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Abstract 

Mitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases as 

mitochondria are essential to neuronal function. The mitochondrial genome encodes a small 

number of core respiratory chain proteins, whereas the vast majority of mitochondrial proteins are 

encoded by the nuclear genome. Here we focus on establishing a profile of nuclear-mitochondrial 

transcriptional relationships in healthy human central nervous system tissue data, before 

examining perturbations of these processes in Alzheimer&#8217s disease using transcriptomic 

data originating from affected human brain tissue. Through cross- central nervous system analysis 

of mitochondrial-nuclear gene pair relationships, we find that the cell type composition underlies 

regional variation, and variation is driven at the subcellular level by heterogeneity of nuclear-

mitochondrial coordination in post-synaptic regions. We show that nuclear genes causally 

implicated in sporadic Parkinson&#8217s disease and Alzheimer&#8217s disease show much 

stronger relationships with the mitochondrial genome than expected by chance, and that nuclear-

mitochondrial relationships are significantly perturbed in Alzheimer&#8217s disease cases, 

particularly amongst genes involved in synaptic and lysosomal pathways. Finally, we present 

MitoNuclearCOEXPlorer, a web tool designed to allow users to interrogate and visualise key 

mitochondrial-nuclear relationships in multi-dimensional brain data. We conclude that 

mitochondrial-nuclear relationships differ significantly across regions of the healthy brain, which 

appears to be driven by the functional specialisation of different cell types. We also find that 

mitochondrial-nuclear co-expression in critical pathways is disrupted in Alzheimer&#8217s 

disease, potentially implicating the regulation of energy balance and removal of dysfunctional 

mitochondria in the etiology or progression of the disease and making the case for the relevance 

of bi-genomic co-ordination in the pathogenesis of neurodegenerative diseases. 
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Introduction 

Tissues of the central nervous system (CNS) are not only highly energetically demanding, 

consuming 20% of the body’s total energy supply1, but heterogeneous in their requirements, with 

significant variation in energy demands across their constituent cell types2-3. As such, matching 

energy supply to demand is a tightly regulated process and dysfunction in these processes has been 

linked to a wide range of neurodegenerative diseases (NDs)4-6.  Energy production in the CNS is 

largely dependent on mitochondria, which have their own compact genomes that code for proteins 

of the electron transport chain. However, most of the proteins required for normal mitochondrial 

function are encoded in the nucleus, making interactions between the two genomes vital for key 

cellular processes such as mitophagy, calcium buffering, cellular signalling and apoptosis7. 

Transcription of nuclear-encoded mitochondrial proteins occurs in the nucleus and translation is 

carried out by cytoplasmic ribosomes, before the products are imported into mitochondria8. 

Through these processes, the mitochondria are fully resourced to fulfil their numerous and integral 

roles in the cell. 
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In neuronal cell types, the nuclear-mitochondrial relationship is particularly complex. Neurons are 

highly dependent on oxidative phosphorylation (OXPHOS), rendering them vulnerable to 

oxidative stress induced by reactive oxygen species (ROS). Given that OXPHOS components are 

bi-genomically encoded, while the components of the ‘ROS defense system’ (RDS) are nuclear-

encoded, coordinated provision of these factors is required to maintain both continuous ATP 

production and neuronal integrity9. Furthermore, given that neurons are terminally differentiated 

cells, they rely heavily on bi-genomically encoded autophagic pathways for removal of 

dysfunctional organelles as well as misfolded and aggregated proteins in order to maintain function 

throughout life10. Additionally, neurons have a unique and highly specialised architecture, 

requiring them to ensure a consistent supply of nuclear-encoded mitochondrial proteins to large 

quantities of mitochondria, across many meters in some instances11,2. 

 

Given the intricacy and scale of nuclear-mitochondrial coordination required in human brain 

tissue, there is ample opportunity for dysfunction. In neurons, failure of coordinated mitochondrial 

clearance and biosynthesis contributes to disease pathogenesis. This can be seen in the etiology of 

Parkinson’s disease (PD), where mutations in PINK1 and PARK2 are associated with autosomal-

recessive PD and their protein products have been implicated not only in mitophagy, but also 

mitochondrial biogenesis12-13. However, pathology of the mitochondrial biogenesis and quality 

control pathways is not unique to PD. Analysis of brain samples from individuals with Alzheimer’s 

disease (AD) have shown that levels of the mitochondrial biogenesis transcriptional ‘master-

regulator’ PGC-1a in hippocampal tissues are reduced relative to control tissue, suggesting that 

disruption of PGC-1a-dependent pathways contributes to pathogenesis14. Collectively, this 

evidence points to a role for dysfunction of the nuclear-mitochondrial relationship in NDs. 
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Despite this, analysis of nuclear-mitochondrial cross-talk at scale is mostly limited, focusing either 

on a small number of features, or a small number of samples through the analysis of absolute RNA 

expression values15, in vivo work involving single gene knockdown16, or indirectly analysing 

mitochondrial function by measuring metabolite output17. Larger studies that have looked at cross-

talk in multiple tissues include a population-level analysis of expression quantitative trait loci 

(eQTLs) associated with the expression of mitochondrially-encoded genes, and a multi-tissue 

analysis of nuclear and mitochondrial gene expression correlations18-19. These studies support the 

complexity and functional relevance of nuclear-mitochondrial relationships in the brain, but lack 

CNS-specificity and analysis of potential processes and pathways most relevant to nuclear-

mitochondrial coordination. 

 

Here, we focus specifically on mitochondrial-nuclear relationships in CNS tissues using RNA 

sequencing data from a large number of individuals from multiple cohort studies. We find that 

across the CNS, there is regional variation in co-expression likely driven by cell-type specific 

processes, reflective of functional specialisation in the brain. We identify disease specific patterns 

in mitochondrial-nuclear relationships that are important for understanding the aetiology of 

neurological disease. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Materials and methods 

GTEx data 

Raw RNA-sequencing data from 12 histologically normal CNS regions were obtained from the 

Genotype-tissue Expression project (GTEx, V6p)40. Processing was carried out as per (18). 

Briefly, adapter sequences, low quality terminal bases and poly-A tails (>4) were trimmed and 

subsequently aligned to the 1000G GRCh37 reference genome using STAR. Strict filtering was 

applied to avoid misalignment of NUMT sequences, and to retain only properly paired and 

uniquely mapped reads. Post-mapping processing included exclusion of samples with: <10K reads 

mapping to the mitochondrial genome, <5m total mapped reads, >30% of reads mapping to 

intergenic regions, >1% total mismatches or >30% reads mapping to ribosomal RNA using custom 

scripts as well as RNAseQC41. HTseq was used to quantify transcripts, before converting raw 

counts to TPMs using version 19 of the Gencode gene annotation. The final per-brain-region 

sample (n) numbers and number of genes expressed are shown in supplementary table 1. 

 

ROSMAP data 

The ROSMAP dataset is composed of dorsolateral prefrontal cortex samples derived from 

autopsied individuals from the Religious Orders Study (ROS) and the Rush Memory and Aging 

Project (MAP)42. Data was obtained through application to the data access committee, permitting 

access to pre-mapped FPKM data (for QC and mapping details see (42)). Each ROSMAP sample 

is associated with a cognitive diagnosis. We used samples labelled ‘AD’ (n=254) and ‘no cognitive 

impairment’ (n=201), referred to as ‘case’ and ‘control’, respectively. Samples with missing 
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metadata and duplicates were removed, reducing the number of cases to 251. Prior to further 

processing, FPKMs were converted to TPMs. 

 

Generating nuclear-mitochondrial correlation matrices 

For both datasets, the same custom pipeline was applied to generate nuclear-mitochondrial gene 

expression correlation matrices from gene counts. First, TPM matrices were filtered for genes with 

TPM>0 in all samples, and samples with TPM=0 in all genes were removed. TPMs were then 

log10 and median normalised. Expression outliers, defined as TPM values three interquartile 

ranges below the lower quartile or above the upper quartile for a gene, were masked.  

 

Covariates for data correction were selected by performing Principal Component Analysis (PCA) 

on the expression matrices. Spearman correlations between the largest axes of variation (first 10 

principle components, capturing 98.41% of the variation for GTEx and 99.43% for ROSMAP) and 

known covariates were calculated (supplementary figure 2). For ROSMAP, the following 

covariates were selected: PMI, RIN, library batch, race, sex, study, age at death, age at last visit. 

For GTEx, the following covariates were selected: RIN, four batch variables (type of nucleic acid 

isolation batch, nucleic acid isolation batch ID, genotype or expression batch ID, date of genotype 

or expression batch), center, age, gender and cause of death.  

 

Following this, multiple linear regression was applied to regress out covariates. TPM values were 

included as predictor variables and covariates as response variables in a linear model. Predicted 

TPMs were calculated following model fitting, and residuals were calculated by subtracting 

predicted from observed, yielding residual TPMs. To generate nuclear-mitochondrial correlation 
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matrices, Spearman correlation coefficients were calculated between protein-coding mitochondrial 

genes (13) and nuclear genes (for GTEX: 15001 genes expressed in all CNS tissues; for ROSMAP 

all nuclear genes expressed).  

 

Analysing nuclear-mitochondrial correlation variance across CNS regions 

To understand the extent to which the relationships between nuclear-mitochondrial gene pairs vary 

across the CNS, we leveraged 12 GTEx CNS regions, calculating a cross-CNS variance of 

correlation coefficients for every nuclear-mitochondrial gene pair (see tabular schematic in fig. 

3A). We then calculated the variance of these 12 coefficients as a measure of variation in the 

relationship between the expression of these two genes across CNS regions. We repeated this for 

all nuclear-mitochondrial gene pairs. Nuclear genes expressed in all 12 CNS regions were used, 

equating to 15,001 nuclear genes and 195,013 nuclear-mitochondrial pairs. To reduce redundancy 

of the dataset, aggregation of mitochondrial genes was performed, the intuition being that the 

correlation of a nuclear gene with the 13 mitochondrial genes was found to be largely consistent. 

The median cross-CNS variance of 13 mitochondrial genes was taken as the representative value 

for each nuclear gene.  

 

To determine processes enriched in gene pairs in different variance brackets, four gene sets were 

defined. The ‘high variance set’ (highest 5% of variances, n=750), and the ‘low variance set’ 

(lowest 5% of variances, n=750). These two groups were then further split into positive and 

negative sub-groups, dependent on the majority correlation directionality. This yielded the 

following gene sets: high variance positive n=605, high variance negative n=145, low variance 

positive n=363, low variance negative n=387.  
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To determine the processes and pathways enriched in these gene sets, the R package gProfiler2 

was used. Enrichments were tested against a custom background of genes expressed in all GTEx 

CNS regions (n=15,001). The queries were ordered by correlation magnitude, and for multiple test 

correction, the ‘g:SCS’ method was applied. Enriched terms were visualised in bar plots. To obtain 

a more granular ontology analysis of the synaptic enrichment observed in the high variance 

negative group, this list was used as input to the online tool SynGO24. The same background list 

was used for SynGO as for gProfiler2.  

 

EWCE analysis 

Expression Weighted Cell-type Enrichment (EWCE) was used to determine whether nuclear gene 

sets had higher expression within particular CNS cell types than would be expected by chance20. 

EWCE leverages single-nuclear RNA-seq (snRNA-seq) data in the form of specificity matrices. 

Specificity matrices give, for each gene and each cell type, the expression specificity a gene has 

in a cell type compared with all other cell types. Using this information, EWCE statistically 

evaluates whether cell-type specific markers have higher expression in a target list than would be 

expected by chance (i.e. than the random distributions drawn from the background). 

 

Inputs to EWCE were target gene lists, a background gene set and a specificity matrix. Aggregation 

over mitochondrial genes was then performed (as above) to obtain a single consensus ranking for 

each nuclear gene. The target gene lists used were generated by ranking nuclear-mitochondrial 

gene correlation values for each GTEx CNS region with the largest positive and negative values 

ranked separately. The top 5% of positively correlated nuclear genes and top 5% of negatively 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

correlated nuclear genes were then taken as the target lists for each CNS region. The numbers of 

genes per region are given in appendix x (supplementary table 1). The background gene set was 

genes expressed in all GTEx CNS regions (n=15,001). Specificity matrices were generated as per 

Skene et al.20 by estimating the specificity of each gene to each cell type. The specificity score 

represents the proportion of the total expression of a gene found in one cell type compared to all 

cell types. Data used to generate specificity matrices for this work were derived from two brain 

snRNA-seq experiments. (1) The Allen Brain Atlas44: a dataset comprising 15,928 nuclei from the 

middle temporal gyrus of 8 human tissue donors ranging in age from 24-66 years44. (2) Habib et 

al., 201722: a dataset comprising 19,550 nuclei from the hippocampus (4 samples) and prefrontal 

cortex (3 samples) from five donors.  

 

The EWCE analysis was run with 10,000 bootstrap lists. Transcript length and GC-content biases 

were controlled for by selecting bootstrap lists with equivalent properties to the target list. P-values 

were corrected for multiple testing using the Benjamini-Hochberg method over all cell types and 

gene lists tested. We performed the analysis with major cell-type classes ("GABAergic", 

"glutamatergic", "astrocyte", "microglia", "oligodendrocyte", "endothelial cell"). 

 

Testing disease implicated gene lists against a random background 

The aim of this analysis was to determine whether specific disease-relevant gene sets had more 

extreme distributions of mitochondrial-nuclear gene expression correlations than a random, 

equally sized, set of genes. To this end, six disease gene lists were selected from the Genomics 

England PanelApp repository and from two recent GWASs. A set of 29 AD-associated genes of 
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interest were derived from a recent AD GWAS25. This study analysed SNPs in clinically diagnosed 

71.88K cases and 383.378K controls, identifying >20 AD-associated loci. 

 

A set of 62 PD-associated genes of interest were selected on the basis of eQTL data from a recent 

PD GWAS45. This study analysed 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases, 

and 1.4M controls, identifying 90 signals at genome-wide significance. The Genomics England 

PanelApp tool gives sets of clinically curated genes associated with disease through rare variants27. 

The following panels were downloaded from this resource: (1) Early onset dementia (28 genes). 

(2) PD and complex PD list (34 genes). This panel contains genes associated with early onset and 

familial Parkinson’s disease as well as complex Parkinsonism. (3) Adult onset ND disorders (94 

genes). This panel is a super-set, including the early onset dementia and PD PanelApp panels as 

well as genes from other ND-related panels wherein mutations are known to cause ND. (4) 

Intracerebral calcification disorders (21 genes), used as a negative control because the 

pathogenesis of these disorders is distinct from AD and PD.  

 

For each GTEx CNS region, r, and each gene set, l, the median nuclear-mitochondrial correlation 

value of l for r was calculated. The distribution of nuclear-mitochondrial pairs was inclusive of all 

mitochondrial correlations for each nuclear gene, making the size of the distribution (length l)*13. 

To generate empirical distributions, a random sample of nuclear genes of matching biotype and 

length l was selected from the set of genes expressed in all GTEx CNS regions (15,001) and all 

correlations with mitochondrial genes were included.  
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A two-tailed test was carried out to determine whether l had a more extreme median nuclear-

mitochondrial correlation value than could be expected by chance. To this end, the median of l 

was compared to the medians of 10,000 randomly selected gene sets. P-values were calculated as 

follows, where k is the number of randomly selected sets, and n is the number of correlations more 

extreme than the median of l: 

 

P=(k ± n)/k 

 

Alongside this publication, we release a tool to enable performance of this analysis with a user-

specified gene list, along with single gene querying of the correlation data. This tool can be found 

at https://ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/ and the accompanying 

source code can be found at https://github.com/ainefairbrother/MitoNuclearCOEXPlorer.  

 

Case-control analysis of ROSMAP data 

To identify nuclear-mitochondrial gene pairs that are modulated in disease states, we used the 

ROSMAP case-control AD dataset. Due to cell type proportion changes related to disease 

pathogenesis in AD brain tissue, we corrected for cell type proportion in addition to the previously 

listed covariates using deconvoluted cell type proportions derived by the Scaden tool43,46,47. To 

quantify changes in mitochondrial-nuclear co-expression, aggregation over mitochondrial genes 

was carried out for the case and control data separately by taking the median Spearman’s ρ value 

for each nuclear gene. The difference between these values was then calculated (control ρ  - case 

ρ) for each gene pair, giving case-control delta values, Δρ. 
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To identify pathways enriched in high Δρ values (i.e. pairs with large case-control disparities), we 

applied the GSEA method using the fGSEA R package48. The inputs into fGSEA were gene lists 

ranked by Δρ and split by directionality. With a separate positive and negative correlation list, the 

sign of the Δρ in each case relates to whether a gene pair’s correlation magnitude has increased or 

decreased in case in comparison to control. As such, any enrichments are interpretable as being 

related to case-control shifts.  

 

The fGSEA parameters used were as follows: GO as the annotation source, minimum and 

maximum size of terms 15 and 2000 respectively. fGSEA was run with the fgseaMultilevel 

function and output was visualised using the plotGseaTable function. 

 

Data availability 

The datasets generated and/or analysed during the current study are available in through the GTEx 

portal (https://www.gtexportal.org/home/ ) and the Synapse portal for ROSMAP data 

(https://www.synapse.org/). Processed GTEx data are available for download via our 

MitoNuclearCOEXPlorer web tool 

(https://ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/). 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429781doi: bioRxiv preprint 

https://www.synapse.org/
https://doi.org/10.1101/2021.02.04.429781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Results 

Since mitochondrial processes are important in brain tissue and their perturbation is thought to 

have a role in ND, we aimed to identify whether relationships between expression levels of 

mitochondrial- and nuclear-encoded genes are variable across brain regions, cell types and ND 

status. To do this, we calculated pairwise Spearman correlation coefficients between all nuclear 

and mitochondrial gene pairs, after regressing out covariates (see methods). We leveraged data 

across 12 CNS tissues from the Genotype-Tissue Expression (GTEx) project for analyses in 

healthy tissue, and frontal cortex tissue from the Religious Orders Study/ Memory and Aging 

Project (ROSMAP) AD dataset for analyses in a case-control paradigm. 

 

Correlations in nuclear-mitochondrial gene expression are variable across the human 

CNS 

In order to investigate correlations in nuclear-mitochondrial gene expression across all CNS 

regions, we calculated Spearman correlation coefficients for each pair of nuclear and 

mitochondrial-encoded genes (15,001 and 13 genes respectively, making a total of 195,013 

comparisons) in each of the 12 GTEx CNS regions. Distributions of the correlation values for each 

CNS region were visualised as density plots to facilitate cross-CNS comparison (fig. 1A). We 

observed that CNS regions have distinct and varying nuclear-mitochondrial correlation 

distributions. While some regions showed Gaussian-like distributions (cerebellar hemisphere, 

hypothalamus, substantia nigra) (fig. 1C), others showed dispersed distributions, containing more 

high magnitude relationships, and fewer neutral correlations (caudate basal ganglia, putamen basal 

ganglia) (fig. 1B). Qualitative analysis revealed mitochondrial-nuclear distribution similarity 

within GTEx CNS tissues derived from the same broad regional classification (fore-brain, mid-
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brain and hind-brain). We quantitatively confirmed this through unsupervised Euclidean clustering 

of regional correlation coefficients across all CNS tissues. This identified biologically meaningful 

clusters, whereby cortical regions and distinct regions of the basal ganglia (putamen, nucleus 

accumbens and caudate) were grouped together (supplementary figure 1), which appears to reflect 

functional specialisation in the human brain.  
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Figure 1. Distributions of mitochondrial-nuclear correlation coefficients (⍴) in GTEx CNS regions. A. Nuclear-mitochondrial ⍴ distributions for 

12 GTEx brain regions. B. ⍴ distributions of the putamen basal ganglia and caudate basal ganglia overlaid with brain saggital plane schematic 

indicating tissue locations. C. Near-gaussian distributions of the cerebellar hemisphere, hypothalamus and substantia nigra with corresponding 

saggital plane schematic.  
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Distinct nuclear-mitochondrial correlation distributions of CNS regions are driven 

by cell type composition 

We hypothesised that regional differences in cell type composition may be driving differences in 

nuclear-mitochondrial correlation profiles. To test this, we considered whether cell type markers 

were enriched at the positive and negative extremes of the correlation coefficient distributions. 

This analysis was performed for each GTEx CNS region using the Expression Weighted Cell type 

Enrichment (EWCE) method, which tests whether a given set of genes is expressed more highly 

in a cell type of interest than might be expected by chance20. Cell type specificity data was derived 

from two human brain snRNA-seq experiments, the first of which used middle temporal gyrus 

nuclei21, and the second used hippocampus and prefrontal cortex nuclei22. The input to this method 

was nuclear-encoded genes derived from gene pairs in the highest 5% of positive correlations and 

highest 5% of negative correlations for each region. 

 

We found that genes with a high specificity for neuronal cell-types (GABAergic and 

glutamatergic) were significantly enriched (P<0.0007 across regions) in negative nuclear-

mitochondrial gene pairs across CNS regions (fig. 2). In contrast, genes with a high specificity for 

non-neuronal cell-types (astrocytes, microglia) were significantly enriched in positive nuclear-

mitochondrial gene pairs (P<0.05 in 10/12 regions for astrocytes; P<0.05 in 7/12 regions for 

microglia), the exception to this being oligodendrocytes (fig. 2). A strong cross-CNS signal for 

oligodendrocyte marker enrichment was observed in negatively correlated pairs (P<0.05 across 

regions), coupled with no signal in positively correlated pairs. For astrocytes and microglia, we 

observed a trend towards marker enrichment in positive pairs over negative pairs. Taken together, 
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these findings support the hypothesis that cell type specific correlation profiles are drivers of 

regional nuclear-mitochondrial correlation profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. EWCE-derived cell-type enrichments for 12 GTEx CNS regions. The left-hand y-axis refers to the GTEx CNS region, whilst the right-

hand y-axis refers to the cell-type. For each region/ cell-type combination, the metric for enrichment is shown as the number of standard deviations 

from the bootstrapped mean (s.d. from mean, indicated by the colour bar). The x-axis indicates which scRNA-seq dataset the underlying cell-type 
specificity matrix was derived from. Significance of the enrichment indicated by the following asterisks: * 0.05 < p < 0.05/12, ** 0.05/12 < p < 

0.05/12*6, *** p < 0.05/12*6.  
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Post-synaptic processes are enriched in nuclear-mitochondrial gene pairs that are 

highly variable across the CNS 

Having established the importance of cell type composition in driving variation in nuclear-

mitochondrial correlation profiles in the CNS, we aimed to identify biological processes associated 

with this variation. To this end, we calculated the variance of spearman correlation coefficients of 

each nuclear-mitochondrial gene pair across the 12 GTEx CNS regions, and assigned correlation 

directionality to each pair (see example in fig. 3A). Using this methodology, four gene sets were 

defined (fig. 3B): (1) ‘high variance positive’: top 5% nuclear genes with the most variable 

relationships with the mitochondrial genome across brain regions (N=605). (2) ‘high variance 

negative: top 5% nuclear genes with the most variable relationships with the mitochondrial genome 

across brain regions (N=145). (3) ‘low variance positive’(N=387). (4) ‘low variance negative’ 

(N=387). These gene sets were used as input for the gene ontology enrichment tool gProfiler2 to 

derive enriched pathways23.  

 

Overall, the distribution of variances was highly skewed towards zero, demonstrating that the vast 

majority of nuclear-mitochondrial pairs are stably correlated across all CNS regions (fig. 3B). In 

gene pairs that showed consistency across brain regions, we observed enrichment for VEGF 

ligand-receptor interactions in the positive correlation set (P=8.12e-04, set 3 above), whereas RNA 

processing (P=7.72e-3, set 4 above) was enriched in the negative correlation set. Amongst the 

nuclear genes with the most variable relationships to the mitochondrial genome across brain 

regions, we observed enrichment of phosphodiesterases in neuronal function as the only significant 

term for the positive (set 1 above) and synaptic terms in the negative set (set 2 above), with the 

most significant term being glutamatergic synapse (P=1.42e-06) (fig. 3D). To explore this 
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enrichment further, we utilised SynGO, a specialist synapse ontology enrichment tool24 and found 

significant enrichment in the high variance negative list only. This set was highly significantly 

enriched for postsynaptic terms (P=3.4558e-20) with 3/5 of the most significant terms relating to 

this structure (fig 3C). Of the 28 significant terms, 13 related to ‘postsynaptic’ structures or 

processes and 5 related to ‘presynaptic’ (supplementary table 3). Overall, this analysis identified 

sub-cellular specificity in nuclear-mitochondrial correlations across the CNS. More specifically, 

variable nuclear-mitochondrial relationships highlighted genes associated with post-synaptic 

processes. 
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Figure 3. Visualisation of cross-CNS gene pair variances in GTEx data and processes enriched in these gene sets. A. Mock data to show how the 

variances were generated. For each mitochondrial-nuclear gene pair, a variance is taken of its per-tissue Spearman’s ⍴ values. It is also assigned a 

directionality (sign) based on the majority directionality of its ⍴ values. B. Plot to show the distribution of cross-CNS nuclear-mitochondrial gene 

pair variances. The left-hand dotted line is the cut-off  for ‘low variance’ gene pairs, the right-hand dotted line is the cut-off for ‘high variance’ 

gene pairs. The positive, negative and full distributions of pairs are denoted by blue, red and grey curves, respectively. C. SynGO output showing 

top five enrichments for the high variance negative list. D. gProfiler2-derived enrichments for four nuclear gene sets: (1) low variance positive, (2) 
low variance negative, (3) high variance positive, (4) high variance negative. The dotted line indicates a 5% significance cut-off.  
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Correlation magnitude, directionality and cell type enrichment replicate in an 

independent dataset 

To determine whether patterns of nuclear-mitochondrial correlation observed in GTEx brain data 

were robust, we considered nuclear-mitochondrial gene expression correlations in neurological 

control samples from the ROSMAP dataset. Since ROSMAP data is derived from dorsolateral 

prefrontal cortex tissue, we compared the findings to those generated from the GTEx frontal cortex 

tissue only. 

 

Overall, Spearman’s ρ values for all nuclear-mitochondrial gene pairs showed high correlations 

between GTEx and ROSMAP control data (Spearman’s ρ=0.59, P<2e-16, for 177,320 gene pairs 

that were expressed in both datasets), highlighting the consistency of mitochondrial-nuclear 

relationships in the brain (fig. 4B). Visual inspection of correlation distributions across the two 

data sets revealed greater similarity at high Spearman’s ρ magnitudes, likely due to the greater 

accuracy associated with those correlation magnitudes (fig. 4B). Next, we analysed the 

replicability of the top 5% (ranked by Spearman correlation magnitude) positively and negatively 

correlated gene pairs. We found that 817 nuclear genes were in the top 5% of negative pairs for 

both datasets, and 588 nuclear genes were found in the top 5% of positive pairs for both datasets 

(fig. 4B). As such, 36% (top 5% positive) and 52% (top 5% negative) of the GTEx-derived gene 

sets are composed of the same genes when derived from ROSMAP data. 

 

Given these findings, we extended replication analyses to look for evidence that the cell type-

specific enrichments identified in GTEx frontal cortex are robust across datasets. Repeating the 

EWCE analysis (see methods) using the top 5% positive and negative gene lists generated from 
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the ROSMAP control data (fig. 4C), we find near-identical patterns of cell-type enrichment to 

GTEx data. We observed significant enrichment of genes with high neuronal specificity in 

negatively correlated nuclear-mitochondrial pairs (P<0.0007) (fig. 4C). There was also significant 

enrichment of genes with high specificity to astrocytes (P<0.0042) and microglia (P<0.0007) 

amongst positively correlated nuclear-mitochondrial pairs. Enrichment of oligodendrocyte marker 

genes in negative pairs also replicated in the ROSMAP frontal cortex data (P<0.05) (fig. 4C). Thus, 

we see robust replication of EWCE cell type enrichments in the ROSMAP data, where neuronal 

enrichment in the negative nuclear-mitochondrial space, and glial enrichment in the positive space 

are highly reproducible.  
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Figure 4. Replication of the nuclear-mitochondrial correlation values and cell type enrichments discovered in GTEx frontal cortex in an independent 

frontal cortex dataset (ROSMAP control samples). A. Shows all possible nuclear-mitochondrial gene pairs expressed in both datasets (177,320) 

plotted against each other. The box in the top right shows the spearman correlation for the overall bi-dataset correlation and corresponding P-value 

for the r statistic (spearman correlation coefficient = 0.59, p = 0). B. Overlap plots to show numbers of unique nuclear genes found in the top 5% 

positive (left) and top 5% negative correlations in the two datasets. 817 nuclear genes were found in the top 5% of negative pairs for both datasets, 
and 588 nuclear genes were found in the top 5% of positive pairs for both datasets. Thus, 52% and 36% of unique nuclear genes from negative and 

positive nuclear-mitochondrial pairs discovered in GTEx replicate in the ROS/MAP control data set. C. Replication of GTEx frontal cortex EWCE 

analysis in ROS/MAP frontal cortex control samples. Significance of the enrichment indicated by the following asterisks: * 0.05 < p < 0.05/12, ** 

0.05/12 < p < 0.05/12*6, *** p < 0.05/12*6.  
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Nuclear genes strongly implicated in ND have non-random relationships with the 

mitochondrial genome 

Given the robust nature of nuclear-mitochondrial relationships and their association with specific 

cell types in CNS tissue, we aimed to investigate whether genomic cross-talk is relevant to the 

etiology of NDs. To this end, we tested whether nuclear-mitochondrial correlation distributions 

for genes implicated in NDs were significantly different to distributions generated using random 

sets of matched genes (fig. 5). A total of six gene lists were tested: 2 sets derived from AD25 and 

PD26 GWASs implicating genes through analyses of common variants, and four gene sets from the 

Genomics England PanelApp containing genes implicated in rare Mendelian forms of early onset 

dementia, adult onset neurodegenerative disease, adult onset ND and intracerebral calcification 

disorders27. First, we found that genes associated with AD through GWAS analyses had nuclear-

mitochondrial correlations which were nominally different from random gene sets in cortex 

(P=0.0206) and substantia nigra tissues (p=0.0273) (fig. 5A). Similarly, a nominally significant 

distribution shift was observed in hypothalamus tissue using the gene set implicated in sporadic 

PD (P=0.0163). Within this, we note that highly significant nuclear-mitochondrial relationships 

were observed for some genes confidently associated with complex PD26, such as PSAP 

(supplementary figure 5b). Interestingly, in PSAP knockout iPSC lines, ROS production was 

modulation, it was seen to increase in knockouts compared to controls50. As such, our identification 

of high mitochondrial-PSAP association lends support to this gene being important in core 

mitochondrial processes such as ROS-production.    

 

Consistent with these findings, genes implicated in Mendelian forms of PD showed significant 

differences in nuclear-mitochondrial correlations in 7/12 brain regions (P<0.05/12), including the 
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basal ganglia (P=1e-04 for putamen, caudate and nucleus accumbens basal ganglia) and substantia 

nigra (P=0.0066), which could be considered the most disease-relevant tissues. Similarly, genes 

associated with early onset dementia and adult onset ND were also found to have significant 

differences in nuclear-mitochondrial correlations in all brain regions (P<0.05/12). Their similarity 

here is a reflection of early onset dementia being a subset of adult onset ND. Furthermore, we 

noted that amongst the ND genes with the strongest nuclear-mitochondrial correlations was APP 

(in the top 1%, ranked 54/5898 of the negative mitochondrial-nuclear pairs), which encodes for 

the precursor protein whose proteolysis generates amyloid beta (Aβ), the primary component of 

amyloid plaques. In all cases, the ND-associated nuclear genes had more negative correlations 

with mitochondrial gene expression than would be expected by chance. 

 

To test whether these findings were specific to a subset of NDs, we also investigated nuclear-

mitochondrial correlations amongst genes implicated in intracerebral calcification disorders 

(ICDs). This was used as a negative control due since unlike AD and PD, ICD-induced 

neurodegeneration is caused by calcium deposition in the brain’s vasculature or parenchyma. We 

found no significant difference between this gene set and empirical distributions in any CNS 

tissues. In light of the cell type enrichment data, whereby neurons were enriched in negative pairs, 

this may reflect the presence in these lists of nuclear-encoded genes involved in neuronal 

processes.  

 

Taken together, we conclude that expression levels of genes causally implicated in a subset of NDs 

show stronger relationships with mitochondrial gene expression than expected by chance. This 
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analysis can be performed with a user-specified gene list using our accompanying tool available 

at https://ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/. 
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Figure 5. Analysis to determine whether ND-related gene sets have non-random associations with the mitochondrial genome. A. Heatmap to show 

P-values associated with the median of six ND-related gene sets being more extreme than that of 10,000 random gene sets in 12 GTEx CNS regions 
(* 0.05 < p < 0.05/12, ** 0.05/12 < p < 0.05/12*6, *** p < 0.05/12*6). B. Visualisation of results in 5A for frontal cortex, substantia nigra and 

hippocampus regions with EOD, AOD and PD target sets. The target gene set distribution is shown in blue and the distribution of 10,000 random 

size-matched gene sets is shown in green. Vertical dotted lines represent the medians of the target gene set and the central median of the 10,000 

bootstrap sets (produced using the MitoNuclearCOEXPlorer tool). 
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Synaptic processes are enriched in nuclear-mitochondrial pairs that display 

correlation disparities between AD and control samples  

Finally, we analysed nuclear-mitochondrial correlations in post-mortem brain samples originating 

from individuals with Alzheimer’s disease and from matched neurological controls. The data was 

covariate corrected in the same way as above, but with the addition of Scaden-derived cell type 

proportions to account for disease-induced changes in cell type density. We then calculated the 

difference in the correlation values between cases and controls for each nuclear-mitochondrial 

gene pair to produce case-control delta scores (Δρ) (fig. 6A). 

 

High levels of consistency between case and control nuclear-mitochondrial correlation values was 

observed, with 76% of pairs displaying a Δρ of less than 0.1 (fig. 6B). However, we noted the 

presence of gene pairs displaying high delta scores, where co-expression of a pair had shifted in 

AD samples relative to controls (fig. 6B). Given that we had corrected for changes in cell type 

proportions, these shifts likely represent disease-associated disruptions in nuclear-mitochondrial 

co-expression that have the potential to drive to AD pathogenesis. To understand whether nuclear 

genes involved in specific biological processes were represented amongst nuclear-mitochondrial 

gene pairs with high delta scores, we applied Gene Set Enrichment Analysis (GSEA). First, gene 

pairs were split by their nuclear-mitochondrial correlation directionality, with the intuition that 

positive and negative correlations are representative of distinct transcriptional control 

mechanisms. Notably, 1.1% of significant shifts were observed among genes that switched 

directionality (fig. 6A), and as such these were excluded from the analysis. This yielded two gene 

sets (-Δρ and +Δρ scores), which were then ranked by their absolute Δρ score (fig. 6A).  
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In the negative correlation set, using fGSEA we detected 55 significant enrichments (Bonferroni-

Hochberg (BH) <0.05) (supplementary table 4). The three most significant terms were synapse 

(BH=3.5e-04), neuron to neuron synapse (BH=4.6e-03) and cell projection organisation 

(BH=4.6e-03), detected among gene pairs that display stronger relationships in case samples 

compared with controls. Three of the 55 enrichments (vacuolar lumen, and lysosomal lumen and 

lipoprotein metabolic process) were detected amongst gene pairs with negative nuclear-

mitochondrial correlations that show weaker association in AD samples compared with controls. 

Within these sets, individual genes of specific interest for AD showed particularly large absolute 

Δρ scores. First, MTLN (rank 69/14327 gene pairs with mean correlation taken across 13 

mitochondrial genes, ranked in the top 0.5% of Δρ values) encodes a protein product that is known 

to localise to the mitochondrial inner membrane, where it influences protein complex assembly 

and modulates respiratory efficiency, impacting on respiration rate, Ca2+ retention capacity and 

ROS51-52, making it of particular interest in a disease context. Second, PSAP (max Δρ=0.13, mean 

Δρ=549/4653 ranked in the top 12% of decreasing -Δρ values) is a leading-edge gene for the 

lysosomal lumen enrichment and also displays highly significant mitochondrial-nuclear 

relationships across brain regions (supplementary figure 5b). This gene is of interest in the context 

of AD due to its known anti-inflammatory and neuroprotective roles53, as well as its identification 

as a biomarker of preclinical AD cases, enabling discrimination from control samples54.  No 

enrichments reaching BH significance were detected in the positive correlation list. 
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Figure 6. ROS/MAP case-control analysis of case-control r value differences. A. Schematic to show generation of the case-control Δ⍴ values and 

subsequent ranking strategy applied prior to GSEA analysis B. Distribution of mitochondrial-nuclear case-control Δ⍴ in ROS/MAP frontal cortex 

data. Split by Δ⍴ of negative correlations (red) and of positive correlations (blue). C. Table to show the distinct groups of case control Δ⍴ values 

arising from the ROS/MAP frontal cortex case-control data. D. fGSEA pathway enrichments passing padj<0.05 for the negative correlation space, 

whereby gene pairs with -⍴ have been ranked by their case-control Δ⍴.  
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Discussion 

In this work, we investigate nuclear-mitochondrial coordination in CNS tissue across the human 

brain. We find that CNS regional variation in co-expression is driven by cell type and reflects 

functional specialisation, specifically at synapses. Using an independent frontal cortex dataset, we 

show high replicability of nuclear-mitochondrial correlation distributions and cell type specific 

correlation profiles. We find that nuclear genes causally implicated in Parkinson’s and Alzheimer’s 

disease (AD) show significantly stronger relationships with the mitochondrial genome than 

expected by chance, and that nuclear-mitochondrial relationships are highly perturbed in AD cases, 

particularly those involving synaptic and lysosomal genes.  

 

A key finding of this study was the identification of cell type as a driver of the distinct patterns of 

mitochondrial-nuclear co-expression across CNS regions. Neuronal markers were enriched in 

negative nuclear-mitochondrial correlations, in contrast to glial (astrocytic and microglial) markers 

which were enriched in positive correlations. This finding could be explained by cell type specific 

mitochondrial specialisation. Our analysis assays a proxy for the nuclear association with ATP 

synthesis, and so captures a single aspect of mitochondrial function. In fact, mitochondria have 

other important roles, such as calcium buffering, which may vary significantly across different cell 

types. As such, the division of mitochondrial-nuclear association directionality between cell types 

could be the result of divergent functionality among their mitochondria. This is a view supported 

by proteomic cell-type specific profiling of brain mitochondria. Recent work has revealed notable 

molecular and functional diversity of mitochondria across cell types, with astrocytic mitochondria 

found to perform the core cellular functions of long-chain fatty acid metabolism and calcium 

buffering with greater efficiency than mitochondria in neural cell types59. Another linked 
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explanation for cell type specific correlation directionality is that it is driven by core differences 

in energy management strategies between cell types. In energetically demanding cell types such 

as neurons, anti-correlation could reflect the need for tighter OXPHOS regulation to protect against 

excessive ROS production, with post-transcriptional processes potentially being used to manage 

local, flexible regulation of energy supply. Interestingly, oligodendrocytes are the exception 

amongst glia, displaying neuron-like enrichment in negative nuclear-mitochondrial correlations. 

In this context, it is worth noting that while oligodendrocyte metabolism is poorly understood, 

their central role in myelin sheath production is highly energy intensive, mirroring the high energy 

requirements of neurons29-30.  

 

Analysis of the variability of nuclear-mitochondrial correlation distributions across different brain 

regions provided further support for mitochondrial specialisation, specifically within synapses. We 

found that nuclear genes with highly variable co-expression with mitochondrial genes were 

enriched for synaptic ontology terms. Again, this enrichment of anti-correlation in synaptic marker 

genes could be the result of a requirement to balance mitochondrial biogenesis with the risk of 

excess ROS production at these locations. Synapses and particularly post-synaptic regions are 

known to be acutely ROS-sensitive neural subcompartments55, suggesting that the highly 

significant enrichments we observe are required to reduce ROS at these sites. Thus, our findings 

add to the growing evidence for mitochondrial dysfunction at post-synaptic sites as a driver of 

neurodegeneration56. 

 

Uniquely to the field of nuclear-mitochondrial cross-talk, we look at its genome-wide relevance 

with respect to a range of neurodegenerative diseases. Testing the association of ND-implicated 
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genes with the mitochondrial genome demonstrated significantly non-random correlations 

between mitochondrial gene expression and ND-implicated nuclear genes. While genes implicated 

in PD and AD through GWAS analyses showed nominally significant associations with the 

mitochondrial genome, it should be noted that there are likely to be inaccuracies in variant-gene 

assignments within these sets which weaken the analysis. Interestingly, this view is supported by 

high confidence enrichments of nuclear-mitochondrial association in nuclear gene sets associated 

with Mendelian forms of the same diseases. Mendelian AD and PD genes displayed highly 

significant shifts from random, all of which were towards higher negative correlation magnitudes, 

and highlighted particularly strong correlations amongst important ND genes. In fact, APP the first 

gene to be causally implicated in AD, ranked in the top 3% of all pairs with negative associations.  

 

Given these findings, we postulated that analysing changes in mitochondrial-nuclear correlations 

in the context of AD would provide important disease insights. To do this, we leveraged the AD 

case-control ROSMAP dataset. After correcting for cell type proportion, we observed an 

enrichment of synaptic terms amongst nuclear genes which were negatively correlated with 

mitochondrial gene expression and which had stronger relationships in the context of AD than in 

control samples (i.e. high case-control correlation difference, Δρ, gene pairs). Given the close 

relationship between synapses and mitochondria, with multiple lines of evidence pointing not only 

to synaptic function being dependent on mitochondria, but to mitochondrial regulation of synaptic 

plasticity36-36, the tightening co-expression here could represent a drive to recover energetic 

homeostasis at damaged synapses and increase their efficiency. In support of this, we see that the 

mitochondrial efficiency enhancing gene MTLN51 is in the top 1% of increasing negative 

associations. In particular the MTLN-MTCYB gene pair displayed a striking Δρ, where in control 
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samples the pair had a non-significant correlation (ρ=-0.008, P=0.93), but shifted to a highly 

significant association with a considerably higher negative magnitude in case samples (ρ=-0.27, 

P=3.01e-05). 

 

Interestingly, we also observed enrichment of lysosome-related terms (lysosomal lumen, vacuolar 

lumen) in negatively correlated gene pairs that weaken in case samples relative to controls (fig. 

6D). Lysosomes are essential for the removal of dysfunctional mitochondria as well as other 

organelles and proteins, and there is growing evidence to suggest that lysosomal dysfunction 

contributes to the pathogenesis of AD57-58, as well as PD39. Perhaps decoupling of nuclear genes 

in these pathways from mitochondrial gene expression represents a reduction in the efficacy of 

dysfunctional mitochondria clearance, thus augmenting the pathology.  

 

Mitochondrial-nuclear relationships differ significantly across regions of the healthy brain, which 

appears to be driven by the functional specialisation of different cell types. Through analysis of 

disease associated gene sets and case-control AD data, we provide evidence that mitochondrial-

nuclear co-expression in critical pathways is disrupted in AD, making the case for the relevance 

of bi-genomic co-ordination in the pathogenesis of NDs.  As such, targeting these routes to 

dysfunction may be particularly fruitful for the treatment of specific neurological disorders. 
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