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21 Abstract

22 Climate change and resilience to warming climates have implications for humans, livestock, 

23 and wildlife. The genetic mechanisms that confer thermotolerance to mammals are still not 

24 well characterized. We used dairy cows as a model to study heat tolerance because they are 

25 lactating, and therefore often prone to thermal stress. The data comprised almost 0.5 million 

26 milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each having around 15 

27 million imputed sequence variants. Dairy animals often reduce their milk production when 

28 temperature and humidity rise; thus, the phenotypes used to measure an individual’s heat 

29 tolerance were defined as the rate of milk production decline (slope traits) with a rising 

30 temperature-humidity index. With these slope traits, we performed a genome-wide association 

31 study (GWAS) using different approaches, including conditional analyses, to correct for the 

32 relationship between heat tolerance and level of milk production. The results revealed multiple 

33 novel loci for heat tolerance, including 61 potential functional variants at sites highly conserved 

34 across vertebrate species. Moreover, it was interesting that specific candidate variants and 

35 genes are related to the neuronal system (ITPR1, ITPR2, and GRIA4) and neuroactive ligand-

36 receptor interaction functions for heat tolerance (NPFFR2, CALCR, and GHR), providing a 

37 novel insight that can help to develop genetic and management approaches to combat heat 

38 stress.
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43 Author summary 

44 While understanding the genetic basis of heat tolerance is crucial in the context of global 

45 warming’s effect on humans, livestock, and wildlife, the specific genetic variants and 

46 biological features that confer thermotolerance in animals are still not well characterized. The 

47 ability to tolerate heat varies across individuals, with substantial genetic control of this complex 

48 trait. Dairy cattle are excellent model in which to find genes associated with individual 

49 variations in heat tolerance since they significantly suffer from heat stress due to the metabolic 

50 heat of lactation. By genome-wide association studies of more than 29,000 cows with 15 

51 million sequence variants and controlled phenotype measurements, we identify many new loci 

52 associated with heat tolerance. The biological functions of these loci are linked to the neuronal 

53 system and neuroactive ligand-receptor interaction functions. Also, several putative causal 

54 mutations for heat tolerance are at genomic sites that are otherwise evolutionarily conserved 

55 across 100 vertebrate species. Overall, our findings provide new insight into the molecular and 

56 biological basis of heat tolerance that can help to develop genetic and management approaches 

57 to combat heat stress.
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66 Introduction

67 Heat stress from rising global temperatures is an issue of growing importance across tropical 

68 and temperate zones affecting humans, livestock, wildlife, and plants. A recent study [1] 

69 indicates that many people are now exposed to harmful heat, and this has risen by more than 

70 two-fold when compared to the pre-industrial climates (i.e., 95 versus 275 million people), with 

71 future projections showing that over 1 billion people will experience an even greater impact of 

72 heat within the next 50 years [2]. In livestock, the annual temperature-humidity values that rise 

73 above thresholds considered to be comfortable have been increasing in many regions including 

74 Australia, the USA, Canada, and parts of Europe [3, 4], making heat stress a multimillion-

75 dollar issue in the livestock industry that compromises production (reduced growth, milk, eggs, 

76 etc.) and reproduction leading to economic losses [5].

77 The thermoregulatory capacities of mammals and plants to cope with extreme heat have been 

78 studied for decades. Genetic variation of thermoregulation during heat stress exists within 

79 species, including cattle breeds, with the literature indicating that tropical breeds, such as Zebu 

80 (Bos indicus), have a better tolerance to temperature and humidity than cattle from temperate 

81 zones (e.g., Holsteins), in part, due to the lower productivity of Zebu cattle [6]. Temperate 

82 breeds also show genetic variation in heat tolerance; for example, New Zealand Holsteins 

83 appear to exhibit higher reductions in milk yields in hotter climates than Jerseys or crossbreds 

84 [7]. While it is not fully understood why animals differ in their thermotolerance, it is 

85 hypothesised to be due to a myriad of biological mechanisms; including cellular, morphological 

86 (coat color, coat length, etc.), behavioural (e.g., feed and water intake, standing and lying time), 

87 as well as neuro-endocrine systems. See comprehensive review by [8] for more information. 

88 Notably, the molecular basis for differences in these adaptive responses within various 

89 mammalian species is still largely unknown. 
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90 Dairy cattle are excellent and convenient model for enhancing our knowledge on the molecular 

91 aspects of heat tolerance in mammals for two main reasons: 1) large phenotype datasets needed 

92 to study heat tolerance, as well as extensive genomic information, are available; 2) they have 

93 been genetically selected mainly for high milk production over many years, offering an 

94 opportunity to understand the genetic basis for coping with both environmental and elevated 

95 metabolic-heat stress associated with increased milk production.

96 The development of methods to describe heat tolerance in cattle has been an active research 

97 area for many years. Measuring changes in core body temperature (e.g., rectal, vaginal, rumen 

98 temperature, etc.), thermal indices (e.g., temperature-humidity index (THI)) are some of the 

99 ways to assess thermal adaptations and performance in animals. [9] pioneered using daily milk 

100 yield and temperature-humidity data to measure variability in the rate of decline in milk yield 

101 associated with variability in response to heat stress. This method has been widely adopted due 

102 to the availability of large datasets from routine recording in dairy farms, e.g., [3]. Heat 

103 tolerance in dairy cattle measured using rectal temperatures or the rate of milk yield decline is 

104 partly under genetic control, having a low (0.1) to moderate heritability (0.30) [3, 9, 10], which 

105 makes it amenable to selection. As such, considerable research has been undertaken to provide 

106 breeding solutions for heat stress, which is already a feature of dairy cattle breeding 

107 programmes in some parts of the world, e.g., Australia [3]. Identifying specific genetic variants 

108 that increase tolerance to heat may help to improve dairy breeding programmes in addition to 

109 improving our knowledge of the thermal biology in other mammals. However, except for 

110 mutations in the SLICK locus [11], the identification of the specific genetic variants for heat 

111 tolerance in cattle and other species has, in most cases, remained elusive, in part due to many 

112 reasons, including the sample size used in past studies. 

113 Having a large sample size is particularly important for identifying rare causal variants with 

114 medium-sized effects and common variants with small effects. As sample size increases, the 
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115 loci significantly associated with complex traits are expected to increase, as demonstrated for 

116 the human height [12]. Several genome-wide association studies (GWAS) using Single 

117 nucleotide polymorphisms (SNPs) have been conducted over the last decade to identify 

118 candidate causal genes for various heat tolerance traits (rectal temperature, heart rate, sweating 

119 rate, rate of milk yield decline, etc.) in dairy cattle [13-16] and pigs [17]. However, these 

120 GWAS were underpowered, with the largest sample size to date of around 5,000 animals [13, 

121 14]. These studies have also used standard industry SNP panels of random genome-wide 

122 markers, either 50k or 600k SNPs, leading to inconsistencies and poor replication of the results. 

123 Although these studies have identified over 400 significant variants associated with heat stress 

124 in animals, none were established to be causal mutations.

125 Here, we performed a GWAS using milk production records of 29,107 Holstein cows, each 

126 having over 15 million sequence variants that were imputed from various lower density SNP 

127 chips to whole-genome sequence using a reference dataset of sequences from the Run7 of 1000 

128 Bull Genome Project [18]. The specific aims of the study were to 1) perform single-trait GWAS 

129 to identify genomic variants associated with sensitivity of milk traits (milk, protein, and fat) to 

130 heat stress 2) combine single-trait GWAS results in a multi-trait meta-analysis to boost the 

131 power and identify pleiotropic variants associated with all the milk traits 3) conduct post-

132 GWAS pathway analysis using the list of candidate genes identified in single-trait GWAS and 

133 meta-analysis to elucidate biological mechanisms underlying heat tolerance.

134 Results

135 Descriptive statistics and genomic heritability of the study phenotypes

136 The average milk, fat, and protein yields used to derive heat tolerance proxy-phenotypes (i.e., 

137 slope traits) and intercepts (representing level of milk production) are in Table 1. The slope 

138 traits derived from the milk, fat, and proteins yields using reaction norm models on a function 
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139 of the temperature-humidity index (THI) were defined as follows: heat tolerance milk 

140 (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slope traits, respectively. 

141 On the other hand, the intercept solutions from the reaction norm models – representing the 

142 level of milk production were defined as milk (MYint), fat (FYint), and protein (PYint) yield 

143 intercept traits. The genomic heritability estimates for the intercept traits were high [0.36 ± 

144 0.01 (MYint), 0.30 ± 0.01 (FYint), 0.24 ± 0.01 (PYint)] compared to slope traits [0.23 ± 0.01 

145 (HTMYslope), 0.21 ± 0.01 (HTFYslope), 0.20 ± 0.01 (HTPYslope)] (Table 1). The phenotypic 

146 correlations between the intercept and slope traits were high, with values of -0.71 (MYint 

147 versus HTMYslope), -0.77 (FYint versus HTFYslope), and -0.83 (PYint versus HTPYslope), 

148 suggesting that lower producing cows have a smaller reduction in their yield as the THI 

149 increases. The Pearson correlations of slope solutions from the reaction norm model were 0.90 

150 (HTMYslope versus HTPYslope), 0.56 (HTMYslope versus HTFYslope) and 0.62 

151 (HTPYslope versus HTFYslope).

152
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161 Table 1. Average daily milk (liters), fat (kg), and protein (kg) yield for 29,107 cows and the mean of their 

162 corresponding intercept and slope traits derived from reaction norm models. The additive genetic variance 

163 (AG) and genomic heritability (𝐡𝟐) were estimated for cows based on 50k SNP panel.

Milk yield intercept traits1 Milk yield slope traits2

Trait Raw mean ± 

SD

Mean* ± 

SD

AG ± SE h2 ± SE Mean* ± 

SD

AG ± 

SE

h2 ± SE

Milk yield 

(liters)

25.85 (8.19) 26.2 

(22.29)

381.0 

(14.36)

0.36 

(0.01)

3.43 

(2.92)

4.80 

(0.20)

0.23 

(0.01)

Fat yield (kg) 0.98 (0.30) 8.72 

(7.25)

38.78 

(1.64)

0.30 

(0.01)

1.24 

(1.04)

0.56 

(0.02)

0.21 

(0.01)

Protein yield 

(kg)

0.85 (0.26) 6.96 

(5.91)

18.60 

(0.89)

0.24 

(0.01)

1.18 

(0.99)

0.47 

(0.02)

0.20 

(0.01)

164 *Means were calculated based on the absolute values of each intercept and slope traits; 1represtents the level of milk production of cows; 2heat 

165 tolerance proxy-phenotypes.

166
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174 Single-trait GWAS for intercept and slope traits

175 The number of significant SNPs was generally more for intercept than slope traits at the p-

176 value thresholds tested (Table 2). At a stringent p-value of < 1E-05, the false discovery rate 

177 (FDR) varied between 0.02 and 0.03 for intercept and 0.02 and 0.05 for slope traits. The 

178 number of significant independent QTL (based on the number of 5 Mb non-overlapping 

179 windows across the chromosome with at least one significant SNP) ranged from 28 to 72 for 

180 intercept traits and from 21 to 37 for slope traits. At a relaxed cut-off threshold, where the FDR 

181 was < 0.10, the number of significant QTLs from single-trait GWAS ranged from 78 to 188 

182 (intercept traits) and from 51 to 109 (slope traits).
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183 Table 2. Number of SNPs identified at a p-value of < 0.005 (considered suggestive), and a p-value of < 1E-05 (significant), and false discovery rate (FDR < 0.10) for 

184 QTL discovery cows (N = 29,107) based on 15 million imputed-whole genome sequence variants. 

Single-trait GWAS for intercept traits Single-trait GWAS for slope traits Multi-trait meta-analysis1

MYint FYint PYint HTMYslope HTFYslope HTPYslope Meta intercept Meta slope

Suggestive p < 0.005) 115,990 [508] 101,150 [505] 106,333 [507] 104,400 [507] 99,079 [503] 94,011 [507] 205,201 [498] 178,127 [499]

Significant (p < 1E-05) 9,344 [72] 7,844 [28] 4,195 [49] 6,061 [37] 8,684 [21] 2,998 [30] 51,568 [100] 40,220 [65]

FDR < 0.10 16,469 [188] 

(p = 1E-04)

11,469 [98] (p 

= 7E-05)

5,285 [78] (p = 

3E-05)

9,172 [109] (p 

= 6E-05)

12,619 [98] 

(p = 8E-05)

3,310 [51] (p 

= 2E-05)

108,934 [347] 

(p = 7E-04)

77,499 [293] 

(p = 5E-04)

185 MYint – Milk yield intercept; FYint – Fat yield intercept; PYint – protein yield intercept; HTMYslope – heat tolerance milk yield slope; HTFYslope – heat tolerance fat yield slope; HTPYslope – heat tolerance protein 

186 yield slope. 1Multi-trait meta-analysis of single-trait GWAS was performed for intercept and slope traits following [19]. Values in square brackets are the number of lead SNPs defined as the top significant SNP within 

187 5 Mb non-overlapping windows across the chromosome. The FDR was calculated following [19], where the p-value in the brackets represents the cut-off threshold equivalent to FDR < 0.10 for each trait.
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188 The number of significant (p < 1E-05) QTLs (i.e., 5 Mb windows) varied across the three slope 

189 traits with greater overlap between HTMYslope and HTPYslope (13 QTLs; 20.6%) compared 

190 to HTMYslope and HTFYslope (3 QTLs; 4.8%) (S3 Fig). The overlaps were based on whether 

191 the lead SNPs (most significant) within QTLs between traits were close (within 1 Mb). 

192 Surprisingly, none of the candidate QTLs overlapped between HTFYslope and HTPYslope. 

193 The effects of the lead SNPs within QTLs that overlapped between HTMYslope and 

194 HTPYslope were generally in the same direction.

195 Multi-trait meta-analysis of GWAS to detect variants with pleiotropic effects

196 Compared to single-trait GWAS, the number of significant independent QTLs (based on 5 Mb 

197 windows with at least one significant SNP) was much higher for a multi-trait meta-analysis 

198 (Fig 1 and Table 2). At FDR < 0.10, the number of significant independent QTLs from multi-

199 trait meta-analysis was 347 and 293 for intercept and slope traits, respectively (Table 2). At p 

200 < 1E-05, the number of significant QTLs was 100 (meta-analysis of intercept traits) and 65 

201 (meta-analysis of slope traits). Of the significant QTLs (p < 1E-05; N = 65) for meta-analysis 

202 of slope traits, 35% (N = 23) overlapped with the candidate QTLs for single-trait GWAS 

203 analysis based on whether the lead SNP (most significant) within overlapping  QTLs were 

204 close (within 1 Mb).

205 Lead SNPs detected using single-trait GWAS and meta-analysis of slope traits

206 The lead SNPs were defined as the most significant SNPs within an independent QTL (i.e., the 

207 most significant SNP chosen within 5 Mb windows across the chromosome). Detailed 

208 annotation of all the lead SNPs for single slope traits and the meta-analysis (N = 118) detected 

209 at the most stringent p-value cut-off (p < 1E-05) are in the S2 Table.

210 About half the lead SNPs (51%) for slopes were in relatively low LD (r2 < 0.5) with nearby 

211 (within 1 Mb region) lead SNPs for intercepts, indicating that they are not strongly associated 
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212 with the level of milk production. Some lead SNPs mapped within or close to several candidate 

213 genes, which have been linked to environmental stress or heat tolerance in animals in previous 

214 studies, including REG3A [20], NPFFR2 [21], and CLSTN2 [22]. Several other lead SNPs 

215 mapped close to novel candidate genes that, to our knowledge, have not been described for 

216 thermotolerance in previous studies.

217 However, the remaining lead SNPs (49%) for slopes were in medium to strong LD (r2 > 0.50) 

218 with nearby (within 1 Mb) lead SNPs identified for intercept traits (S4 Fig), suggesting that 

219 they affect both traits, which was expected due to the strong genetic negative correlation 

220 between heat tolerance and milk production, with estimates in this study of around -0.80. The 

221 most significant lead SNPs for heat tolerance (slope traits) that were strongly (LD; r2 > 0.8) 

222 associated with the level of milk production (intercept traits) mapped close to or are within 

223 genomic loci previously reported to have pleiotropic effects on bovine milk production traits, 

224 including the DGAT1 [23, 24], MGST1 [25], and GHR gene [26].

225 Conditional GWAS for slope traits on either the lead SNPs or the intercept traits

226 We performed two conditional GWAS for slope traits to confirm whether the top hits (lead 

227 SNPs) detected in the first-round of GWAS for the slope traits were in fact discoveries of heat 

228 tolerance rather than indicators of milk yield (as the intercept and slope traits are genetically 

229 correlated). Of interest was the conditional GWAS analysis on chromosome 14, since the 

230 highly significant QTL around 0.5 Mb harbours the DGAT1 gene and the HSF1 (heat shock 

231 factor 1) gene, for which the latter has been linked to thermotolerance in Holstein cattle in 

232 different countries, including Australia [14], and the USA [15]. Notably, the lead SNPs from 

233 the first-round of GWAS for HTMYslope and HTFYslope (Chr14:581569) and HTPYslope 

234 (Chr14:555701) traits were upstream to SLC52A2 and a synonymous variant in the CPSF1 

235 genes, respectively.
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236 Fig 2 shows conditional GWAS results for chromosome 14 (around the region which showed 

237 the strongest signal in the first-round of GWAS for the slope traits – here, the conditional 

238 analyses were for slope traits on either the lead SNP or the intercept trait. In both approaches, 

239 we found that most of the SNPs were no longer significant after conditional analysis. This was 

240 the case for HTMYslope and HTPYslope slope traits, suggesting that these SNPs were possibly 

241 tagging the lead SNPs for slope traits. The lead SNP was in strong LD (r2 > 0.8) with several 

242 other variants around this QTL spanning over 10 genes (Fig 2), including variants in the HSF1 

243 (heat shock factor 1) gene, which implies that any variant (s) around this region are possible 

244 causal mutations for heat tolerance. Nonetheless, the complex LD within this QTL region 

245 makes it difficult to pinpoint a putative causal variant (s) for heat tolerance.

246 Notably, even after fitting the lead SNP in a conditional GWAS analysis, there were still other 

247 somewhat significant (p < 1E-05) SNPs remaining for the HTFYslope trait (though not very 

248 strong signals; Fig 2), suggesting that they could be other QTLs for heat tolerance, which were 

249 not captured by the lead SNPs identified in the study.

250 Although the two conditional GWAS strategies (i.e., conditioning slopes on either lead SNP or 

251 intercept traits) were generally comparable regarding the strength of the GWAS signals (Fig 

252 2), we observed a significant (Student’s t-test; p < 0.001) difference in the distribution of the 

253 GWAS p-values across slope traits. This is, in part, due to the difference in the two conditional 

254 GWAS approaches regarding the covariate fitted in the linear model. We also observed similar 

255 findings for the conditional GWAS analysis on chromosome 20 (S5 Fig).

256 By conducting a conditional analysis of slope traits on the intercepts, we detected multiple 

257 additional QTL signals (lead SNPs) across the genome at p < 1E-05 (S6 Fig). However, most 

258 of these lead SNPs were associated with a large FDR > 0.10 – FDR for each SNP computed 

259 following [27]. Of the few candidate variants (all of which were detected from HTFYslope 
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260 traits) with FDR < 0.10, the strongest GWAS signal was in BTA 14 ~1.7 Mb, of which the lead 

261 SNP (Chr14:1726184) mapped to the downstream region of JRK (Jrk helix-turn-helix protein). 

262 Notably, this gene was found to regulate behavioural rhythms in Drosophila flies, which is 

263 crucial for adaptive response to environmental changes such as temperature variations [28].

264 When combining conditional GWAS results for slope traits (conditioning on the intercept 

265 traits) in the meta-analysis approach, we detected 40 lead SNPs (p < 1E-05), all of which 

266 associated with low FDR < 0.10 (S7 Fig and S3 Table). The mean LD between these 40 lead 

267 SNPs and the lead SNPs detected for intercept traits was very low (r2 < 0.20), confirming that 

268 the conditional analysis was successful in identifying additional candidate variants for heat 

269 tolerance (besides the QTL detected from the first-round of GWAS) that are not strongly 

270 associated with the level of milk production. The most significant lead SNP (Chr14:531267; p 

271 = 9.04E-12) mapped to the upstream region of the SLC39A4 gene, a member of the solute 

272 carrier family, required for intestinal zinc uptake.

273 Candidate causal variants for heat tolerance across all analyses

274 The candidate causal variants for heat tolerance were defined as the lead SNP (most significant 

275 SNP within 5 Mb QTL window) plus other significant SNPs in strong LD (r2 > 0.8) with the 

276 lead SNP, 500 kb up or downstream of the chromosome. We identified a total of 3,010 

277 candidate causal variants for heat tolerance (slope traits) across all the analyses: single-trait 

278 GWAS; a meta-analysis of single-trait GWAS results; and meta-analysis of conditional GWAS 

279 results for slope traits, most of which were intergenic (N = 1545; 51%) followed by intronic 

280 (N = 947; 32%) and upstream (N = 277, 9%) variants (Fig 3 and S1 Table). At least 25 

281 candidate SNPs were missense variants, most (N = 13) of which were in chromosome 14, 

282 including two variants (Chr14:615597 and Chr14:616087) mapping to HSF1 (heat shock factor 

283 1) gene.
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284 The candidate causal variants for heat tolerance are highly enriched (p = 8.54E-25) in the 

285 upstream gene regions (Fig 4), which agrees with GWAS for quantitative traits in humans [29], 

286 suggesting that they perhaps play a functional role in regulating gene expression. As expected, 

287 most candidate variants have modifier SnpEff [30] predicted impact (S5 Table). Two candidate 

288 causal mutations detected from the meta-analysis of slope traits have a high SnpEff predicted 

289 impact: a) a stop-gain mutation (Chr5:31184185) causing a premature stop codon in the LALBA 

290 (lactalbumin alpha) gene and b) a frameshift mutation (Chr29:41139622) in STX5 (syntaxin-5) 

291 gene. The two candidate mutations appear to have a stronger effect on milk production 

292 compared to heat tolerance. This is evidenced by a smaller (p = 1.39E-19) p-value for the stop-

293 gain mutation (Chr5:31184185) observed in the meta-analysis of intercept traits compared to 

294 the meta-analysis of slope traits (p = 4.08-12). Similarly, the p-value for the frameshift mutation 

295 (Chr29:41139622) in the STX5 gene was smaller (p = 2.06E-16) for the meta-analysis of 

296 intercept traits than the meta-analysis of slope traits (p = 5.06E-06). None of these two 

297 candidate stop-gain mutations were significant (p < 0.05) following conditional GWAS for 

298 slope traits on intercept traits.

299 Using data from [31], which documented over 300k sequence variants in cattle at highly 

300 evolutionarily conserved genome regions across 100 vertebrates (conservation/PhastCon 

301 scores > 0.9; see methods), we identified 61 potential functional variants for heat tolerance at 

302 these conserved sites in our study (S4 Table). However, the candidate causal mutations for heat 

303 tolerance are not enriched (p = 1.0) in the conserved regions of the genome.

304 Table 3 provides a short list of putative causal variants (upstream and missense) for heat 

305 tolerance that overlap at genomic sites highly conserved across vertebrates. Some of the 

306 candidate genes flanking these variants have been reported to be involved with cell survival 

307 under stress in animals, e.g., SCD [32], KIAA1324 [33], and TONSL [15]. The SCD (stearoyl-

308 CoA desaturase) gene encode fatty acid metabolic enzyme and perhaps is required for 
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309 metabolic homeostasis during heat stress in mammals. Other putative candidate genes for heat 

310 tolerance include KIFC2, VPS13B, and USP3. For example, [34] demonstrated that the USP3 

311 gene, a member of the ubiquitin-specific proteases (USPs) family, is required for eliminating 

312 misfolded proteins under heat stress conditions in Yeast.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2021. ; https://doi.org/10.1101/2021.02.04.429719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429719
http://creativecommons.org/licenses/by/4.0/


17

313 Table 3. Upstream and missense candidate causal variants for heat tolerance (slope) traits at genomic sites that are highly conserved (conservation score > 0.9) across 

314 100 vertebrate species*.

SNP Chr BP Annotation VEP_impact Gene HTMYslope HTFYslope HTPYslope Meta-analysis1 Conditional 

analysis2

p-value3

rs209684414 3 34215670 upstream MODIFIER KIAA1324  5.98E-07

rs207668220 3 34273899 upstream MODIFIER C3H1orf194  6.5E-07

rs210324395 10 46503113 upstream MODIFIER USP3  8.66E-09

rs210468775 10 46505212 upstream MODIFIER USP3  1.89E-09

rs207681599 14 432274 upstream MODIFIER LRRC14      1.46E-52|1.13E-63|1.13E-28|8.8E-243|7.92E-08

rs136474298 14 471951 missense MODERATE KIFC2      6.11E-53|4.83E-63|5.59E-29|2.5E-242|7.77E-08

rs207886320 14 479761 upstream MODIFIER KIFC2      6.18E-52|4.17E-64|4.55E-28|3.9E-242|7.85E-08

rs137472016 14 494621 upstream MODIFIER TONSL      6.28E-53|8.39E-63|5.94E-29|9.1E-242|7.87E-08

rs445616049 14 64454721 missense MODERATE VPS13B   4.18E-08|1.75E-32

rs41946451 20 37085370 missense MODERATE CPLANE1   1.14E-07

rs41255693 26 21272422 missense&splice MODERATE SCD   4.11E-07|1.85E-08

315 *Conservation scores (PhastCon score) of variants at conserved genomic sites were computed by [31] based on the LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) human sites calculated across 100 vertebrate 

316 species; single-trait GWAS for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slope traits; 1Meta-analysis combining single-trait GWAS results for slope traits; 2Meta-analysis 

317 combining single-trait conditional GWAS results for slope traits; 3For each analysis that identified this variant as significant.
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318 Pathway enrichment analysis

319 We generated a list of candidate genes mapping within or near lead SNPs detected at FDR < 

320 0.10 for each trait set for the pathway enrichment analyses. We found that the candidate gene-

321 list for slope traits were highly enriched for the KEGG pathways related to the neuronal system 

322 (neuroactive ligand-receptor interaction and glutamatergic synapse) and metabolism system 

323 (citrate cycle) (Fig 6). Interestingly, the heat tolerance candidate gene-list (N = ~ 400 genes) 

324 identified from various analyses (single-trait GWAS, meta-analysis, and conditional analysis) 

325 were consistently significantly enriched for a neuroactive ligand-receptor interaction pathway 

326 comprising of 15 genes (CALCR, PTGER2, THRB, GRIK2, NPY2R, F2RL1, GRIN2A, NR3C1, 

327 CHRM3, GRM8, GRM7, GRID2, NPFFR2, MC4R, GHR). A total of 8 genes were enriched (p 

328 = 4.0E-03) in the glutamatergic synapse pathway (GRIN2A, GRM7, GRM8, ITPR1, ITPR2, 

329 SLC17A6, GRIK2, GRIA4). The citrate cycle pathway was also enriched (p = 1.87E-03), 

330 comprising of 5 candidate genes for heat tolerance (ACLY, PDHA2, MDH1, SUCLG2, PCK1).

331 We also analysed a smaller set of genes (N = ~230) with the strongest (p < 1E-05) evidence of 

332 association for heat tolerance, separately (that is, the gene-list underlying the candidate causal 

333 variants defined as the lead SNP (most significant) within an independent QTL plus other 

334 significant SNPs in strong LD (r2 > 0.80) with the lead SNP, 500 kb up or downstream), to see 

335 enriched biological pathways. Interestingly, we observed enrichment (p = 0.02) of the genes in 

336 the neuroactive ligand-receptor interaction pathway, which provides strong support that this 

337 neuronal pathway is relevant for heat tolerance comprising of 8 genes (GHR, NPFFR2, P2RY8, 

338 GRIN2A, CHRM1, THRB, CALCR, F2RL1).

339 When examining the candidate gene-list from single-trait GWAS analyses for slope traits 

340 separately, the neuroactive ligand-receptor interaction pathway was overrepresented for 

341 candidate gene-list for HTMYslope (p = 3.19E-04) and HTPYslope (p = 7.79E-03) traits (Fig 

342 7). On the other hand, gene-list for HTFYslope were enriched (p = 1.55E-02) for the axon 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2021. ; https://doi.org/10.1101/2021.02.04.429719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429719
http://creativecommons.org/licenses/by/4.0/


19

343 guidance pathway comprising four genes (ABLIM2, ABLIM3, NTN1, ROBO1) and metabolic 

344 (p = 0.06) pathways.

345 To further test whether the neuronal pathway is real and not an artifact of our analyses for heat 

346 tolerance traits (slopes), we performed enrichment analyses for the significant candidate gene-

347 list for intercepts traits (level of milk production traits). In the candidate gene-list for intercept 

348 traits, we found no evidence for enrichment (p < 0.05) in any neuronal pathways; thus, 

349 providing further favourable support that neuronal pathways are relevant for heat tolerance in 

350 mammals.

351 Discussion

352 In this study, we performed a GWAS using a large sample size of Australian dairy cows (N = 

353 29,107) with milk production records and imputed sequence data (~15 million SNPs) to 

354 identify candidate causal variants and functional genes and pathways associated with heat 

355 tolerance. Australia’s dairy cattle are uniquely placed for studying heat tolerance in mammals 

356 for two main reasons: 1) they are subjected to a wide range of seasonal climatic variations 

357 across diverse dairying regions spanning one of the geographically largest countries in the 

358 world, and 2) Australia’s dairying is predominantly pasture-based with limited heat stress 

359 mitigation measures in contrast with those, for example, in North America, where extensive 

360 managerial strategies are used more to reduce thermal stress. Overall, we have identified novel 

361 candidate causal variants in the neuronal pathways that contribute significantly to heat 

362 tolerance in animals.

363 We leveraged two statistical approaches to identify genetic loci and pathways for heat 

364 tolerance: single-trait GWAS linear models and multi-trait meta-analysis. Single-trait GWAS 

365 is based on regressing phenotypes on each SNP one at a time. On the other hand, a meta-

366 analysis that combines results of the single-trait GWAS allowed us to discern putative 
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367 pleiotropic genetic variants for heat tolerance. Consequently, we identified multiple novel loci 

368 for heat tolerance, including 61 potential functional variants at genomic sites highly conserved 

369 across 100 vertebrates (Table 3 and S4 Table), which could be valuable for fine-mapping and 

370 genomic prediction. Studies in humans [35] and cattle [31] have demonstrated that the 

371 conserved genomic sites have strong enrichment of trait heritability. Moreover, the results 

372 revealed specific candidate causal variants and genes related to neuronal functions for heat 

373 tolerance in animals, which we now discuss in more detail.

374 Heat stress responses are complex adaptations in animals involving many biological pathways, 

375 including the nervous system, which connects the internal and external environment to 

376 maintain stable core body temperature [36]. Among the candidate gene-list that contribute 

377 significantly to heat tolerance in the study animals (Holstein cows), the neuroactive ligand-

378 receptor interaction and glutamatergic synapse pathways (Fig 6), as components of the nervous 

379 system, were highly enriched (p < 1E-03) biological features.

380 At least two candidate variants in the intronic region of ITPR2 (Chr5:83330185; p = 1.3E-05) 

381 and GRIA4 (Chr15:2461074; p = 5.8E-05) genes in the glutamatergic synapse pathway could 

382 be potential targets for resilience to environmental stress in animals. ITPR2 gene was 

383 associated with heat stress in the US Holsteins [15] or sweating rate in humans and mice [37], 

384 while the GRIA4 gene has been linked to thermoregulation in the Siberian cattle [38]. Another 

385 candidate variant (Chr22:21783956) detected for heat tolerance milk (p = 3.87E-05) and 

386 protein (7.15E-05) yield slope traits mapped to the intronic region of ITPR1 – a gene associated 

387 with environmental adaptation in the domestic yak [39]. These three lead SNPs for slope traits 

388 overlapped with those for intercept traits, with opposing effect direction, suggesting that they 

389 affect both milk production and heat tolerance traits.
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390 Previous studies show that the neuroactive ligand-receptor interaction is involved in 

391 maintaining energy homeostasis during heat stress in ducks [40]. As protein production is the 

392 most valuable output from dairy farms, the focus of breeding programs has been traits 

393 associated with yield, with the average milk volume per cow/year almost doubling within the 

394 past three decades in Australia [41]. The environmental heat stress, coupled with the elevated 

395 metabolic-induced thermogenesis, means that the genetic and cellular reprogramming of 

396 pathways such as the nervous system may be necessary to regulate a cascade of hormonal 

397 processes such as growth factors, insulin, serotonin, thyroid, prolactin, and mineralocorticoids 

398 associated with milk synthesis [42]. We identified 15 genes (FDR < 0.10) associated with the 

399 neuroactive ligand-receptor interaction, which could be relevant for metabolic homeostasis in 

400 cattle during thermal stress, of which three candidate genes (GHR, NPFFR2, and CALCR) 

401 showed the strongest evidence (p < 1E-05).

402 Here we discuss the evidence for each of these three candidate genes:

403 1) [21] demonstrated that the NPFFR2 (neuropeptide FF receptor-2) gene, which is mainly 

404 expressed by neurons in the brain, plays a crucial role in regulating diet-induced 

405 thermogenesis and bone homeostasis in mice. In this study, two lead SNPs 

406 (Chr6:87070486 and Chr6:87249592), detected from single-trait GWAS for 

407 HTMYslope and HTPYslope (p < 1E-05) mapped to the intergenic and intronic regions 

408 of NPFFR2 gene in BTA 6, respectively. Physiological studies suggest that NPFF 

409 family genes regulate feeding behaviour and energy expenditure in mammals [reviewed 

410 in 43]. During heat events, dairy cattle typically reduce their dry matter intake by up to 

411 30%, perhaps as part of an adaptive mechanism to depress metabolic heat production 

412 [44]. Other studies, e.g., [45] show that inhibition of NPFF receptors induces 

413 hypothermia in mice. A recent review [46] indicates that NPFF and its receptors have 

414 many promising therapeutic applications including pain, cardiovascular, and feeding 
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415 regulations in mammals. By examining the genomic region around the NPFFR2 gene 

416 (Fig 5), it is more likely that the two lead SNPs within this QTL represent separate 

417 candidate causal mutations since they are not in strong LD. Interestingly, although the 

418 lead SNP (Chr6:87070486) for slope trait overlapped with the lead SNP detected for 

419 the milk yield intercept (MYint), we observed stronger evidence for the slope 

420 (HTMYslope; p = 3.05E-13) than the intercept (MYint; p = 4.19E-10), suggesting that 

421 this SNP is a good candidate for heat tolerance. Besides, this lead SNP 

422 (Chr6:87070486) remained significant (p = 6.36E-06) following single-trait conditional 

423 GWAS analysis for HTMYslope trait (conditioning slopes on the intercept traits) as 

424 well as in the meta-analysis of single-trait conditional GWAS results for slope traits (p 

425 = 3.74E-06).

426 2) Calcitonin receptors regulate daily body temperature rhythm in mammals and insects 

427 and are essential for maintaining homeostasis [47]. In this study, the lead SNP 

428 (Chr4:10815768) was intronic in the CALCR (calcitonin receptor) gene, perhaps 

429 indicating that it could be relevant for animals experiencing recurrent or chronic stress, 

430 such as in Australian seasonal summers. The strong GWAS signal around this QTL (S8 

431 Fig) suggests that the CALCR gene likely harbours causal mutations affecting heat 

432 tolerance. Dairy cattle employ various adaptive behavioural strategies during heat stress 

433 such as reduced feed intake, increased volume, and frequency of water intake, increased 

434 standing time, shade seeking, and grazing at cooler day time. We think that CALCR is 

435 likely involved with some of these heat-stress adaptive behaviours in dairy cattle. 

436 Future studies are needed to confirm this, particularly by combining production traits 

437 with other relevant behavioural phenotypes such as panting scores from high-

438 throughput recording devices, e.g., activity-based collars.
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439 3) The expression of the GHR (growth hormone receptor) gene is down-regulated during 

440 heat stress in livestock, including dairy cows [48] and avian species [40]. The adaptive 

441 physiological significance of this down-regulation is not well understood, and it is 

442 partly independent of the nutritional level of the animal [48]. In this study, the lead SNP 

443 (Chr20:32103408; p = 2.01E-08) identified only in one slope trait (HTMYslope) based 

444 on significant cut-off of p < 1E-05 mapped to intronic region of GHR gene (S9 Fig). 

445 However, we found a stronger signal after combining the GWAS results for all the slope 

446 traits in a meta-analysis with the lead SNP (Chr20:32201287; p = 1.7E-47) mapping to 

447 the intergenic (~22 kb) region of the GHR gene, which confirms the pleiotropic effect 

448 of this QTL [49]. Also, we observed no significant SNP (p < 1E-05) around this QTL 

449 following single-trait conditional analyses, but a somewhat strong signal emerged when 

450 we combined single-trait conditional GWAS results in the meta-analysis, for which the 

451 lead SNP (Chr20:32226298; p = 5.35E-07) mapped to the intergenic region (~47 kb) of 

452 GHR. This further supports a possible second QTL that is independent of the level of 

453 milk production and shows pleiotropy for the heat tolerance traits. Other published 

454 GWAS have also reported an association of the GHR gene with milk production in 

455 heat-stressed cows [15] and respiratory rates in pigs during heat stress [17]. Several 

456 studies have also implicated the GHR polymorphisms to milk production in bovines, 

457 e.g., Chr20:31888449 phenylalanine-to-tyrosine missense mutation [26]. This mutation 

458 was not in strong LD (r2 > 0.8) with the lead SNP detected for slope traits in our study. 

459 Taken together, polymorphisms around the GHR gene could be candidate targets for 

460 improving thermotolerance in livestock, although with possible antagonistic effect on 

461 milk production considering, for example, the opposing effect direction observed for 

462 the lead SNP (Chr20:32103408) within this QTL on the slope (HTMYslope) and 

463 intercept (MYint) traits.
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464 There is general agreement that heat stress decreases milk yields (milk, proteins, fat, etc.) in 

465 dairy cattle. However, the genetic and biological basis for this reduction is still unclear. 

466 Evidence suggests that the reduced feed intake in heat-stressed dairy cows is independent of 

467 reduced milk yields and composition [44]. The molecular control and pathways for individual 

468 milk traits during heat stress are scarce and inconclusive. In this study, the QTLs detected for 

469 the heat tolerance traits varied across the three milk traits (HTMYslope, HTFYslope, 

470 HTPYslope), suggesting that they are, in part, regulated by different genes in heat-stressed 

471 cows. The greater overlap of candidate genes observed for HTMYslope and HTPYslope traits 

472 was expected due to their relatively high correlation (0.90) compared to HTMYslope and 

473 HTFYslope (0.56) or HTPYslope and HTFYslope (0.62). These correlations appear to mirror 

474 the proportions of SNPs with the same or inconsistent effect direction observed for significant 

475 SNPs between slope traits. Considering that heat stress alters carbohydrate, lipid, and amino 

476 acid metabolism [50], the large proportion of SNPs with inconsistent effect direction, 

477 particularly between HTPYslope and HTFYslope, suggest that these traits are somewhat 

478 differently regulated in heat-stressed dairy cows.

479 Several pair-fed studies suggest that pathways related to the mammary gland protein synthesis 

480 govern protein production under heat stress in dairy cows, in part, via reduced amino acid 

481 supply to the mammary gland, e.g., [51, 52]. We found that the candidate genes for 

482 HTMYslope and HTPYslope traits were overrepresented (p < 0.005) in the neuroactive ligand-

483 receptor interaction pathway. This agrees with [53] that genes associated with milk proteins 

484 are involved in neuronal signaling pathways in dairy cattle. However, it remains unclear how 

485 this pathway is regulated during heat stress conditions in dairy cows to impact protein 

486 production.

487 On the other hand, the molecular pathways for fat production under heat stress conditions have 

488 not been widely studied. Some studies [e.g., 54] suggest that the reduced activation of PPAR 
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489 (peroxisome proliferator-activated receptor) signaling pathways leads to decreased expression 

490 of genes associated with fat metabolism. Candidate genes for HTFYslope identified in this 

491 study are associated with the KEGG term “metabolic pathways” (Fig 7). Five candidate genes 

492 (DMGDH, PDHA2, UGP2, MDH1, PRDX6, NDUFA13) within this pathway may be involved 

493 with alleviating oxidative stress in heat-stressed cows. In line with these findings, we found 

494 that the candidate genes for heat tolerance (Fig 6) are overrepresented in the citrate cycle/TCA 

495 pathway, which is central to mitochondrion energetics, and might serve to reduce substrate 

496 oxidation and reactive oxygen species (ROS) production, thus preventing cellular damage 

497 during heat stress.

498 Notably, our pathway results are perhaps not directly comparable to most previous work in 

499 which the study cows were subjected to short-term acute heat stress under experimental 

500 conditions [e.g., 54] whereas the current work mimics recurrent or chronic stress that dairy 

501 cows experience during summer seasons in Australia. The effects of heat stress in livestock 

502 depend on its duration and severity, with the most recent work in Arabian camels somatic cells 

503 showing that acute heat stress elevates the expression of heat shock proteins and DNA repair 

504 enzymes while chronic heat leads to changes in cell integrity and reduction of total protein 

505 levels, metabolic enzymes, and cytoskeletal proteins [55]. Our candidate QTLs are particularly 

506 important since it provides novel insights into the molecular aspect of chronic stress 

507 considering that the study animals are predominantly reared under outdoor conditions with 

508 limited heat stress mitigations. Future studies are required to confirm if these QTLs are 

509 involved with recurrent chronic stress in other animal species.

510 We could not replicate most of the candidate genes with published GWAS results for heat 

511 tolerance in cattle, likely for several reasons. First, all comparable earlier studies were much 

512 smaller (< 5,000 animals) and therefore were under-powered, and the marker density used was 

513 typically 50k or 600k SNP array [e.g., 14, 15]. As expected, we observed that our sequence 
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514 variants showed markedly higher significance levels than the 50k SNP array and increased the 

515 number of significant peaks across the genome (S1 Fig). Second, the trait used to define heat 

516 tolerance in this study (i.e., the rate of milk yield decline under heat stress) differs from many 

517 other studies [e.g., 13], which used measures of core body temperatures in their GWAS. Given 

518 that heat tolerance is a complex trait involving a wide array of adaptative responses 

519 (behavioural, physiological, cellular, etc.), different QTLs may be captured by different traits 

520 used in GWAS. Third, differences in the patterns of LD among study populations used and 

521 imputation quality may have implications on GWAS, particularly in the detection of putative 

522 causal mutations [56]. Here we explored QTLs for heat tolerance in purebred Holstein cows, 

523 while some other studies, e.g., [16] have used crossbred cattle. Collectively, these factors likely 

524 impacted the replication of previous GWAS candidate genes for heat tolerance.

525 Although we detected multiple candidate causal variants for heat tolerance in this study, it 

526 appears that larger sample size (we used N = 29,107) would be beneficial considering the 

527 polygenic architecture of this trait. Larger sample size is required to detect causal variants with 

528 very small effects and the effects of rare causal variants [12]. For example, many of the lead 

529 SNPs (most significant) for heat tolerance were tagged by none or very few significant SNPs 

530 (S1 Table), which may be false-positive variants passing the GWAS cut-off (p < 1E-05). Our 

531 results support the highly polygenic nature of heat tolerance characterised by multiple small-

532 effect variants, suggesting that this trait is more amenable to genomic selection tools such as 

533 those currently implemented in the Australian dairy industry [3, 57] rather than approaches that 

534 exploit few QTLs with large effects.

535 In conclusion, we performed GWAS for heat tolerance using large sample size and genotype 

536 dataset for dairy cattle. The increased sample size and high-resolution SNP data in our study 

537 compared to previous reports allowed us unprecedented power and precision of the GWAS to 

538 pinpoint multiple putative causal mutations, including 61 potential functional variants at 
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539 genomic sites highly conserved across 100 vertebrate species. Also, results indicate that 

540 different genes and pathways, in part, regulate different milk production traits (milk, fat, and 

541 proteins) in heat-stressed dairy cows with a substantial overlap of genes for heat tolerance milk 

542 and protein yields. Overall, the results revealed the importance of variation in genes related to 

543 the neuronal functions for heat tolerance in mammals, which is of interest for future research 

544 towards understanding and managing heat stress for warm climates and particularly in view of 

545 the anticipated climate changes.

546 Materials and methods

547 Animals and phenotypes

548 No live animals were used in this study. Phenotypes used for GWAS were part of our previous 

549 study [58] obtained from DataGene (DataGene Ltd., Melbourne, Australia; 

550 https://datagene.com.au/) – the organisation responsible for genetic evaluation of dairy animals 

551 in Australia. The phenotypes were test-day milk, fat, and protein yields for Holstein dairy cows 

552 collected from dairy herds that were matched with climate data (daily temperature and 

553 humidity) obtained from weather stations across Australia’s dairying regions. The distribution 

554 of dairy herds and weather stations; and the calculation of environmental covariate (i.e., 

555 temperature-humidity index (THI)) used here were described in our earlier studies [3, 58].

556 Calculation of heat tolerance phenotypes for cows

557 The dataset used to calculate heat tolerance phenotypes for cows was similar to that used by 

558 [58], comprising a total of 424,846 test-day milk records for first, second and third lactations 

559 from 312 herds and 15,906 herd-test days (HTD) collected over 15 years (2003-2017). A 

560 summary of the final dataset is given in Table 1. The rate of decline (slope) in milk, fat, and 

561 protein yield due to heat stress events was estimated using a reaction norm models [58]. In 

562 these models, data on milk, fat, or protein yield were adjusted for the fixed effects, including 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2021. ; https://doi.org/10.1101/2021.02.04.429719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429719
http://creativecommons.org/licenses/by/4.0/


28

563 herd test day, year season of calving, parity, age at calving, jointly for parity and DIM, and 

564 jointly for the stage of lactation and THI. Random effects fitted in the model included a random 

565 regression on a linear orthogonal polynomial of THI, where the intercept represents the level 

566 of mean milk yield and the linear component represents the change in milk yield (slope) due to 

567 heat stress for each cow and a residual term. In the model, the threshold of THI was set to 60 

568 following [59]. The analyses to derive trait deviation (TD) which represents a phenotype 

569 adjusted for all fixed effects (i.e., the mean/intercept and slope for each cow) were conducted 

570 using ASReml v4.2 [60].

571 We refer to milk intercept traits as [MYint (i.e., milk yield intercept), FYint (i.e., fat yield 

572 intercept), and PYint (i.e., protein yield intercept)] and the slopes traits as [HTMYslope (i.e., 

573 heat tolerance milk yield slope), HTFYslope (i.e., heat tolerance fat yield slope), and 

574 HTPYslope (i.e., heat tolerance protein yield slope)], respectively.

575 Genotypes

576 Two genotype datasets were analysed for 29,107 Holstein cows with the above phenotypes: 

577 50k SNP chip and 15,098,486 imputed whole-genome sequence variants (WGS). Most of the 

578 cows were originally genotyped with a custom low-density 10k SNP panel or a standard 

579 medium density 50k SNP array (BovineSNP50k BeadChip: Illumina Inc). The low-density 

580 genotypes were imputed to the 50k array using a reference set of approximately 14,000 animals 

581 with real 50k genotypes, with approximately 7,000 SNPs of the low-density SNP panel 

582 overlapping the 50k SNP array. The 50k genotypes were then imputed to the high-density 

583 Bovine SNP array (HD: BovineHD BeadChip, Illumina Inc) using a reference set of 2,700 

584 animals with real HD genotypes. All SNP BeadChip genotypes were first converted to the 

585 ARS-UDC1.2 reference genome 

586 (https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) [61] positions from reference 

587 genome UMD3.1 and imputed using Fimpute3 [62]. The WGS was imputed from the HD 
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588 genotypes using a reference set of 3,090 Bos taurus sequences in the Run7 of the 1000 Bull 

589 Genome Project (http://1000bullgenomes.com/) [18] aligned to the ARS-UCD1.2 reference 

590 genome. Only bi-allelic sequence variants with a minor allele count (≥ 4) and GATK [63] 

591 quality tranche 99.0 or better were retained for imputation. Pre-imputation, we also removed 

592 variants with higher than expected heterozygosity (> 0.5) if they fell in a 500 kb window 

593 enriched for variants showing excessive heterozygosity (as a proxy to indicate regions where 

594 WGS mapping/alignment may be poor). A total of 31,994,954 sequence variants remained for 

595 imputation. Minimac3 [64] was used for WGS imputation, having first pre-phased both the HD 

596 genotypes and the WGS reference using Eagle v2 [65]. For the analysis, we retained only the 

597 variants with Minimac3 imputation accuracy, R2 > 0.4 and MAF > 0.005 (N = 15,098,486 

598 sequence variants).

599 Single-trait GWAS and multi-trait meta-analysis

600 A genome-wide association analysis (GWAS) using a mixed linear model was used to test 

601 associations between individual SNP and cows' slope [HTMYslope, HTPYslope and 

602 HTFYslope] and intercept [MYint, FYint, PYint] traits using GCTA software [66]. Because 

603 phenotypes were TD already adjusted for nongenetic effects, for each autosomal SNP i with 

604 minor allele frequency (MAF) > 0.005, the fitted model per trait was, 

605 y = mean + xβ + g + ɛ,

606 where y was the vector of TD for cows (n = 29,107), β was the allele substitution effect of 

607 SNP i, x was the vector of genotype dosages (0, 1, or 2) for SNP i, g was the vector of 

608 polygenic effect with 𝑔 ~ 𝑁(0,𝐆𝐑𝐌𝜎2
𝑔 ) and ε was a vector of the residual effect with 

609 𝑒 ~ 𝑁(0,𝐈𝜎2
𝑒 ), where I was an n × n identity matrix. The variance of y was var(y) = 𝐆𝐑𝐌σ2

g 

610 + 𝐈σ2
e  where GRM is the genomic relationship matrix between cows, and σ2

g and σ2
e were the 
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611 genetic and residual variances. For animal j and k relationship was calculated using GCTA [66] 

612 as follows:

613 𝐴𝑗𝑘 =  
1
𝑁  

𝑁

𝑖=1

(𝑥𝑖𝑗 ― 2𝑝𝑖)(𝑥𝑖𝑘 ― 2𝑝𝑖)
2𝑝𝑖(1 ― 𝑝𝑖)

614 where 𝐴𝑗𝑘 are the off-diagonal elements of GRM for animal j and k; N = total number of SNPs 

615 from 50k SNP array data (MAF > 0.005; 45,504 SNPs); 𝑥𝑖𝑗 and 𝑥𝑖𝑘 are genotypes are the 

616 number of copies for reference allele for the ith SNP jth and kth cow; and 𝑝𝑖 is the allele 

617 frequency for ith SNP. 

618 Genomic heritability was calculated for each trait using variance component estimates from –

619 reml option of GCTA for 50k SNP array (45,504 SNPs) data of cows (N = 29,107): ℎ2 =  𝜎2
𝑔 (

620 𝜎2
𝑔 + 𝜎2

𝑒).

621 To increase the power of GWAS and identify pleiotropic variants, we next combined single-

622 trait GWAS results obtained above in a multi-trait meta-analysis following [19]. The multi-

623 trait 𝜒2 statistics for ith SNP was calculated separately for intercept [MYint, FYint, PYint] and 

624 slope [HTMYslope, HTFYslope, and HTPYslope] traits as follows:

625 𝜒2 =  𝑡′𝑖𝑉―1𝑡′𝑖

626 where 𝑡𝑖 is the vector of 3 × 1 vector of signed t-values (i.e., b/se) of ith SNP for either intercept 

627 or slope traits; and 𝑉―1 is the inverse of 3 × 3 correlation matrix of the signed t-values calculated 

628 based on all pairs for the intercept or slope traits. The significance of 𝜒2value for ith SNP was 

629 calculated based on chi-squared distribution with 3 degrees of freedom – that is number of 

630 traits for either intercept or slope traits.
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631 Conditional GWAS analysis

632 Next, we performed two conditional GWAS strategies of slope traits using GCTA software 

633 [66] to test somewhat different hypotheses: 

634 a) Conditional analysis of slope traits on lead SNP (i.e., most significant SNP within a 

635 chromosome from first-round GWAS) – aimed at identifying additional or secondary 

636 putative causal variants beside those detected from first-round GWAS. We performed 

637 a conditional analysis strategy on two chromosomes (BTA 14 and BTA 20), which 

638 showed the strongest GWAS signal for slope traits in the first-round GWAS (S1 and 

639 S2 Figs) and are known to harbour QTLs with major effects on milk production (i.e., 

640 BTA14 ~DGAT1 and BTA20 ~GHR gene).

641 b) Conditional analysis of slope traits on intercept traits – aimed at identifying QTLs for 

642 heat tolerance that are independent, or not also strongly associated with the level of 

643 milk production. We fitted the intercept traits of MYint, FYint, and PYint, as a covariate 

644 in the linear model when analysing the HTMYslope, HTFYslope, or HTPYslope, 

645 respectively. To increase the power of GWAS, we then combined conditional GWAS 

646 results for the three slope traits [HTMYslope, HTFYslope, and HTPYslope] in a multi-

647 trait meta-analysis following [19] as described earlier.

648 Identifying candidate causal variants

649 We used the following criteria to select candidate variants (p < 1.0E-05) from the three 

650 analytical approaches (single-trait GWAS, meta-analysis, conditional analysis).

651 1. For each trait, select all SNPs with p < 1E-05.

652 2. Split each chromosome (N = 1…29) into 5 Mb non-overlapping windows from the start 

653 to the distal end of the chromosome.
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654 3. Within the ith 5 Mb window, select the most significant SNP (i.e., the SNP with the 

655 smallest p-value below the threshold of p < 1E-05) defined as the ‘lead SNP’. We chose 

656 this arbitrary 5 Mb window size to obtain a small set of significant lead SNPs 

657 representing independent QTL (that is, not in linkage disequilibrium) for further 

658 detailed examination.

659 4. Calculate the LD between each lead SNP and all the other SNPs within 500 kb up and 

660 downstream of the lead SNP using Plink v1.9 [67].

661 5. For each lead SNP, extract all the significant SNPs (p < 1E-05) in strong LD (r2 > 0.80) 

662 with the lead SNP within 500 kb up or down downstream – to account for the fact that 

663 the lead SNP (most significant) is not necessarily the causal variant.

664 Annotation of sequence variants and enrichment analysis

665 Annotation of all variants (~15 million SNPs) was performed using SnpEff [30] tool. Using the 

666 annotation, we grouped the candidate causal variants for heat tolerance (slopes) into 9 classes 

667 (intergenic, intronic, missense, upstream, downstream, 3_prime_UTR, synonymous, 

668 5_prime_UTR, and Other) and performed enrichment analysis using phyper in R v3.61 [68]. 

669 The class “Other” comprised variants including 5_prime_UTR_premature/_start_codon_gain, 

670 frameshift, missense&splice, splice&intron, stop_gained, etc. S1 Table provides the number of 

671 candidate causal variants for heat tolerance within the 9 classes.

672 Candidate variants at conserved genomic sites

673 We identified candidate causal variants for heat tolerance at highly conserved genomic sites 

674 using data from [31]. Briefly, these authors documented over 300k sequence variants at 

675 conserved sites in cattle based on the LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) 

676 human sites with conservation scores (PhastCon score) > 0.9 calculated across 100 vertebrate 

677 species (see 
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678 https://www.pnas.org/content/pnas/suppl/2019/09/07/1904159116.DCSupplemental/pnas.190

679 4159116.sapp.pdf for more details).

680 Pathway enrichment analysis

681 We generated candidate gene-list mapping near or underlying lead SNPs (most significant 

682 SNPs within 5 Mb QTL windows) identified at FDR < 0.10 cut-off threshold from both single-

683 trait and multi-trait analyses of intercept or slope traits. For intergenic lead SNPs, we selected 

684 the closest gene on either side of the SNP. We chose this cut-off (FDR < 0.10) instead of a 

685 more stringent p < 1E-05 to include genes associated with smaller effects while guarding 

686 against false positives. We then performed the Kyoto Encyclopedia of Genes and Genomes 

687 (KEGG) enrichment analysis using DAVID [69].

688 We also performed enrichment test separately for the gene-list associated with potential major 

689 effects on heat tolerance identified across all analyses (i.e., gene-list with the strongest (p < 1E-

690 05) evidence of association defined as the candidate causal variants (i.e., lead SNP + other 

691 significant SNPs in strong LD (r2 > 0.80) with the lead SNP within 500 kb up or downstream 

692 passing the cut-off p-value of 1 < 1E-05). For all the analyses, we considered functional 

693 pathways with Fisher’s p < 0.05 as significantly enriched.
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895 Supporting information captions

896 S1 Table. Number of candidate causal variants (p < 1E-05) for slope traits across different 

897 functional classes identified for a) single-trait GWAS, b) meta-analysis of single-trait GWAS 
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898 results, and c) meta-analysis of conditional single-trait GWAS results of slopes (conditioning 

899 each slope trait on the intercept traits).

900 S2 Table. Candidate causal variants for heat tolerance identified from single-trait GWAS 

901 and multi-trait meta-analysis based on the GWAS cut-off threshold of p < 1E-05.

902 S3 Table. Candidate causal variants for heat tolerance detected following meta-analysis 

903 of conditional GWAS results for slope traits.

904 S4 Table. Candidate causal variants for heat tolerance at genomic sites highly conserved 

905 (conservation score > 0.9) across 100 vertebrate species.

906 S5 Table. Number of variants within different SnpEff predicted impact groups and 

907 enrichment scores.

908 S1 Fig. Manhattan plot of GWAS p-values for 29,107 Holstein cows based on 50k SNP set 

909 (left panel) and whole-genome sequence variants (right panel; N = 15,098,486 SNPs) for: 

910 heat tolerance milk (HTMYslope; A), fat (HTFYslope; B) and protein (HTPYslope; C) yield 

911 slope traits. Dashed horizontal lines represent GWAS cut-off of p < 1E-05.

912 S1 Fig. Manhattan plot of GWAS p-values for 29,107 Holstein cows obtained from 15 

913 million imputed-WGS for heat tolerance milk (HTMYslope; A), fat (HTFYslope; B), and 

914 protein (HTPYslope; C) yield slope traits. The highlighted red points are lead SNPs (most 

915 significant) identified using 5 Mb non-overlapping windows at p < 1E-05 (horizontal dashed 

916 line).

917 S2 Fig. Overlap of candidate QTLs (p < 1E-05) from single-trait GWAS for heat tolerance 

918 milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slope traits. QTLs 

919 were defined as overlapping if the lead SNPs (most significant) within QTLs are close (within 
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920 1 Mb). The two QTLs which overlapped across the 3 slope traits are located around DGAT1 

921 and MGST1 genes.

922 S3 Fig. Distribution of linkage disequilibrium (LD) scores between lead SNPs (most 

923 significant) for slope traits and nearby (within 1 Mb) lead SNPs for intercept traits 

924 identified from single-trait GWAS and multi-trait meta-analyses.

925 S4 Fig. GWAS p-values on chromosome 20 at 30 to 36 Mb for heat tolerance milk yield 

926 slope (HTMYslope) trait. The left plot (GWAS p-values before conditional analysis), middle 

927 (after conditioning slope on the lead SNP defined as the most significant SNP selected from 

928 first-round of GWAS; Chr20:32103408), and right plot (GWAS p-values after conditioning 

929 with milk yield intercept trait).

930 S5 Fig. Conditional GWAS results for heat tolerance milk (HTMYslope), fat 

931 (HTFYslope), and protein (HTPYslope) yield slope traits. GWAS for A, B and C were 

932 conditioned on milk, fat, and protein yield intercept traits, respectively. The highlighted red 

933 points represent the lead SNPs (most significant) within 5 Mb non-overlapping windows across 

934 the chromosome.

935 S6 Fig. Manhattan plot of p-values obtained from combining conditional single-trait 

936 GWAS results for slope traits in the multi-trait meta-analysis. The dashed line is the 

937 significant GWAS cut-off at p < 1E-05, while the red circles are the lead SNPs (most significant 

938 per QTL).

939 S7 Fig. QTL discovery for heat tolerance protein yield slope (HTPYslope) trait around 

940 the CALCR gene region in bovine chromosome 4.

941 S8 Fig. QTL discovery for heat tolerance protein yield slope (HTPYslope) trait and meta-

942 analysis of slope traits (Meta-HTslope) around the GHR gene region in bovine 

943 chromosome 20.
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944 Figure captions

945 Fig 1. Manhattan plot of p-values obtained from combining single-trait GWAS results for 

946 milk yield slope traits.

947 Fig 2. QTL discovery on chromosome 14 at 0 to 1 Mb for heat tolerance milk 

948 (HTMYslope; A), fat (HTFYslope; B), and protein (HTPYslope; C) yield slope traits. The 

949 three panels represent the GWAS p-values before conditional analysis (right panel), after 

950 conditioning slope traits on the lead SNP (highlighted in blue) defined as the most significant 

951 SNP (middle panel), and after conditioning slope traits on the intercept traits (left panel), 

952 respectively. The red horizontal dashed line is the GWAS cut-off of p < 1E-05. The strength 

953 of LD (r2) between the lead SNP (blue color) and all the other SNPs are color-coded 

954 accordingly.

955 Fig 3. Proportion of candidate causal variants for heat tolerance within different 

956 functional classes identified from a) single-trait GWAS, b) meta-analysis, and c) meta-

957 analysis of conditional GWAS results for slope traits. Values in brackets are the proportions 

958 of all variants used in the study (~15 million SNPs). Functional classes without values in 

959 brackets were represented by a small (< 1%) proportion of SNPs in the study dataset.

960 Fig 4. Enrichment of the candidate causal variants for heat tolerance across functional 

961 classes. The values in brackets are the number of variants within each class. The class “Other” 

962 includes variants with very small proportions of candidate variants (frameshift, stop-codon, 

963 splice variants, etc.).

964 Fig 5. QTL discovery for heat tolerance milk (HTMYslope) and protein (HTPYslope) 

965 yield slope traits around the NPFFR2 gene in bovine chromosome 6.

966 Fig 6. Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained 

967 from candidate gene-list for slope traits detected at false discovery rate (FDR < 0.10): SS-
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968 slope genes – gene-list from single-trait GWAS; Meta-slope genes – gene-list from multi-trait 

969 meta-analysis of slope traits; All-slope genes – combined gene-list from single-trait and meta-

970 analysis. Cells are color-coded according to the strength of the significance for each pathway. 

971 Values in brackets are the number of genes within each pathway.

972 Fig 7. Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained 

973 from our gene-list for single-trait GWAS analysis of slope traits: HTMYslope (heat 

974 tolerance milk yield slope); HTFYslope (heat tolerance fat yield slope); and HTPYslope (heat 

975 tolerance protein yield slope). Cells are color-coded according to the strength of the 

976 significance for each pathway. Values in brackets are the number of genes within each 

977 pathway.

978 Data availability

979 Positions and annotations for all the lead SNPs (most significant SNPs) with p <1E-5 are in 

980 S1-S3 Tables. The study used third-party data obtained from DataGene (DataGene Ltd., 

981 Melbourne, Australia; https://datagene.com.au/). As strict agreements are in place between 

982 farmers and DataGene, this data is not publicly available. However, research related requests 

983 for access to the data may be accommodated on a case-by-case basis.
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