Studies of the Etiology of Rheumatoid 132 

Arthritis (SERA) [38], including 16 FDRs of individuals with RA and 9 age and sex matched 133 

healthy controls (HC). FDR subjects for which a detectable level of anti-CCP autoantibody was 134 

present (defined by a value of ≥ 20 units/mL in either ELISA assay for anti-CCP3.1 IgA/IgG or 135 

anti-CCP3 IgG (Inova Diagnostics) [39]) were designated the CCP+ group (n = 8). FDRs with no 136 

anti-CCP detected were designated the CCP- group (n = 8) (Table 1). Mean ages for the three 137 

groups in this study were 61.3 ± 11.0 for CCP+, 49.0 ± 15.7 for CCP-, and 44.4 ± 13.6 for HC. 138 

The distribution of sexes for each group is reported as percent female, with 88.9% for CCP+, 139 

62.5% for CCP-, and 66.7% for HC. Among the CCP+ and HC groups, 3/9 and 2/9 of individuals 140 

have reported ever smoking (a risk factor associated with RA), respectively (Table 1). 141 

 142 

Generation and curation of de novo assembled VLP contigs. 143 

We used individual fecal samples from the subjects obtained at the time of autoantibody and 144 

clinical evaluations, and isolated total genomic DNA for shotgun metagenomic sequencing using 145 

an untargeted amplification-independent approach [23, 40]. Samples were physically separated 146 

into whole metagenome (M), including all genomic DNA present in the sample, and virus-like 147 

particle (VLP) fractions, which were subjected to phage-specific precipitation (Figure S1A). 148 

Illumina sequencing resulted in an average of 123.8 ± 32.2, 135.2 ± 40.4, and 104.7 ± 45.9 149 

million (M) paired end reads per sample for CCP+, CCP- and HC whole metagenomes, 150 

respectively, and an average of 67.3 ± 29.5, 73.2 ± 33.7, and 89.6 ± 47.8 M paired reads per 151 

sample for CCP+, CCP- and HC VLP fractions, respectively (Figure S1B).  VLP sequencing 152 

reads were used for de novo contig assembly of VLP metagenomes. In total, 3.56 M contigs 153 

were assembled and pooled from the 25 individual metagenomes, with 80,762 contigs longer 154 
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than 5 kb (Figure 1A). VLP contigs longer than 5 kb were distributed evenly across the three 155 

sample groups, totaling 2908.6 ± 1461.3, 3209.0 ± 2573.8, and 3535.7 ± 2826.4 contigs per 156 

sample for CCP+, CCP- and HC respectively (Figure S1C). 157 

These 80,762 contigs served as a starting point for identifying putative phages using a 158 

three-pronged approach of independent phage discovery methods (Figures 1A and S1D). The 159 

first method (P/M ratio) employed a previously validated read mapping strategy whereby VLP 160 

read sets from all 25 samples were mapped to both whole metagenome (M) and VLP (P) 161 

contigs [23]. Using the read-mapping P/M ratio (see Methods), we identified 2,117 unique 162 

putative phage contigs after dereplication at 95% sequence identity. Next, we identified an 163 

independent set of phage contigs by aligning all open reading frames (ORFs) of the 80,762 VLP 164 

contigs against a set of 25,281 curated viral protein families (VPFs) [41]. Using this VPF 165 

method, several filters were applied to identify viral contigs; (i) 2,902 contigs were identified as 166 

having 5 or more VPF hits and non-viral Pfam hits below 20% of total ORFs on a contig, (ii) 263 167 

contigs were identified with 5 or more VPF hits and less than 50% non-viral Pfam hits on a 168 

contig, (iii) 644 contigs with 2-4 VPF hits and 0 non-viral Pfams, (iv) 976 contigs with at least 1 169 

VPF hit, without considering any non-viral Pfams. In total, after dereplication, the viral contigs 170 

arising from all above filters resulted in 4,785 unique viral contigs. For the third and final 171 

approach we employed VIBRANT (Virus Identification By iteRative ANnoTation), a sequence-172 

independent algorithm that uses neural networks of viral protein signatures to identify lytic and 173 

lysogenic phages [37]. Using VIBRANT, we identified 4,758 unique viral contigs. 174 

To consolidate this list, we identified contigs that were shared between all three phage 175 

discovery methods, resulting in a curated list of 660 contigs (Figures 1A and 1B). This curated 176 

list of putative phage contigs range in size from 5,007 bp to 557,525 bp. To assess host 177 

bacterial contamination among these contigs, we employed CheckV, a pipeline for assessing 178 

the quality of viral genomes [42]. CheckV analysis revealed a reduced level of host bacterial 179 

contamination and an increase of pure viral genomes in the final list of 660 curated contigs as 180 
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compared to varying levels of contamination among the three separate methods prior to contig 181 

overlap identification (Figure 1C). We estimated completeness of our curated contigs using 182 

CheckV and determined a greater distribution of “high quality” contigs relative to contig length, 183 

in comparison to the three independent methods (Figure S2) [43]. Further, using the VIBRANT 184 

platform for integrated provirus prediction, we describe communities of predominantly lytic viral 185 

genomes belonging to Siphoviridae morphology (Figure S3). By using a combination of 186 

approaches for viral contig discovery and assessing the overlap among these methods, we 187 

have extracted a set of 660 predicted phages which are of overall high quality, both in terms of 188 

viral contig completeness and lack of bacterial contamination than those from each of the 189 

individual methods (Figures 1C and S2), which to date have been used primarily in isolation to 190 

identify and characterize viral metagenomes. 191 

 192 

Clustering of metagenomic viral contigs reveals distinct viral ecological composition. 193 

Next we compared our set of curated contigs to over 2.3 million viral whole genome and 194 

metagenome sequences from the IMG/VR database [44]. We used blastn at a threshold of 95% 195 

sequence identity over 85% of 1 kb sequence length and Markov clustering to group our contigs 196 

with related sequences from IMG/VR. Of the 660 contigs, 346 (52.4%) clustered into 255 197 

clusters that contained 7,736 additional metagenomic viral contigs (mVCs) from IMG/VR. The 198 

remaining 314 contigs (47.6%) were classified as singletons, with an even distribution among 199 

CCP cohorts compared to healthy controls (Figure S4A). Of the curated contigs that were 200 

clustered, cluster sizes ranged from 2 to 646 members with 78.4% of the groups containing 201 

more than 2 partners and 36.5% containing more than 10 members, and 65.9% between 2 – 10 202 

members (Figure S4B). Among these 255 clusters, 14 included reference prophages and lytic 203 

phages, and 318 (48.2%) clustered with classified mVCs, thus assigning multiple levels of 204 

taxonomy to our contigs (Figures 2A, 2B, and Supplementary Table 1). 205 
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 Although host assignments were made using sequence-based clustering, host 206 

specificity was further determined by aligning Clustered Regularly Interspaced Short 207 

Palindromic Repeat (CRISPR) spacer sequences to our 660 curated contigs. CRISPR-Cas 208 

serves as a snapshot of previous phage infections in the form of acquired spacer sequences 209 

that represent invading viral genomes [45], and these sequences can be used for accurate 210 

identification of phage-host interactions in intestinal microbiomes [23, 46]. CRISPR spacer host 211 

assignments at the family level were present in 207 of 660 contigs (31.4%). All CRISPR spacer 212 

queries considered for these analyses, ranging in length from 18 to 70 bp, were matches of 213 

93.1–100% identity across the full length of the query and allowing for 0–2 mismatches and up 214 

to 1 gap throughout [47] (Supplementary Table 2). Among predicted phages, total assigned 215 

CRISPR spacers were evenly distributed, yet CCP+ sample containing phages predicted to 216 

target Lachnospiraceae, Ruminococcaceae, Streptococcaceae, and Veillonellaceae bacterial 217 

families were disproportionately abundant (Figures 2A and 2B). In total, 21 bacterial families 218 

were identified as hosts via CRISPR spacer matching, supplementing the phage-host 219 

interactions discerned from sequence-based clustering (Figure 2A). Among all samples in this 220 

study, phages were predicted to target Lachnospiraceae, Ruminococcaceae, Clostridiaceae and 221 

Bacteroidaceae bacteria with highest frequency of total CRISPR spacers (Figure 2A). Phage-222 

host interactions were also measured in terms of host range specificity, showing that while the 223 

majority of the phages were predicted to have narrow host ranges, several spacers were linked 224 

to multiple hosts across family level and higher taxa (Figure 2C), consistent with prior 225 

observations of diverse viromes [47]. Broad host range phages were found across all cohorts, 226 

but particularly among CCP+ sample contigs (Figure 2D) suggesting a more dysbiotic 227 

community of host bacteria among these individuals’ metagenomes. 228 

We further explored the association of sample cohorts to phage hosts using read 229 

mapping to determine differential host abundance profiles (Figure 3). Reads from all samples 230 

were mapped to assembled phage contigs whose host assignments were deduced using 231 
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CRISPR-spacer matching and Markov clustering to quantify sequence abundances by 232 

measuring cohort-based read recruitment [23, 48-50]. In comparing the differential read 233 

recruitment to phages predicted to infect separate bacterial families, we observed differences 234 

based on reads originating from either the CCP+ or CCP- groups in relation to the HC cohort 235 

(Figure 3). Among the most striking, phage contigs targeting Bacteroidaceae recruited 236 

significantly more reads from CCP+ viromes than either HC or CCP- individuals (Figure 3A). In 237 

contrast, phages predicted to target Clostridiaceae bacteria were evenly abundant across all 238 

three groups (Figure 3B). For Lachnospiraceae bacteria, CCP+ phages recruited were evenly 239 

distributed among the groups with a slight elevation in CCP+ individuals that was not statistically 240 

significant (Figure 3C). Ruminococcaceae phages were significantly skewed when comparing 241 

HC to CCP- individuals (Figure 3D) and a major shift in phage read recruitment abundance was 242 

evident for Streptococcaceae phages, as a greater percentage of total CCP+ reads were 243 

mapped to these phages in relation to either HC or CCP- virome reads (Figure 3E). This skew 244 

among CCP+ individuals is supported by prior works showing elevated Streptococcal phage 245 

abundances in intestinal viromes of humans with inflammatory bowel disease [32] and a murine 246 

model of colitis [23]. Lastly, no significant differences were observed for read recruitment to 247 

Veillonellaceae-targeting phages (Figure 3F). Thus, differences in the host specificities were 248 

evident between CCP+, CCP-, and HC groups with respect to read mapping abundance profiles 249 

for Bacteroidaceae, Ruminococcaceae, and Streptococcaceae phages.  250 

 251 

CRISPR spacer host metadata reveal CCP+ phages represent greater variability in 252 

microbial host ecology. 253 

To further explore the phage ecology from our subject cohort, we analyzed the host and mVC 254 

metadata from the Joint Genome Institute’s (JGI) Genomes OnLine Database (GOLD) [51]. The 255 

JGI GOLD database contains metadata from over 100,000 biosamples and over 350,000 256 

sequencing projects involving genomic and metagenomic sequencing data from biological 257 
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isolates worldwide. Moreover, recent work has contributed an additional 52,515 metagenome-258 

assembled genomes from diverse ecologies and geographic distributions [52], further 259 

enhancing microbial host ecosystem analysis. Using the GOLD Biosample Ecosystem 260 

Classification system, we analyzed the ecosystem distributions for all CRISPR spacers 261 

identified in our curated contig list and discovered that the majority of host assigned contigs fell 262 

within four distinct ecosystem classification levels; from broad to specific environments: host-263 

associated, human-associated, digestive system, and large intestine (Figure 4). For phages that 264 

were previously identified as having CRISPR spacer host assignments, total spacer alignments 265 

as identified by blastn ranging from 1 to 825 per contig, were tallied and used to calculate the 266 

uniformity of spacer origins per contig (Supplemental Table 3). For each of the four ecosystem 267 

categories, the most abundant classifications were used to compare across the study cohorts. 268 

At the highest order GOLD Ecosystem distribution, the host-associated (i.e., human, mammal, 269 

plant, arthropod, fungi) origin classification per contig was comparable for the HC and CCP- 270 

groups but not for the CCP+ group (Figure 4A). A similar pattern was evident at the lower order 271 

metadata distributions, with phage contigs derived from CCP+ individuals being more divergent 272 

from the other cohorts for contigs of human-associated origin (Figure 4B), digestive system 273 

origin (Figure 4C), and large intestine origin for the Ecosystem Subtype (Figure 4D). 274 

These compositions of multiple CRISPR spacer ecosystem distributions reveal 275 

homogeneity among phages derived from HC and CCP- samples, and indicates more dysbiotic 276 

communities across CCP+ samples, suggesting that CCP+ individuals harbor disparate phage 277 

communities that are more likely to originate from non-host associated sources. The putative 278 

origins of these phages are related to environmental metadata of CRISPR spacers in the JGI 279 

GOLD database describing the origin of bacterial DNA samples across ecologically diverse 280 

biomes worldwide [52]; and increased heterogeneity in the CCP+ phages suggests a condition-281 

dependent host intestinal environment that maintains diversity. At the highest Ecosystem 282 

classification level, with only three unique classification terms, these non-host associated 283 
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sources that are more prevalent in the CCP+ group, correspond to a higher degree of spacers 284 

matching organisms originating from environmental and/or engineered habitats as archived in 285 

GOLD (Figure S5). The ecosystem distributions of Category, Type, and Subtype have 43, 126, 286 

and 146 unique terms for each classification level respectively, indicating multiple possible 287 

combinations for organism habitats. Thus, our analysis of GOLD metadata for all phages with 288 

predicted host isolates within our study reveals divergent habitat origins for CCP+ derived 289 

contigs. 290 

 291 

Quantitative read mapping reveals differentially abundant contigs despite sample 292 

cohesiveness. 293 

We next asked whether certain phage community members are present in different abundances 294 

among the members of the cohort at-risk for rheumatoid arthritis compared to healthy controls. 295 

To assess differences between phages among the sample groups, we used a viral read 296 

recruitment strategy whereby VLP reads from all samples were mapped to the 660 curated 297 

contigs [23, 48]. Using read count matrices for all contigs as input in the DEseq2 statistical 298 

package for differential analysis of comparative count data [53], we analyzed three pairwise 299 

comparisons for over- or under-abundant viral contigs (Figure 5). Initial comparisons of the 300 

normalized and log-transformed count matrices were performed to evaluate the experiment-301 

wide trends across all samples. Principal component analyses reveal minimal variance 302 

explained by the first two principal components for CCP+ vs HC samples (Figure 5A), CCP- vs 303 

HC samples (Figure 5B), and CCP+ vs CCP- samples (Figure 5C), indicating that total sample 304 

community signatures cannot be readily differentiated based on at-risk or healthy control 305 

cohorts. We further explored the sample similarities by comparing Euclidian sample-to-sample 306 

distances of the regularized log-transformed count matrices. Hierarchical clustering of sample-307 

to-sample distances did not reveal any discernable clustering for CCP+ vs HC samples (Figure 308 

5D), and only minimal similarities between two CCP- samples when compared to the HC 309 
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(Figure 5E) and CCP+ (Figure 5F) groups, suggesting general sample cohesiveness between 310 

cohorts. 311 

We next analyzed specific members of the intestinal phage community, considering the 312 

rationale that samples with complex communities are better explored at the level of each unique 313 

member [33]. Visualization of the principal components incorporating the viral identification 314 

metrics used in the VIBRANT neural network for our 660 curated contigs shows minimal 315 

differentiation among phage scaffolds based on scaffold quality (Figure S6A) or predicted phage 316 

state (i.e., lytic or lysogenic) (Figure S6B), although fragmentation of smaller sized contigs is 317 

evident for both analyses. Further, grouping of contigs at the sample type level does not 318 

differentiate any specific cluster (Figure S6C), which is consistent with the minimal variance 319 

observed at the sample level (Figures 5A, 5B, and 5C). Finally, we assessed the differential 320 

abundance of read recruitment counts for the set of 660 contigs and estimated fold changes 321 

based on the negative binomial generalized linear model provided by DESeq2 [53]. Using 322 

thresholds of log2-fold change greater than 1 or less than -1 (equivalent to fold change of ± 2) 323 

and Benjamini-Hochberg adjusted p-values < 0.001, we identified a total of 178 differentially 324 

abundant contigs (27% of the 660 phages) across three pair-wise abundance comparisons. For 325 

CCP+ vs HC samples a total of 59 contigs (30 over- and 29 under-abundant) (Figure 5G), for 326 

CCP- vs HC a total of 66 contigs (27 over- and 39 under-abundant) (Figure 5H), and for CCP+ 327 

vs CCP- a total of 53 contigs (27 over- and 21 under-abundant) (Figure 5I) passed our 328 

thresholds for significance. This suggests that there are unique changes in select phage 329 

abundances from the intestinal viromes of individuals at risk for RA, and that these changes are 330 

more nuanced than sample-based community associations can reveal. These data indicate that 331 

these cohort groups represent minimal sample-sample variation, but may provide clues related 332 

to detection of biomarkers via specific community members. The top phage contigs associated 333 

with either CCP+ or CCP- individuals were Clostridium scindens (Lachnospiraceae) and 334 
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Actinomyces oris (Actinomycetaceae), respectively, over-abundant at log2 fold changes of 25.9 335 

and 23.5 compared to the healthy control samples. 336 

A comparison of the bacterial relative abundances via 16S amplicon sequencing 337 

confirmed an expansion of Lachnospiraceae bacteria among samples originating from CCP+ 338 

individuals (Figure S7A). This confirms, in part, observations of over-abundant 339 

Lachnospiraceae-targeting phage contigs for the CCP+ but not CCP- cohorts (Figures 6B and 340 

6C). The bacterial composition across all cohorts was relatively even in terms of richness 341 

(Figures S7B and S7C), evenness (Figure S7D), and species diversity (Figure S7E). 342 

Conversely, phage host abundances in the CCP- cohort relative to healthy controls were not 343 

correlated to a family-level differentiation in bacterial taxa relative abundance. 344 

 345 

Phage auxiliary metabolic gene abundances highlight cohort-associated disparities in 346 

metabolic potential. 347 

To determine the functional potential and metabolic capabilities within intestinal phages, we 348 

quantified AMGs assigned to specific metabolic pathways in the Kyoto Encyclopedia of Genes 349 

and Genomes (KEGG) database across at-risk and healthy cohorts. Since their identification as 350 

viral drivers of host metabolism [54], phage-encoded AMGs have been recognized as 351 

consequential actors that redirect host functional capacities thereby directly influencing local 352 

ecology [55, 56]. Analyses of AMGs using VIBRANT and KEGG pathway annotations can 353 

provide valuable insights into potentially altered metabolic functions or informative biosignatures 354 

for cohort-associated microbial communities [37, 57]. To this end, we assessed our set of 355 

curated phage contigs against 2,835 AMGs with KEGG annotations identified as “metabolic 356 

pathways” or “sulfur relay system” [37]. Among our 660 phage contigs, 161 (24%) were found to 357 

encode at least 1 AMG, with 252 AMGs in total across all samples (Supplemental Table 4). 358 

Phages originating from the HC cohort accounted for 131 metabolic signatures, while CCP+ and 359 

CCP- had less total AMGs with 77 and 44, respectively (Figure S8A). Among the most 360 
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represented metabolic categories across all phages, amino acid metabolism and the 361 

metabolism of cofactors and vitamins contained 121 and 88 AMGs, respectively, with energy 362 

metabolism being the next largest category with 22 AMG hits (Figure S8B). These general 363 

pathway results indicate that phages in the intestine presumably affect host metabolism through 364 

the consumption of metabolic resources needed for their own biogenesis, as described in 365 

phage-host infection studies of model pathogens [58-60] and marine virocells [61]. 366 

 To further probe all metabolic phage-encoded functions corresponding to our sample 367 

cohorts, we assessed all AMG hits for total KEGG pathway abundances. Hierarchical clustering 368 

grouped AMGs into 5 distinct metabolic clusters relative to HC and at-risk CCP cohorts (Figure 369 

6A). Among these groups, the gene coding for phnP (K06167) stands apart from the others, 370 

both in terms of clustering and also for relative pathway abundance (Figure 6A). Among group-371 

associated differences in AMG pathway abundances, there are notable absences among both 372 

CCP+ and CCP- individuals. Namely, several clustered transferases such as the mannose-373 

phosphate transferases (algA, xanB, rfbA, wbpW, pslB), manno-heptose transferases (gmhC, 374 

hldE, waaE, rfaE), and the galE epimerase and glmS transaminase (Figure 6A). Considering the 375 

impact of such transferases on bacterial cell wall polysaccharides and biofilm formation [62, 63], 376 

these results point to a baseline of phage-driven bacterial surface modifications from HC-377 

derived phages. Conversely, AMGs involved in lipopolysaccharide (LPS) biosynthesis such as 378 

the waaL O-antigen ligase and the gmhB phosphatase are only present in CCP+ phages or at 379 

greater abundance in CCP+ phages, respectively, indicating a possible role in immune evasion. 380 

Within the CCP- cohort, one of the most abundant AMGs, KEGG orthology entry K23144 381 

encoding for a polyketide sugar transferase important in peptidoglycan biosynthesis is 382 

completely absent from the HC cohort and present at lower levels for CCP+ samples. Thus, 383 

phage-encoded bacterial surface modifying enzymes such as the sugar transferases and 384 

LPS/peptidoglycan biosynthetic genes, are differentially represented across the cohorts in this 385 
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study, which has implications for bacterial fitness in the intestinal ecosystems and their 386 

interactions with the immune system. 387 

We next incorporated the AMG characterization of genomes within our curated set of 388 

phages to those that were significantly over- or under-abundant in previous differential 389 

abundance analyses (Figures 5G, 5H, and 5I). Among the 20 differentially abundant contigs 390 

from the CCP+ vs HC pairwise comparison that contained CRISPR spacer-predicted hosts, 8 of 391 

these encoded at least one AMG (Figure 6B). The 9 under-abundant phages in this comparison 392 

encode 5 AMGs, including manno-heptose transferases (gmhC, hldE, waaE, rfaE), mannose-1-393 

phostphate transferases (algA, xanB, rfbA, wbpW, pslB) and ahbD AdoMet-dependent heme 394 

synthase all together on 1 contig, and cysH and iscS genes on 2 other contigs (Figure 6B). 395 

Among the 11 significantly over-abundant contigs, 3 of these encode the phnP 396 

phosphodiesterase; 3 phages predicted to infect Flavonifractor sp. (Ruminococcaceae) and one 397 

predicted to infect Clostridiales bacteria. The remaining AMG found in CCP+-associated over-398 

abundant phages encodes for a cobalamin biosynthesis protein cobS, found in marine 399 

cyanophages [64], viruses of marine archaea [65], and is considered a core component of 400 

marine phage genomes [66], but also ubiquitous in phage genomes that infect E. coli [67]. Our 401 

identification of a CCP+ over-abundant phage contig targeting Bacteroides fragilis and carrying 402 

the cobS AMG (Figure 6B) reinforces the universal nature of this central AMG that is conserved 403 

across hosts and environments [37]. 404 

We also identified 16 unique phage contigs with definitive CRISPR spacer-predicted 405 

hosts that were differentially abundant and associated with the CCP- cohort (Figure 6C). Within 406 

these contigs, 9 are significantly under-abundant compared to healthy controls, with 3 of these 407 

encoding AMGs. CCP- associated phages were identified as carrying cobS, DNMT3A, thiF, and 408 

iscS metabolic genes (Figure 6C). Thus, in contrast to CCP+ associated contigs which harbored 409 

phnP and cobS on a combination of Lachnospiraceae, Rumminococcaceae, and 410 
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Bacteroidaceae targeting phages, CCP- associated phages were identified to target primarily 411 

Bacteroidaceae and Actinomyces oris and harbor a combination of AMGs. 412 

 413 

DISCUSSION 414 

RA is a complex disease with an unknown etiology that puts a burden on quality of life resulting 415 

in a strong societal impact [68, 69]. In addition to multiple epidemiological factors being 416 

associated with RA development, including genetic and familial risk, environmental risk factors 417 

and biological sex [3], the microbiota remains an important and understudied factor that likely 418 

influences RA autoimmunity [70]. Given the widespread occurrence and diversity of phages in 419 

the human intestinal microbiota and their impact on intestinal microbial ecology during health 420 

and disease [19, 20, 71], we analyzed this previously neglected component of the microbiota as 421 

it relates to RA etiopathogenesis. We used shotgun metagenomics to identify intestinal phages 422 

of individuals at risk for developing RA and discovered an association of distinct phage 423 

communities with RA-specific serology in the at-risk population. 424 

Using three separate database-independent approaches, we describe a collection of 660 425 

phage genomic sequences, their potential metabolic capability, and their differential abundance. 426 

Through a combination of CRISPR spacer matching and Markov clustering with other viral 427 

metagenomic sequences from diverse environments, we predicted host assignments for 285 or 428 

43.2% of these phages, which is a high level of taxonomic assignments relative to recent 429 

reports of approximately 10 – 30% host assignment identification [23, 48, 72]. By analyzing a 430 

core set of de novo assembled phage contigs paired with taxonomy, we identified differential 431 

phage communities associated with the at-risk RA individuals compared to healthy controls, all 432 

while adding novel phage-host assignments to previously unidentified intestinal phages [73, 74]. 433 

Phage-host assignments were dominated by Lachnospiraceae-targeting phages, some 434 

of which were over-abundant in CCP+ individuals. This expansion of phages also correlated 435 

with increased abundances of Lachnospiraceae bacteria in the CCP+ cohort compared to either 436 
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CCP- or the healthy cohort, suggesting a link to this family of Firmicutes and CCP autoantibody 437 

production in the human intestine. Interestingly, increased abundance of Lachnospiraceae has 438 

been observed in at least two previous studies of intestinal microbiotas in mice during the 439 

course of collagen-induced arthritis (CIA) [75, 76]. Considering the precedence for overlap of 440 

identified phage contigs from mouse intestines to human-associated intestinal phages [23], the 441 

previously-reported increase in abundance of Lachnospiraceae bacteria during experimental 442 

arthritis in mice is supported by our findings of increased Lachnospiraceae phage-host 443 

interactions in CCP seropositive individuals at-risk for developing RA. To this end, given that the 444 

FDR individuals included in this study do not show clinical signs of established RA, our 445 

identification of a preclinical cohort with increased Lachnospiraceae phage-host interactions 446 

could serve as a biological indicator of disease. Similarly, an expansion of Bacteroidaceae-447 

targeting phages associated with the CCP- cohort was described, which corresponds to a 448 

previously observed expansion of Bacteroidaceae bacteria following CIA in mice [75]. In 449 

addition to these phages serving as potential biomarkers of disease in humans at risk for RA, 450 

our data indicate that Bacteroidaceae and Lachnospiraceae-targeting phages designate a 451 

distinction between CCP serology status that may serve as an additional indicator of disease 452 

progression and/or future disease severity [77]. Notably, bacteria in the Lachnospiraceae and 453 

Ruminococcaceae families have been linked to the pre-diabetic intestinal microbiota and 454 

diabetic pathogenesis, while Bacteroidaceae are associated with disease protection in a murine 455 

model of diabetes [78]. The identification of cohort-specific phage-host interactions sheds light 456 

on potential preclinical biomarkers connecting specific dysbiotic intestinal microbial communities 457 

to possible regulation of microbiota-mediated mucosal inflammation [1, 79]. 458 

We calculated the differential abundance of curated phages on a contig-to-contig basis 459 

to estimate dispersion and fold changes of quantitative read mapping matrices. In doing so, we 460 

identified 178 differentially abundant contigs (27% of the total curated list) across three pair-wise 461 

cohort comparisons. Among the CCP+ vs HC comparison, we observed over-abundant phages 462 
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targeting Clostridium scindens, Flavonifractor sp., Actinomyces oris, as well as other family-level 463 

taxonomic assignments. A member of the Lachnospiraceae, C. scindens is an intestinal 464 

commensal bacterium involved in maintaining homeostatic large intestinal bile acid composition 465 

and providing host protection from opportunistic Clostridioides difficile blooms [80, 81]. A 466 

differential abundance of phage targeting C. scindens in the CCP+ at-risk cohort, may have 467 

implications for bile acid dysmetabolism in these individuals, which has consequences for 468 

inflammatory bowel diseases [82, 83]. Differential abundance of phages in the CCP- cohort 469 

revealed several phages targeting Bacteroidaceae and Bacteroides species, bacteria involved 470 

in multiple reactions of bile acid metabolism promoting host metabolic health [84, 85]. Recent 471 

phage-Bacteroides interactions have described the influence of phage BV01 in reducing 472 

Bacteroides bile acid metabolism [86], which has implications for the impact of phages on 473 

mammalian gut metabolic function. Our findings suggest individuals at risk for RA harbor 474 

divergent communities of phages with potential to alter intestinal metabolic potential through 475 

either reduction of key bacterial species and thus reducing endogenous metabolic function, or 476 

through the phage-derived introduction of specific AMGs. 477 

 Changes to the intestinal metabolome can lead to compositional microbiota transitions 478 

that in turn impact host nutrient uptake and immune homeostasis [87]. Considering that 479 

manipulations of microbial metabolic pathways in the intestine can influence inflammation and 480 

dysbiosis [88], our identification of phage communities with differential abundances of encoded 481 

AMGs points to divergent metabolic landscapes associated with at-risk RA cohorts. A majority 482 

of the AMGs identified in our analysis make up a group of 14 genes conserved across many 483 

environments [37], indicating their functional importance in core metabolism. We were surprised 484 

to identify three phages that were over-abundant in the CCP+ cohort (3 of 11 in total), three with 485 

Flavonifractor sp. predicted hosts and one Clostridiales-targeting phage, encoding the phnP 486 

phosphodiesterase. Encoding a phosphoribosyl 1,2-cyclic phosphate phosphodiesterase, phnP 487 

accounts for 10% of the total AMGs represented in our phage genomes, and is differentially 488 
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abundant among the CCP+ cohort samples. While phnP is one of 14 genes considered to be 489 

globally conserved across multiple environments [37], it is the only gene among AMGs in our 490 

analysis that is the lone representative of its pathway. The PhnP phosphodiesterase, part of a 491 

14-gene operon originally described in Escherichia coli, plays a crucial intermediary role in the 492 

carbon-phosphorous lyase pathway by degrading a dead-end cyclic phosphonate byproduct 493 

[89]. The uniform presence of phnP across phages derived from at-risk and healthy cohorts 494 

(Figure 6A), suggests phage-driven organophosphonate degradation, which is fundamental for 495 

bacteria in diverse environments [90]. 496 

Phosphonate degradation is important for phosphorus assimilation in enteric bacteria 497 

[91], although phosphonate metabolism has not been described for Flavonifractor species and a 498 

phnP homolog is not available for this genus in the KEGG database (K06167). In a recent study 499 

characterizing microbiota KEGG orthologs as predictors of methotrexate responsiveness for RA 500 

treatment, a gene in the phosphonate transport system, phnC (K02041), exhibited high median 501 

random forest importance as a predictor of drug response in new-onset RA subjects [92]. The 502 

contribution of the phosponate metabolic pathway in bacteria and phages, will require further 503 

exploration in the context of RA pathogenesis and treatment. However, it is possible that these 504 

phage-encoded metabolic products are supplementing phosphorous uptake among 505 

Ruminococcaceae and Lachnospiraceae bacteria that predominate in CCP+ individuals prior to 506 

RA clinical symptoms. Our analysis is limited in that we did not measure a longitudinal 507 

progression of microbial metabolic pathways in these human samples, yet these metabolic 508 

associations warrant further investigations into causality and the potentially cascading effects on 509 

interbacterial interactions [93]. 510 

 Our results point to divergent communities of phages with multiple bacterial host targets 511 

that group according to anti-CCP serology in individuals predisposed to developing RA. These 512 

at-risk individuals who develop seropositive RA, a disease manifestation that is more severe 513 

[94] and less responsive to treatment [95], endure a prolonged asymptomatic period before 514 
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pathological early RA develops in those who are at a higher disease susceptibility in the 515 

preclinical RA state [1]. Current approaches for RA diagnosis rely in large part on anti-CCP 516 

serology which has up to 93% specificity but as low as 67% sensitivity (for the CCP3.1 assay 517 

used here) [39], indicating that a negative result does not preclude current or development of 518 

clinically apparent RA. Phage community composition analyses may complement existing 519 

diagnoses for RA, considering that intestinal phages can play important roles in immune 520 

tolerance, mucosal immunity, and microbial homeostasis [96]. Given that phage community 521 

alterations have been shown to precede autoimmunity development in children at risk for 522 

developing type 1 diabetes [26], phage community structure should be considered as a 523 

biomarker for diseases such as RA that are influenced by non-genetic microbial factors [19]. To 524 

that end, we have characterized the intestinal viromes of RA at-risk individuals corresponding to 525 

anti-CCP serology status. Furthermore, we calculated species-specific phage-host interactions 526 

and identified over-abundances of C. scindens and A. oris targeting phages in CCP+ and CCP- 527 

individuals, respectively. Divergent metabolic profiles evident by differential abundance of AMG-528 

encoding phages in both conditions warrant further interrogation during models of RA-like 529 

disease. Future work should investigate the potential of phages in a murine CIA model to 530 

determine the influence of RA-associated phages with immunomodulation and inflammatory 531 

disease progression. Our multifaced approaches for phage prediction and phage host 532 

assignments hold promise to better ascertain the occurrence and diversity of the virome and the 533 

identification of key phages influencing the microbiota and individuals at risk for developing RA 534 

autoimmune disease. This RA-focused study implicating specific phage populations could open 535 

new avenues to assess the basis for phage implication in other microbiota dysbiosis-associated 536 

diseases.  537 

 538 

RESOURCE AVAILABILITY 539 

Lead Contact 540 
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Further information and requests for resources and reagents should be directed to and will be 541 

fulfilled by the Lead Contact, Breck A. Duerkop (breck.duerkop@cuanschutz.edu). 542 

 543 

Materials Availability 544 

This study did not generate new unique reagents. 545 

 546 

Data and Code Availability 547 

The VLP and whole metagenome DNA sequencing reads as well as the final curated phage 548 

contigs generated in this study are available at the European Nucleotide Archive under the 549 

Study titled “Intestinal VLP reads and predicted phage contigs for at-risk RA individuals” 550 

(accession numbers PRJEB42612 and ERP126498). The VLP and whole metagenome raw 551 

unmapped read sets are available for each of the 25 individual samples included in this study 552 

and are available under the Study Primary Accession PRJEB42612. The 660 curated contigs 553 

are compiled in a multifasta file deposited as Sample SAMEA7856466 under the same Study 554 

PRJEB42612.  555 

 556 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 557 

Study Subjects and Fecal Samples 558 

Fecal samples were obtained from individuals recruited for the SERA (Studies of the Etiology of 559 

Rheumatoid Arthritis) initiative, aimed at understanding the mechanisms that prelude the 560 

preclinical development of RA. SERA is a multicenter prospective cohort study that has 561 

identified first-degree relative (FDR) probands defined as a parent, full sibling, or offspring of 562 

individuals with diagnosed clinical RA [38]. FDR probands were evaluated in extensive clinical 563 

research visits, longitudinal follow-ups, and autoantibody testing to determine CCP status [38]. 564 

FDR probands were split into cohorts dependent on serum CCP levels, with 100% of subjects in 565 

the CCP+ cohort positive and 0% of subjects in either CCP- or HC (Healthy Control) cohorts 566 
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testing positive. Healthy control subjects were recruited and included in this study as described 567 

previously [97]. The present study consisted of 25 subjects split into 3 cohorts, of which 8 were 568 

CCP+, 8 were CCP-, and 9 were HC. Ethical approval for this study was obtained from the 569 

University of Colorado Multiple Institutional Review Board (COMIRB) study numbers 01-675 570 

(primary) and also 13-2606 and 14-1751. COMIRB Protocol 01-675 included informed consent 571 

with HIPAA authorization for stool sample collections. Stool samples were obtained 572 

independently by SERA study participants and returned within 1 week of their original visit. 573 

Samples were stored in aliquots at -20°C until processing. 574 

 575 

METHODS 576 

Extraction of Fecal Whole Metagenome and VLP DNA, Library Preparation and 577 

Sequencing 578 

Whole metagenome and VLP fraction DNA were isolated as described previously [98], with 579 

some modifications as follows. For all samples, 0.1 g of human stool was homogenized in 8 mL 580 

salt magnesium plus (SM+) buffer [99] and 0.5 ml of homogenate was transferred to a 581 

BashingBead Lysis tube (Zymo) and designated as the whole metagenome sample. Whole 582 

metagenome DNA was extracted using a ZymoBIOMICS DNA kit (Zymo) following the 583 

manufacturer recommended protocol. VLPs were clarified from the remaining 7.5 mL of sample 584 

by three successive centrifugation steps (3200g for 10 min, 3200g for 10 min, 7800g for 10 585 

min), and the supernatant was filtered through a 0.45-µm PVDF filter membrane. VLPs were 586 

precipitated by adding 0.5M NaCl and 10% wt/vol PEG8000 and incubating on ice at 4ºC 587 

overnight, followed by centrifugation (7800g for 20 min). VLP pellets were resuspended in 400 588 

µL SM+ buffer and treated with 40 µL DNase buffer (10 mM CaCl2, 50 mM MgCl2), 25 units 589 

DNase, and 15 units RNase for 1 hr at 37ºC. VLPs were further treated with 50 mg/mL 590 

proteinase K and 0.5% SDS for 30 min at 56ºC before addition of 100 µL phage lysis buffer (4.5 591 

M guanidiniumisothiocyanate, 44 mM sodium citrate pH 7.0, 0.88% sarkosyl, 0.72% 2-592 
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mercaptoethanol) and incubated for 10 min at 65ºC. VLP DNA was precipitated and extracted 593 

with an equal volume of phenol/chloroform/isoamyl alcohol 25:24:1, spun at 7800g for 5 min, 594 

and further extracted with an equal volume of chloroform. VLP DNA was precipitated with 0.3M 595 

NaOAc (pH 5.2) and an equal volume of isopropanol, washed with ice-cold 70% ethanol, and 596 

resuspended in sterile water.  597 

 598 

Metagenomic DNA Sequencing 599 

VLP and whole metagenomic DNA was sequenced using the Illumina NovaSEQ 6000 platform 600 

with paired-end 150-cycle sequencing chemistry. DNA libraries were amplified using the 601 

Ovation Ultralow System v2 (Nugen, part no. 0334) library preparation kit including 12 cycles of 602 

amplification. TruSeq adapters (Illumina) were used for multiplexing. Libraries were quantified 603 

using a Qubit and quality was measured using a Tapestation. All library preparation, 604 

quantification, quality assessment and control, were performed by the University of Colorado 605 

Anschutz Medical Campus Genomics and Microarray Core.  606 

 607 

16S rRNA Amplicon Sequencing and Analysis 608 

16S rRNA gene analysis was performed using fecal samples that were processed for isolation 609 

of whole metagenomic DNA using a ZymoBIOMICS DNA kit (Zymo) and stored at -80°C. 610 

Amplicons of the 16S rRNA gene V4 region were amplified using Earth Microbiome Project 611 

primers 515F and 806R [100] with custom barcodes. Samples were sequenced on the Illumina 612 

MiSeq platform with paired end 250 bp reads using bTEFAP technology [101] by MR DNA 613 

(Molecular Research LP, Shallowater, TX), and processed using mothur v.1.44.0 [102]. 614 

Sequenced reads, which averaged 607,915 ± 112,641.7 per sample, were demultiplexed, 615 

assembled as contigs, and processed to remove chimeras and erroneous sequences per the 616 

Kozich protocol [103] and mothur MiSeq SOP (https://mothur.org/wiki/miseq_sop/ accessed 617 
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07/16/2020). Sequences were aligned to the Greengenes core reference alignment for 618 

taxonomy using the 2013 release (gg_13_8_99) [104]. Sequences were differentiated into 619 

amplicon sequence variants (ASVs) using the make.shared command, resulting in a total of 620 

8,108,071 sequences. Subsampling was performed using 186,745 sequences, which 621 

corresponded to the smallest sample in our dataset. Diversity measurements were performed 622 

using mothur calculators to estimate community richness (Chao1 estimator), community 623 

evenness (Shannon evenness), and community diversity (inverse Simpson index). 624 

 625 

Decontamination and Read Processing 626 

Metagenomic reads were decontaminated and trimmed as previously described [23] using 627 

BBMap short read aligner v38.56 [105]. Briefly, raw reads were mapped to the internal Illumina 628 

phage genome control phiX174 (J02482.1), human reference genome (hg38), and potential 629 

laboratory contaminants including mouse genome (mm10), Enterococcus faecalis V583 630 

genome (NC_004668.1), E. faecalis OG1RF genome (NC_017316.1), and E. faecalis phage 631 

VPE25 (LT546030.1) using the bbsplit algorithm with default settings. Unmapped reads were 632 

trimmed of adapter sequences, with low quality reads and reads of insufficient length removed 633 

using the bbduk algorithm with the following parameters: ktrim = lr, k = 20, mink = 4, minlength = 634 

20, qtrim = f, as previously described [23]. 635 

 636 

Metagenomic Assembly 637 

Decontaminated and trimmed R1 and R2 reads were interleaved using the fq2fa --merge 638 

command from the IDBA-UD package [106]. Whole metagenome and VLP assemblies were 639 

performed using the MEGAHIT assembler v1.2.7 [107] using the default setting plus the 640 

following flags: --presets meta-large (--k-min 27 --k-max 127 --k-step 10) for large and complex 641 

metagenomes.  642 

 643 
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Quantitative Read Mapping and Construction of the Curated VLP Contig Database 644 

VLP reads were assembled into 25 individual sample sets, corresponding to the 25 individual 645 

fecal samples included in our study. All contigs resulting from MEGAHIT assembly were filtered 646 

to a minimum length of 5kb, resulting in a pool of 80,762 total contigs from all samples. Three 647 

separate independently published methods were employed to identify putative phages from the 648 

pooled set of contigs over 5kb in length. First, the P/M read mapping approach was used 649 

whereby each sample’s VLP and whole metagenome reads were mapped to their 650 

corresponding assembled contigs, using BBMap as previously described [23]. After pooling, the 651 

top 100 largest ratios of VLP reads to whole metagenome reads for all 25 read-mapping sets for 652 

each sample were identified and pooled. Redundancy was removed using cd-hit-est at an 653 

identity threshold of 95% resulting in 2117 unique contig sequences. Next, as a separate 654 

method, putative phages from the 80,762 contigs were identified by searching for viral protein 655 

family (VPF) hits, as previously described [41]. Separate filters were applied for VPF hits 656 

calculated in relation to total genes, microbial genes, and percent non-viral Pfams. 2,902 contigs 657 

were identified that contained 5 or more VPF hits and with non-viral Pfam hits below 20%. 263 658 

contigs were identified with 5 or more VPF hits, with more viral gene content than microbial 659 

genes per contig, and 644 contigs were identified with 2 – 4 VPF hits and 0 microbial gene hits. 660 

Finally, 976 contigs were identified with only 1 VPF hit per contig, and were included regardless 661 

of microbial gene content. The third and final independent phage contig identification method 662 

used was VIBRANT v1.2.1 [37], a neural network machine learning algorithm that identifies viral 663 

protein signatures. VIBRANT identified 4,758 unique phage contigs. After combining these three 664 

independent approaches used to identify unique sets of phages, all sets were combined and the 665 

overlapping 660 contigs were used for analysis as the curated contig set. To assess contig 666 

completion and contamination levels, CheckV v0.6.0 was used with standard operating 667 

parameters.  668 

 669 
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Differential Abundance Analyses 670 

To calculate differential abundance in pairwise analyses, we first generated read mapping count 671 

matrices by mapping all VLP reads to the curated contig set of 660 contigs. The bbmap 672 

algorithm from the BBMap suite of tools was used with the following parameters: ambiguous = 673 

random, qtrim = lr, minid = 0.97. Total raw read counts were aggregated per contig and 674 

assembled into 25 count matrices for all samples, which were then used as input for DESeq2 675 

v1.20.0 [53] running in R version 3.6.3 for comprehensive differential abundance analysis. Raw 676 

un-normalized read count coverage values were used to compare fold changes across three 677 

pairwise comparisons: CCP+ vs. HC, CCP- vs. HC, and CCP+ vs. CCP- groups. The standard 678 

workflow for differential analysis within DESeq2 was used, producing logarithmic fold-change 679 

values incorporating Wald tests for p-value calculations and the Benjamini-Hochberg multiple 680 

testing correction for the adjusted p-value. In total, 178 phage contigs from our set of 660 were 681 

found to be differentially abundant using thresholds of log2 Fold Change < -1 or > 1 and 682 

adjusted p-value < 0.001.  683 

 684 

VLP Clustering, Phage Host Matching, and AMG Identification  685 

Clustering of all viral contigs within the RA virome described in this study was performed using 686 

two lists of contigs, the total 4,785 viral sequences identified by all filters of the VPF method, as 687 

well as the final curated set of 660 contigs. First, all 4,785 sequences were screened against the 688 

most recent iteration of the public viral database IMG/VR v3.0 [44] using blastn with 95% 689 

sequence similarity over 85% of each 1kb region of the contig, which resulted in 19,892 viral 690 

sequences. Then, a total of 24,926 sequences were screened against each other using blastn 691 

with the same parameters and omitting duplicate hits. Markov clustering of these 9.4 million 692 

connections resulted in a total of 1,193 clusters encompassing 22,306 total sequences. Overall, 693 

2,420 of the 4,785 total RA virome sequences were clustered into 1,184 clusters. Of these 694 

clusters, 41 contained a reference viral isolate, 1,037 contained another metagenomic viral 695 
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contig from IMG/VR, and 106 were identified as originating from RA metagenomic sequencing 696 

projects. Lastly, clustering was also calculated for the 660 curated viral sequences, which 697 

resulted in 266 individual clusters containing 336 (roughly 48% of curated set) unique 698 

sequences. Phage host assignments were determined via bacterial CRISPR spacer matching 699 

as previously described [23], requiring at least 93% sequence identity match over the entire 700 

spacer length and allowing for up to 2 mismatches. Of our 660 curated contig list, 207 (31.4%) 701 

had CRISPR spacers matching reference isolates therefore leading to host predictions for a 702 

third of our final contigs. VIBRANT v1.2.1 was used to identify auxiliary metabolic genes (AMGs) 703 

according to KEGG metabolic pathway annotations. VIBRANT annotates using VOG, Pfam, and 704 

KEGG databases; therefore, if the best HMM hit is to the KEGG database and also if the 705 

annotation is in a metabolic pathway, the hit gets called as an AMG. 706 

 707 

Data Visualizations 708 

Various R packages were used, including DESEq2, ggplot2, ComplexHeatmap, pheatmap, 709 

corrplot, RColorBrewer, and EnhancedVolcano. Graphpad Prism v8.4.3 was used for all 710 

supplemental calculations. Lastly, SankeyMATIC (https://github.com/nowthis/sankeymatic) and 711 

meta-chart (https://www.meta-chart.com/venn) were used to create the Sankey and Venn 712 

diagrams depicted in Figure 1, respectively.  713 

 714 

FIGURE LEGENDS 715 

Figure 1. Generation and curation of de novo assembled VLP contigs. Metagenomic 716 

sequencing was carried out for 25 samples belonging to 3 cohorts of individuals, FDRs at risk 717 

for developing RA later in life with either CCP+ or CCP- serology status, and a Healthy Control 718 

(HC) group. (A) Contigs were assembled de novo for all samples, ranging from 30,011 to 719 

284,689 contigs per sample, and a total of 3,557,500 contigs for the entire sample set. Each 720 

node on the Sankey diagram is scaled to the number of contigs it contains. Thresholds of 721 
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minimum contig sizes being greater than 1 and 5 kilobases reduced the total numbers to 722 

564,228 and 80,762 contigs respective to the size cut-off. Three independent methods were 723 

used to identify putative phages from the list of 80,762 contigs (boxed portion of panel A), 724 

resulting in 2,117 contigs from the P/M ratio method, 4,785 contigs from the Viral Protein 725 

Families method, and 4,758 contigs using the VIBRANT algorithm. (B) A Venn diagram was 726 

created to show the overlap of redundant contigs identified among the three methods. 660 727 

unique contigs were identified independently by all phage identification methods. (C) CheckV 728 

analysis of the three separate methods as well as the final set of curated contigs revealed a 729 

disparity in host contamination, with the set of 660 contigs being relatively free of host bacterial 730 

contamination. Colors were assigned to the CheckV categories that account for prophage 731 

elements based on their position on the contig sequence, as well as pure viral (green) and pure 732 

bacterial (grey) classifications. 733 

 734 

Figure 2. Clustering with metagenomic viral contigs reveals viral ecological composition. 735 

(A) Host assignments for the set of curated phages based on Markov clustering to the IMG/VR 736 

database metagenomic viral clusters or direct match to bacterial CRISPR spacers, based on 737 

cohort abundance. Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and 738 

Streptococcaceae hosts are evident to be cumulatively more abundant than other bacterial 739 

families, especially for the CCP+ cohort. (B) Cladogram of the complete host phylogeny at the 740 

genus level for all spacers identified from total RA virome via the VPF method. The pie chart at 741 

the center represents all 958 CRISPR spacers from the family level quantified in panel A that 742 

have been color coordinated on this cladogram as well. Total host hits were quantified at the 743 

genus level and are represented in relative size by colored circles, indicating host assignments 744 

that were discerned via clustering (dark grey) and those that were identified via direct CRISPR 745 

spacer matching (light grey). Total CRISPR spacers per contig with family level host taxonomy 746 
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assignments were tabulated per cohort group (C) and differentiated as narrow or broad phage 747 

host ranges (D) based on target uniformity to bacterial family.  748 

 749 

Figure 3. Phage-host assignments for curated VLP contigs reveal cohort-based 750 

differential read recruitment among several bacterial families. Relative abundances were 751 

calculated for all VLP reads mapped to phages predicted to target Bacteroidaceae (A), 752 

Clostridiaceae (B), Lachnospiraceae (C), Ruminococcaceae (D), Streptococcaceae (E), and 753 

Veillonellaceae (F) bacterial families. For these analyses, VLP reads were mapped to predicted 754 

phage contigs to which CRISPR spacers were assigned using bbmap at a 97% minimum read-755 

mapping identity level. Scaffold abundances were averaged across all samples and statistics 756 

were determined by nonparametric Wilcoxon tests (* p < 0.05, ** p < 0.01, **** p < 0.0001). 757 

 758 

Figure 4. CRISPR spacer host metadata reveal CCP+ phages represent greater variability 759 

in microbial host ecology. Phage host isolate ecology metadata was compiled from 760 

JGI/GOLD v7.0 and broken down by Ecosystem, Ecosystem Category, Ecosystem Type, and 761 

Ecosystem Subtype distributions accordingly for all CRISPR spacers identified within our list of 762 

660 phages. (A) Ecosystem Distribution showing the percent host-associated spacers 763 

calculated for each contig based on cohort distribution. (B) Ecosystem Category distribution 764 

showing the percent human-associated spacers. (C) Ecosystem Type distribution showing the 765 

percent of contigs that contain spacers originating from the digestive system. (D) Ecosystem 766 

Subtype showing the percent of contigs that contain spacers originating from the large intestine 767 

microenvironment. Cohort distributions based on these metadata revealed a disproportionate 768 

distribution of CRISPR spacers among samples originating from CCP+ individuals when 769 

compared to CCP- or HC groups. Statistical significance was determined using pairwise 770 

Wilcoxon rank sum tests for comparisons between the three groups, using the Benjamini-771 

Hochberg correction for multiple testing comparisons (* p = 0.023, **** p < 2 x 10-16). 772 
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 773 

Figure 5. Quantitative read mapping exposes differentially abundant contigs despite 774 

sample cohesiveness. Quantitative read mapping of all VLP read sets to the final curated 660 775 

phages reveals contig-contig dissimilarities despite minimal sample-sample variance or intra-776 

sample hierarchical clustering. Differential abundance calculations were carried out within the 777 

DESeq2 package by way of 3 pairwise comparisons: CCP+ vs. HC, CCP- vs. HC, and CCP+ 778 

vs. CCP-. (A, B, C) Analyses of the first and second principal components for sample-to-sample 779 

exploratory analyses revealed minimal variance explained across all comparisons. (D, E, F) 780 

Euclidian distances for sample-sample read-based coverages were used for hierarchical 781 

clustering across all pairwise comparisons reveal minimal clustering based on sample type. (G, 782 

H, I) Volcano plots reveal 9%, 10%, and 8% of contigs included in our analysis are differentially 783 

abundant respective to CCP+ vs. HC, CCP- vs. HC, and CCP+ vs. CCP- group-based 784 

comparisons of specific contig community members. 785 

 786 

Figure 6. Phage auxiliary metabolic gene abundances highlight cohort-associated 787 

disparities in potential metabolic function. AMGs were identified within the VIBRANT 788 

algorithm, based on screening 2,835 auxiliary metabolic genes with KEGG Orthology 789 

annotations (March 2019 KEGG release, ftp://ftp.genome.jp/pub/db/kofam/archives/2019-03-790 

20/). (A) Total counts per KEGG Pathway were used normalize relative abundance of AMGs per 791 

sample, which were clustered using the ComplexHeatmap package in R. Areas in black indicate 792 

no AMG hits were present for the entire cohort for the 660 contig samples. (B) Differentially 793 

abundant contig for the CCP+ to HC pairwise comparison, visualizing only the contigs which 794 

had CRISPR spacer-predicted hosts. Color-coded stars belong to a list of AMGs and indicate 795 

association with the contig they are adjacent to. (C) Differentially abundant contigs for the CCP- 796 

vs HC comparison. 797 

 798 
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TABLES 799 

Table 1. Summary of the Subjects’ Characteristics for the Samples Included in the Study 800 

VARIABLE HC CCP+ CCP- 
Count 9 8 8 
Age (mean) 44.4 61.3 49 
Age (SD) 13.6 11 15.7 
Sex (% female) 66.7 88.9 62.5 
Serum CCP+ (%) 0 100 0 
Ever smokers (%) 22.2 33.3 0 
 801 

SUPPLEMENTAL INFORMATION 802 

Figure S1. Overview of methods for VLP isolation and phage identification from 803 

sequencing reads. (A) Individual stool samples were homogenized and split into P and M 804 

subsamples for generating VLP and whole metagenome DNA, respectively. (B) Total 805 

sequencing reads generated per sample for each P and M read sets, after quality control and 806 

decontamination. (C) Total assembled contigs with length greater than 5kb generated per 807 

sample for each P and M read sets. (D) Overview of the computational pipeline used to identify 808 

phages; from short-insert pair end read sets averaging approximately 75M read pairs per 809 

sample, to the 80,762 de novo assembled contigs greater than 5kb in length, and the three 810 

independent methods for phage identification (P/M, VPF, VIBRANT).  811 

 812 

Figure S2. Estimation of contig completeness by CheckV. Distribution of contig lengths 813 

across contig quality categories according to the MIUViG standards. Contigs derived from the 814 

(A) P/M ratio method of phage identification, (B) the VPF method, (C) VIBRANT algorithm, and 815 

finally (D) the curated contig list. Boxplots depict the following five summary statistics: median, 816 

lower and upper hinges corresponding to the first and third quartiles, and two whiskers 817 

corresponding to 1.5 times the interquartile range between the first and third quartiles. Points 818 

beyond the whiskers correspond to outlier points.  819 

 820 
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Figure S3. Lifestyle and morphology distributions of curated phage contigs. (A) Total 821 

contigs per sample among the three groups, divided according to infection mechanism (lytic vs. 822 

lysogenic) as determined by the VIBRANT algorithm. (B) Relative abundances of phage 823 

lifestyles as determined by the VIBRANT algorithm. In total, for our 660 predicted phages, 467 824 

(70.8%) are classified as lytic and 193 (29.2%) are classified as lysogenic by VIBRANT. (C) 825 

Viral taxonomy of all contigs per sample including the top four morphotypes: Siphoviridae, 826 

Myoviridae, Podoviridae, and Microviridae. (D) Relative abundance of all viral morphotypes 827 

identified for all 660 phages. Viral taxonomy was determined using a custom database 828 

described in this preprint by Kieft et al. (2020; bioRxiv preprint doi: 829 

https://doi.org/10.1101/2020.08.24.253096).   830 

 831 

Figure S4. Clustering distribution of singletons and viral groups. (A) Total singletons, viral 832 

contigs that did not cluster with any other genome, per sample and RA cohort group. (B) 833 

Distribution of total viral clusters in relation to the number of viral genomes clustered within each 834 

group. 835 

 836 

Figure S5. CRISPR spacer host metadata distribution of environmental and engineered 837 

derived phages per cohort. Phage host isolate ecology metadata was compiled from 838 

JGI/GOLD v7.0 at the highest Ecosystem classification level for all CRISPR spacers identified 839 

within our list of 660 phages. Data is presented as percent of spacers per contig whose 840 

metadata is designated as originating from (A) environmental or (B) engineered environments, 841 

distributed across the three RA cohort groups. Statistical significance was determined using 842 

pairwise Wilcoxon rank sum tests for comparisons between the three groups, using the 843 

Benjamini-Hochberg correction for multiple testing comparisons (* p = 0.011, **** p < 2 x 10-16). 844 

 845 
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Figure S6. Principal component analyses based on quality, predicted phage lifestyle, and 846 

sample cohort.  Principal components for the final curated set of 660 contigs derived from the 847 

VIBRANT phage identification program categorized by (A) contig quality, (B) phage lifestyle, and 848 

(C) cohort group. Total identified open reading frames were incorporated in analyses in (A) and 849 

(B), showing a greater dispersion of smaller sized contigs and a consensus grouping of bigger 850 

contigs.  851 

 852 

Figure S7. Analysis of bacterial family diversity from fecal samples based on 16S 853 

sequencing and analyzed using mothur. (A) Relative abundances of bacterial families based 854 

on ASV binning reveals a significant difference in Lachnospiraceae bacteria originating from 855 

CCP+ fecal DNA samples. Unpaired nonparametric Mann-Whitney tests were used to compare 856 

ranks, revealing p values of 0.0464 comparing CCP+ to HC individuals. Community richness 857 

was measured by the standard observed richness calculator in mothur (B) as well as the Chao1 858 

richness estimate (C). Community evenness was measured using the Shannon index (D), and 859 

community diversity was measured using the inverse Simpson index (E). No statistically 860 

significant differences were observed among any of the above calculators using nonparametric 861 

tests of significance among the three groups.  862 

 863 

Figure S8. Distribution of auxiliary metabolic genes found on curated contigs. (A) A total 864 

of 252 AMGs were discovered among our 660 phages, distributed across the three cohorts. (B) 865 

AMGs were categorized predominantly as belonging to amino acid and cofactor/vitamin 866 

metabolism categories.  867 
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