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Abstract  
Background: It is unclear how many of genes contribute to the biology of cancer. We 
hypothesize that genes that interact with core cancer gene (CCG) in a protein-protein 
interaction network (PPI) may have functional importance.  
Methods: We categorized genes into 1- (n=6791), 2- (n=7724), 3- (n=1587), and >3-steps 
(n=362) removed from the nearest CCG in the STRING PPI and demonstrate that the cancer-
biology related functional contribution of the genes in these different neighborhood 
categories decreases as their distance from the CCGs increases. 
Results: Genes closer to cancer genes manifest greater connectedness in the network, show 
greater importance in maintaining cell viability in a broad range of cancer cells in vitro, are 
also under greater negative germline selection pressure in the healthy populations, and have 
higher somatic mutation frequency and cancer effect.  
Conclusions: Approximately 70% of human genes are 1 or 2 steps removed from cancer 
genes in protein network and show functional importance in cancer-biology. These results 
suggest that the universe of cancer-relevant genes extends to thousands of genes that can 
contribute functional effects when dysregulated.  
Keywords: Cancer genes, protein-protein interaction, selection pressure, effect size. 
 
Background 
An important goal of cancer research is to identify genes that are relevant to cancer biology 
and decipher their functional contributions to malignant transformation. Since the discovery 
of the first viral oncogenes in the 1970s, alterations in hundreds of human genes have been 
implicated in the development of cancer through genetic association studies and in vitro and 
in vivo functional experiments (1-4). The terminology has also shifted, many of these genes 
are now referred to as “cancer driver genes” implying therapeutic potential. However, it has 
also become clear that even the classical transforming oncogenes are not able to transform a 
normal cell into a malignant cell on their own: malignant transformation requires cumulative 
alterations in many cellular processes often referred to as the hallmarks of cancer (5, 6). How 
many genes are involved in this transformation process is poorly understood. Large–scale 
whole-exome and whole-genome sequencing studies revealed several hundred to several 
thousand somatic non-synonymous single-nucleotide variants, indels, and small and large 
structural variants in cancers (1, 4, 7, 8). The vast majority of these somatic alterations are 
not recurrent in a given cancer type, appear random, and are therefore considered to be 
“passenger mutations” that contribute little to the biology of the disease and result from 
genomic instability (9). However, increasing evidence suggests that rare, non-recurrent 
somatic or germline alterations have functional importance and contribute to the unique 
clinical course of each cancer (10-12). Furthermore, a recent pan-cancer whole genome 
analysis found no cancer driver alterations in about 5–9% of cancers, supporting the 
hypothesis that the spectrum of cancer-relevant genes is broader than our current models 
suggest (4). 
 
All human proteins form functional networks within cells that are connected directly through 
shared network members or indirectly through other proteins or functional intermediaries. 
For simplicity, in this manuscript we refer to genes as synonyms for their protein products. 
We hypothesize that proteins physically associated with, or known to directly interact with, 
an experimentally or clinically validated core cancer gene (CCG) can also have an impact on 
cancer biology and denote these genes as "one step removed" from a CCG. By extension, we 
also assume that genes that directly interact with the “one-step removed genes”, might also 
influence cancer biology, although to a lesser extent. Based on this model, one could 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.04.429823doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429823
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

categorize human genes into one-, two-, three-, and > three-steps removed from the nearest 
CCG in the network. We predict that the cancer-biology related functional contribution of the 
genes in these different neighborhood categories will decrease as their distance from the 
CCGs increases (Figure 1). We compared across these four mutually exclusive gene 
categories the average connectedness in a protein-protein interaction network, in vitro cancer 
cell viability scores after gene silencing, somatic mutation frequencies and cancer effect sizes 
in human cancers, and the negative germline selection pressure on the member genes. 
 
 
Results 
Identify CCGs neighborhood genes in protein-protein interaction network 
We designated 468 genes that comprise the Memorial Sloan Kettering-Integrated Mutation 
Profiling of Actionable Cancer Targets (MSK-IMPACT) as the CCGs (13, 14). Each of these 
genes (when their function is altered) are experimentally and clinically validated for their 
importance in cancer development and many also serve as therapeutic targets. We mapped 
these CCGs into the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 
protein-protein interaction (PPI) database that includes 419,772 connections between 16,904 
human proteins with a confidence score >700(15), and calculated the shortest distance (i.e. 
the minimum number of steps [genes]) between the CCGs and all other genes/proteins. We 
defined 4 gene neighborhood categories; i) genes that directly interact with CCGs (1-step 
removed), ii) genes that interact with CCGs through another gene (2-steps), iii) genes that 
interact with CCGs through 2 other intermediary genes (3-steps), and iv) genes that interact 
through more than 2 genes (> 3-steps) (Figure 1, Methods).  
 
Four hundred forty of 468 CCGs were included in the STRING database and 6791, 7724, 
1587 and 362 genes were categorized as 1 step, 2 steps, 3 steps, and >3 steps removed from 
the closest CCG (Figure 2a, 2b, Supplementary Table 1). These results indicate that most 
human genes are only 1 or 2 steps removed from canonical cancer genes. To find out what 
proportion of these cancer gene neighbors have previously been implicated in cancer biology 
we cross-referenced them with 2,202 genes identified as cancer drivers, oncogenes, or tumor 
suppressors in the CancerMine database (16). Only a small proportion—18.2%, 6.1%, 3.8% 
and 2.2% of the 1 step, 2 steps, 3 steps, and >3 steps neighbor genes, respectively—were 
linked to cancer in the literature (Figure 2c, Supplementary Table 1). We also calculated the 
network connectivity of each gene as the number of direct connections to all other genes 
(Supplementary Table 1). The connectivity of 16,904 genes ranged from 1 to 1,435 (Figure 
2d). We demonstrated that CCGs have higher connectivity than neighbor genes and gene 
connectivity score was gradually decreasing with increasing distance from CCGs (Figure 2e).  
 
The role of CCGs neighborhood genes in cancer cell viability 
To estimate the functional importance of genes in the different neighborhood categories, we 
obtained gene dependency scores from The Cancer Dependency Map (DepMap) project. 
DepMap performed genome-wide pooled loss of function screening for all known human 
genes using RNA interference (RNAi) and CRISPR-Cas9-mediated (CRISPR) gene editing 
to estimate tumor cell viability after gene silencing (17). Gene dependency scores are 
available for 17,309 genes in 712 cell lines from shRNA, and for 17,634 genes in 563 cell 
lines from CRISPR experiments. A dependency score of 0 corresponds to no effect on cell 
viability, a negative score corresponds to impaired cell viability after knocking down the 
gene; the more negative the dependency score the more important the gene is for cell viability. 
We calculated the average dependency scores across all cell lines for the 4 categories of 
genes (Supplementary Table 1). CCGs had the lowest dependency scores and genes 1 step 
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removed had statistically similar average negative dependency score, genes 2 steps and 3 
steps removed had significantly negative scores closer to 0 indicating less functional 
importance in cell viability, and genes > 3 steps away from CCGs had average dependence 
scores of 0. The statistical trend for decreasing average negative dependency score with 
increasing distance from CCGs was statistically significant in both the CRISPR (Figure 3a, 
Kendall's τ z-statistic = 15.13, P < 1 × 10−5) and RNAi data sets (Figure 3b, Kendall's τ z = 
19.33, P < 1 × 10−5). These results indicate that a very large number of human genes 
influence cell viability, and this influence is proportional to their distance from canonical 
cancer genes in the PPI network.   
 
Positive selection of somatic mutations in CCGs neighborhood genes 
The DepMap data identifies genes whose loss of function impairs cell viability. However, 
gain of function, inappropriate gene expression, or altered protein substrate affinity that can 
arise through somatic mutations can also contribute to malignant transformation. Genes 
whose dysfunction supports cancer growth are therefore more likely to carry somatic 
mutations in cancer tissues (11, 18). We compared the average prevalence of somatic 
mutations of CCGs and genes in the 4 neighborhood categories in 32 cancer types sequenced 
as part of The Cancer Genome Atlas (TCGA). Mutations of CCGs exhibited the highest 
average prevalence and prevalence decreased significantly with increasing distance from 
CCGs in 21 of 32 TCGA cancer types with substantial tumor sampling (Kendall's τ z < -2.96, 
FDR < 0.018, Supplementary Tables 1 & 2; Figure 4a). In the remaining 11 cancer types, the 
prevalence of somatic mutation does not show any difference among genes in the 4 
neighborhood categories (Supplementary Figure 1). Interestingly, across all cancers, the 
trends of somatic mutation prevalence across CCGs and neighborhood categories were 
negatively correlated with cancer incidence rate, tumor mutation burden, and number of 
somatic mutation affected genes (Supplementary Figure 2). Cancers with high incidence rate 
had mutations in a broader range of genes, suggesting that a larger number of genes may 
contribute to transformation in common cancers than in rare tumors. 
 
Differences in the prevalence of mutations among these categories could arise from either 
increased rates of cellular mutation, or from conferring selective benefit upon cancer cell 
lineages. The cancer effect size is a scaled selection coefficient of the mutation, conveying 
the degree to which the mutation enhances the survival or reproduction of the mutant 
lineage(11). We further demonstrated that average effect size of single nucleotide somatic 
variants in all the genes of a given neighborhood category tend to decrease by the distance 
from CCGs in the TCGA cancer types (Figure 4b), suggesting that genes close to CCGs are 
under strong positive selections of somatic mutation which might increase cell fitness and 
tumor progression.  
 
Selection pressure of germline protein-truncating variants in CCGs neighborhood genes 
Genes that play important roles in cell differentiation, cell division, cellular metabolism and 
that regulate physiologic cell death are also major contributors to a broad range of diseases—
not just malignant transformation—when they function aberrantly. Because of their 
importance in maintaining normal cellular homeostasis, there is evolutionary pressure to 
conserve their normal DNA sequence in the germline. Deleterious germline variants in these 
genes decrease fitness and tend to be rare in human populations (19). The greater the 
functional importance, the stronger this negative selection pressure (20). Indeed, population-
based whole-exome sequencing studies indicate strong negative selection pressure on 
deleterious germline variants in many cancer-related genes (21). We therefore hypothesized 
that if step-1 genes are functionally more important to cancer cell proliferation and survival 
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than step-2 genes, which are more important than step-3 genes, we would expect to see 
decreasing negative germline selection pressure across these groups. Large-scale exome 
sequence of population genome allows to estimate the germline selection pressure for human 
genes in healthy individuals(20, 22). We obtained coefficients of negative selection of 
heterozygous rare protein-truncating variants (Sh) for 15,998 human genes from Casa et al 
(20) and loss-of-function intolerance (pLI) scores for 18,225 genes from Monkel et al (22) 
(Supplementary Table 1). The higher the Sh and pLI score, the greater the selection pressure 
against protein-truncating germline variants of a given gene. We observed a highly 
statistically significant decrease in average Sh (Kendall's τ z = −27.7, P < 1 × 10−5, Figure 5a) 
and pLI (Kendall's τ z = −29.4, P < 1 × 10−5, Figure 5b) scores with increasing distance from 
CCGs. This decrease indicates that genes closer to CCGs in the PPI network are under higher 

germline selection pressure, supporting greater functional importance in maintaining normal 
cellular functions.  
 
Discussion 
Transformation from a normal cell to a cancer cell requires dysfunctions of many genes 
involved in key biologic process. Increasing evidence suggests that alterations in a few 
canonical cancer driver genes are not enough for cancer development(6, 23). To 
comprehensively investigate human genes that might be potentially involved in cancer 
development, we collected 468 CCGs from the MSK-IMPACT(13) and classified the rest of 
human genes into 4 categories according to their physical distance from CCGs in protein-
protein interaction database. We have shown that most human genes are only 1 or 2 steps 
removed from canonical cancer genes in a PPI network. Genes closest to canonical cancer 
genes also have higher general connectivity. We demonstrated via three independent methods 
that cancer-biology relevant functional importance of human genes is proportional to their 
distance from canonical cancer genes in the network. Genes closer to cancer genes in the 
network have greater importance in maintaining cell viability, are under greater negative 
germline selection pressure, have higher somatic mutation frequency, and variants within 
those genes have higher cancer effect. We provide putative cancer relevance annotation for 
16,932 human genes (Supplementary Table 1), this list is can help prioritizing novel genes 
for further functional studies in cancer research. We observed overall decreasing trend of 
functional importance from CCGs to neighborhood genes, but for any individual gene, its 
role in specific cancer type can differ substantially. Genes in each neighborhood category 
also have a wide range of dependency score, mutation prevalence, and effect size, which do 
not always correlate with one another. Some genes may have high DepMap dependency 
score (>0) but low mutation prevalence and effect size. Several reasons account for the 
variable and often discordant scores at gene level. The functional importance of most genes, 
even in the malignant transformation process, is likely tissue specific (24). However, there is 
no agreed upon list of tissue-specific cancer genes. Protein function may be affected through 
multiple mechanisms other than somatic mutations (transcriptional regulation, 
posttranslational modifications, protein degradation, binding partners, etc..). The importance 
of any mutation and protein dysfunction is also molecular context dependent, which in a 
cancer cell with unstable genome opens opportunities for a large number of potential systems 
level combinatorial abnormalities(24, 25). In our analysis, to maximize sample size we 
pooled all genes in a given neighborhood bin. This increases the statistical power for testing 
the general concept of neighborhood distance-dependent functional importance but could 
diminish the effect size itself.  
 
Conclusions 
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Overall, our findings were highly consistent across four distinct surrogates of functional 
importance including in vitro cancer cell viability scores after gene silencing, somatic 
mutation frequencies and cancer effect sizes in human cancers, and negative germline 
selection pressure. These results suggest that that the universe of cancer relevant genes is 
substantially broader than previously thought and extends to several thousand genes that can 
contribute functional effects when dysregulated. Neighborhood position, gene connectivity 
and the other functional metrics are quantitative indicators for prioritizing novel genes for 
further functional studies to more completely understand cancer biology.  
 
 
Methods 
Data Sources and Preparation 
Protein-protein interactions: STRING (v11.0) is a comprehensive database of protein-protein 
associations using data from genomic context, high-throughput experiments, conserved co-
expression and experimental results as well as text mining of the scientific literature (15). The 
data is available through https://string-db.org/.  
 
Cancer Dependency Map (DepMap) data:. DepMap project provides a gene dependency 
score for the majority of known human genes that represents the effect of gene silencing on 
cancer cell viability (17). The data is available at https://depmap.org/. 
 
Somatic mutation data: Somatic mutations of 32 cancer types of 10,208 cancers in TCGA 
were obtained from the Multi-Center Mutation Calling in Multiple Cancers (MC3) dataset 
(26) that is available at https://gdc.cancer.gov/about-data/publications/mc3-2017.  
 
Sh and pIL scores: The Sh coefficients were derived from analyses of exome sequence data 
from 60,706 individuals and measure genome-wide estimates of selection against germline 
heterozygous protein-truncating variants of a gene using Bayesian estimates (20). The 
coefficients are available at http://genetics.bwh.harvard.edu/genescores/. The probability of 
being loss-of-function (LoF) intolerant (pLI) in the germline score was derived from whole 
exome sequence data of 60,706 individuals generated as part of the Exome-Aggregation 
Consortium (22) and is available at https://gnomad.broadinstitute.org/. 
 
CancerMine: A text-mining based, regularly updated database of cancer driver genes, 
oncogenes and tumor suppressors in different types of cancer (16). Data are available at 
http://bionlp.bcgsc.ca/cancermine. 
 
Cancer incidence rate: We obtained estimates of cancer incidence for 32 cancer types from 
literatures (Supplementary Table 2).  
 
Defining cancer gene neighbors 
 
The shortest distance from one protein to the other in the STRING (v11.0) network was 
calculated by Dijkstra’s algorithm (27) using the NetworkX v1.11 Python package 
https://networkx.github.io/documentation/networkx-1.11/. We visualized the connection of 
CCGs to neighbor genes using Cytoscape (v3.7.2) with default setting (28). To plot the 
results (Figure 2a), we manually set the size of gene nodes to 50, 40, 30, 20 and 10 for CCGs, 
1-step, 2-step, 3-steps and >3-step removed genes, respectively. 
 
Somatic mutation analysis 
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For somatic mutation frequency, we only considered the 2,257,845 nonsynonymous 
mutations that comprised missense, non-sense, frameshifting, in-frame shifting, or splice-site 
altering single-nucleotide changes or indels in 32 cancer types. Somatic mutation frequency 
at gene level was defined as the percent of cases that carried at least one nonsynonymous 
mutation of the gene within a cancer type. Gene level mutation frequencies were averaged 
over each gene neighborhood class. Tumor mutation burden (TMB) was calculated for each 
cancer as the number of somatic mutations, including both nonsynonymous and synonymous, 
per sequenced megabase. For each cancer type, we averaged TMB across all patients. The 
total number of genes which were affected by at least one nonsynonymous mutation was also 
calculated for each cancer and was averaged across all the patients with a given cancer type.  
 
Cancer effect size is the scaled selection coefficient of the mutation, conveying the degree to 
which the mutation enhances the survival or reproduction of the mutant lineage. Cancer 
effect sizes were calculated with cancereffectsizeR 0.1.1.9006 (https://github.com/Townsend-
Lab-Yale/cancereffectsizeR) as in Cannataro et al.(11) except that the likelihood of the scaled 
selection coefficient was maximized based on tumor-specific mutation rates, and only 
COSMIC v3 signatures consistent with Alexandrov et al(29) were used for each tumor type. 
We calculated average cancer effect size for all somatic mutations in TCGA cancer types 
effecting all genes in a given neighborhood category. 
 
 
Statistical analysis 
The connectivity score, dependency score, somatic mutation frequency, cancer effect size, Sh 

and pIL score were compared between different groups of genes (e.g. CCG, 1 step, 2 step, 
etc..) using the one-sided Mann–Whitney U test with the “base” package of the R-project 
(www.R-project.org/). 
 
We estimated the statistical significance of the trend of the average dependency score, 
somatic mutation frequency, Sh and pIL score across the different gene groups (e.g. CCG, 1-
step, 2-step, etc.) using Jonckheere Terpstra (JT) trend analysis (30). P-values were 
calculated using the “JonckheereTerpstraTest” function of “DescTools” packages (31) in the 
R-project. The number of permutations for the reference distribution was set as 100,000. Z 
statistic of Kendall's tau (τ) coefficient was estimated to show the increasing (positive value) 
or decreasing (negative value) trend for each trend analysis. The Kendall's τ and z statistic 
were calculated using the “cor.test” function of “stats” package in the R-project (www.R-
project.org/). For somatic mutation frequency, “Holm” method was used for the correction of 
multiple testing (32). 
 
We separated the 32 TCGA cancer types into two groups: (i) “withTrend” indicating 
statistically significant decreasing trend of somatic mutation frequency, and (ii) “noTrend” 
corresponding to cancers with no decreasing trend. We assigned a cancer type to the 
withTrend group if the Jonckheere Terpstra FDR was less than 0.05, otherwise, a cancer type 
was assigned to the noTrend group.  
 
We used Kendall's τ to quantify association between cancer incidence rate, tumor mutation 
burden, and the number of affected genes. Pearson correlation coefficient and P value were 
also calculated using the “cor.test” function of “stats” package in the R-project (www.R-
project.org/). 
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https://networkx.github.io/documentation/networkx-1.11/. The cancereffectsizeR 0.1.1.9006 
for calculate cancer effect size is available online at https://github.com/Townsend-Lab-
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Figure Legends 

 

Figure 1. Study schema.Overview of our hypothesis that genes closer to core cancer genes 
in STRING network are more functional important in cancer development. 
 
Figure 2. Connectedness of cancer genes. a STRING protein interaction network. Each dot 
represents a gene, colors indicate distance from core cancer genes. The grey lines show 
between-gene connections. b Number of human genes in 4 cancer gene neighborhood 
categories. c Proportion of genes implicated in cancer biology in the literature (reported or 
not in connection with cancer) by neighborhood categories. d Distribution of log2-
transformed connectivity score of 16,904 human genes in STRING. e The distribution of 
log2-transformed connectivity score for the cancer genes and 4 neighborhood categories. 
One-sided Mann–Whitney U test (values of closer neighborhood genes are greater than that 
of all the genes in the remoter steps) P values are symbolized by ***, **, * corresponding to 
P < 0.0001, 0.001, and 0.01, respectively. Red bars correspond to the median of the 
distributions. CCGs: core cancer genes. 

 
Figure 3. Cell viability dependence scores for cancer genes and genes in different cancer 
gene neighborhood categories. a Distribution of DepMap CRISPR-based dependency 
scores. b Distribution of DepMap RNAi-based dependency scores. Y-axes are dependency 
scores—the lower the value, the more important the gene is for cell viability. One-sided 
Mann–Whitney U test (values of closer neighborhood genes are greater than that of all the 
genes in the remoter steps) P values are symbolized by ***, **, and *, corresponding to P < 
0.0001, P < 0.001, and P < 0.01, respectively, and n.s. abbreviating not significant. Red bars 
correspond to the median of the distributions. CCGs: core cancer genes. 
 
Figure 4. Somatic mutation frequencies of genes and cancer effect sizes of variants in 
genes across CCGs and 4 neighborhood categories in 21 well-sampled TCGA cancer 
types. a Somatic mutation frequencies of many TCGA types show decreasing somatic 
mutation frequency for genes with increasing distance from CCGs (FDR < 0.05). b Average 
cancer gene effect size (scaled selection coefficients) of variants in all genes of 4 
neighborhood categories decrease with increasing distance from CCGs. Red bars correspond 
to the medians of the distributions. One-sided Mann–Whitney U test (values of closer 
neighborhood genes are greater than that of all the genes in the remoter steps) P values are 
symbolized by ***, **, and *, corresponding to P < 0.0001, P < 0.001, and P < 0.01, 
respectively, and n.s. abbreviating not significant. CCGs: core cancer genes. 

 
Figure 5. Germline selection pressure on genes in different cancer-gene neighborhood 
categories. a Selection pressure against protein-truncating variants (PTV): the lower the Sh 
score, the more tolerant the gene is for a germline PTV. b Loss-of-function variant 
intolerance (pLI): the lower the pLI score, the more tolerant the genes is for germline loss of 
function variants. One-sided Mann–Whitney U test (values of closer neighborhood genes are 
greater than that of all the genes in the remoter steps) P values are symbolized by ***, **, 
and * corresponding to P < 0.0001, P < 0.001, and P < 0.01, respectively, and n.s. 
abbreviating not significant. Red bars correspond to the median of the distributions. CCGs: 

core cancer genes.  
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Figure. 3
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Figure. 5
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