Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Why do species get a thin slice of π? Revisiting Lewontin’s Paradox of Variation

View ORCID ProfileVince Buffalo
doi: https://doi.org/10.1101/2021.02.03.429633
Vince Buffalo
University of Oregon, Institute of Ecology and Evolution, Eugene, Oregon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vince Buffalo
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Under neutral theory, the level of polymorphism in an equilibrium population is expected to increase with population size. However, observed levels of diversity across metazoans vary only two orders of magnitude, while census population sizes (Nc) are expected to vary over several. This unexpectedly narrow range of diversity is a longstanding enigma in evolutionary genetics known as Lewontin’s Paradox of Variation (1974). Since Lewontin’s observation, it has been argued that selection constrains diversity across species, yet tests of this hypothesis seem to fall short of explaining the orders-of-magnitude reduction in diversity observed in nature. In this work, I revisit Lewontin’s Paradox and assess whether current models of linked selection are likely to constrain diversity to this extent. To quantify the discrepancy between pairwise diversity and census population sizes across species, I combine genetic data from 172 metazoan taxa with estimates of census sizes from geographic occurrence data and population densities estimated from body mass. Next, I fit the relationship between previously-published estimates of genomic diversity and these approximate census sizes to quantify Lewontin’s Paradox. While previous across-taxa population genetic studies have avoided accounting for phylogenetic non-independence, I use phylogenetic comparative methods to investigate the diversity census size relationship, estimate phylogenetic signal, and explore how diversity changes along the phylogeny. I consider whether the reduction in diversity predicted by models of recurrent hitch-hiking and background selection could explain the observed pattern of diversity across species. Since the impact of linked selection is mediated by recombination map length, I also investigate how map lengths vary with census sizes. I find species with large census sizes have shorter map lengths, leading these species to experience greater reductions in diversity due to linked selection. Even after using high estimates of the strength of sweeps and background selection, I find linked selection likely cannot explain the shortfall between predicted and observed diversity levels across metazoan species. Furthermore, the predicted diversity under linked selection does not fit the observed diversity–census-size relationship, implying that processes other than background selection and recurrent hitchhiking must be limiting diversity.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • vsbuffalo{at}gmail.com

  • https://github.com/vsbuffalo/paradox_variation/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted February 03, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Why do species get a thin slice of π? Revisiting Lewontin’s Paradox of Variation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Why do species get a thin slice of π? Revisiting Lewontin’s Paradox of Variation
Vince Buffalo
bioRxiv 2021.02.03.429633; doi: https://doi.org/10.1101/2021.02.03.429633
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Why do species get a thin slice of π? Revisiting Lewontin’s Paradox of Variation
Vince Buffalo
bioRxiv 2021.02.03.429633; doi: https://doi.org/10.1101/2021.02.03.429633

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4120)
  • Biochemistry (8829)
  • Bioengineering (6533)
  • Bioinformatics (23488)
  • Biophysics (11812)
  • Cancer Biology (9228)
  • Cell Biology (13347)
  • Clinical Trials (138)
  • Developmental Biology (7450)
  • Ecology (11428)
  • Epidemiology (2066)
  • Evolutionary Biology (15175)
  • Genetics (10455)
  • Genomics (14057)
  • Immunology (9188)
  • Microbiology (22206)
  • Molecular Biology (8825)
  • Neuroscience (47654)
  • Paleontology (351)
  • Pathology (1431)
  • Pharmacology and Toxicology (2493)
  • Physiology (3739)
  • Plant Biology (8095)
  • Scientific Communication and Education (1438)
  • Synthetic Biology (2225)
  • Systems Biology (6044)
  • Zoology (1257)