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Abstract:  21 

Phenology, the study of the timing of cyclical life history events and seasonal changes, is a 22 

fundamental aspect of how individual species, communities, and ecosystems will respond to 23 

climate change. Both biotic and abiotic phenological patterns are changing rapidly in response 24 

to changing seasonal temperatures and other climate-related drivers, and the consequences of 25 
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these shifts for individual species and entire ecosystems are largely unknown. Landscape-scale 26 

simulations can address some of these needs for better predictions by demonstrating how 27 

phenology measures can vary with spatial and temporal grain of observations, and how 28 

phenological responses can vary with landscape heterogeneity and climate drivers. To explicitly 29 

examine the spatial and temporal scale-dependence of multiple phenology measures, we 30 

constructed simulated landscapes populated by virtual plant species with realistic phenologies 31 

and environmental sensitivities. This enabled us to examine phenology measures and 32 

environmental sensitivities along a continuum of spatial and temporal grains, while also 33 

controlling other aspects of sampling design. By relating measures of phenology calculated at a 34 

given spatiotemporal grain to average environmental conditions at that same grain size, we are 35 

able to determine observed environmental sensitivities for multiple phenological metrics at that 36 

spatial and temporal scale. We demonstrate that different phenological events change distinctly 37 

and predictably with spatial and temporal measurement scale, opening the way to incorporating 38 

scaling laws into predictions. Using plant flowering as our example, we identify that the timing of 39 

the beginnings or ends of an event (e.g., First Flower date, Last Flower date), can be especially 40 

sensitive to the spatial and temporal grain (or resolution) of observations. Our work provides an 41 

initial assessment of the role of observation scale in landscape phenology, and a general 42 

approach for incorporating scale-dependence into predictions of a variety of phenological time 43 

series. 44 

 45 

 46 

 47 

Introduction 48 

Over the last two decades, the study of phenology, or the timing of biological and seasonal 49 

events, has taken on new relevance, as the effects of climate change have become increasingly 50 

noticeable. The consequences of phenological shifts and mismatches are unknown (Memmott 51 
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et al. 2007). Much work has been done to assess the direction, magnitude, and mechanisms of 52 

phenological response across species, utilizing controlled experiments (Price and Waser 1998), 53 

remote sensing methods (X. Zhang et al. 2003), citizen science (Willis et al. 2017), natural 54 

history collections (Park et al. 2018), modeling, and combinations thereof. Phenological studies 55 

have long focused at the at the scale of individual organisms and plots, but large-scale 56 

digitization of natural history collections and survey data, as well as the advent of remotely 57 

sensed land surface phenology via satellite has increasingly facilitated research at more 58 

extensive taxonomic, spatial, and temporal scales over the last few decades. As a result, broad 59 

trends such as a general acceleration of plant phenology in response to warming, have 60 

emerged (Cleland et al. 2007).  61 

 62 

However, a growing body of research suggests that phenological landscapes are highly 63 

complex, varying across spatial scales both within and among species (Körner and Basler 2010; 64 

Lapenis et al. 2014; Zohner and Renner 2014; H. Zhang et al. 2015; Cole and Sheldon 2017; 65 

Asam et al. 2018; Park et al. 2018). Though previous research spans diverse taxonomic, 66 

temporal, and spatial scales, harmonizing diverse scales of information has proven to be a 67 

challenge to the characterization of phenology, and we still lack a robust theoretical framework 68 

that can integrate this important body of knowledge (Newman et al. 2019; Gonzalez et al. 2020). 69 

Previous attempts to directly link observations made at different scales (e.g., ground-based 70 

observations of individuals vs satellite-derived landscape observations) have often yielded poor 71 

results (Chuine, Cambon, and Comtois 2000; Badeck et al. 2004; X. Zhang et al. 2017). 72 

Because scale and scaling are fundamental to ecological patterns including phenology 73 

(Woodcock and Strahler 1987; Levin 1992; Wiens 1989), synthesizing observations made at 74 

different spatiotemporal resolutions and extents are at the forefront of current phenological 75 

research (Cleland et al. 2007). Such efforts are necessary to provide accurate predictions about 76 

future global change impacts.  77 
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 78 

In this study, we use simulated datasets to compare spatiotemporal scaling across 79 

heterogeneous environments and demonstrate that the properties of phenological events can 80 

change predictably with scale. We thus provide a framework for increasing our understanding 81 

how the phenology functions at scales from the individual to the landscape via empirical and 82 

theoretical synthesis. In our instance, we use an empirically-informed simulation for virtual 83 

landscapes and species, to elucidate the inherent sensitivities of phenological metrics to 84 

measurement scale, independent of other factors, such as exogenous climate forcings. We 85 

demonstrate that the properties of multiple phenological events change distinctly from one 86 

another, but predictably with spatial and temporal measurement scale. Our simulation work 87 

highlights that some phenological measures (such as measures of peak or central tendency) 88 

are robust to large changes in spatial and temporal grain, while others are not. It also 89 

demonstrates that the effects of spatial and temporal sampling, aggregation, and scaling can be 90 

disentangled effectively from the effects of landscape heterogeneity and the effects of 91 

exogenous climate forcings on individual phenological metrics. 92 

 93 

Methods 94 

Landscape Phenology Simulations  95 

Landscape simulation models have the potential to predict ecological metrics, including 96 

phenological time series, across scales, and provide a quantitative framework for investigating 97 

the implications of these predictions (Turner, Dale, and Gardner 1989; Wagner and Fortin 98 

2005). To explicitly examine the spatial and temporal scale-dependence of multiple phenology 99 

measures, we constructed simulated landscapes populated by virtual plant species with realistic 100 

phenologies and environmental sensitivities. This simulation approach allowed us to examine 101 

phenology measures and environmental sensitivities along a continuum of spatial and temporal 102 

grains, while tightly controlling other aspects of sampling design. The simulated landscapes, 103 
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and the species inhabiting them, were constructed to have similar properties to flowering plant 104 

communities in montane to subalpine environments in western North America, and were derived 105 

from a synthesis of plot-scale flowering phenology datasets across three locations: Mount 106 

Rainier National Park in the Washington Cascades (Theobald, Breckheimer, and 107 

HilleRisLambers 2017), MPG Ranch in the Sapphire Range of Montana (Durham et al. 2017), 108 

and Rocky Mountain Biological Laboratory in Western Colorado (Iler et al. 2017). As employed 109 

here, this method incorporates important phenological information and landscape heterogeneity 110 

factors for montane to subalpine environments in western North America, but could be used 111 

with other factors, simulated landscapes and species for other ecosystems. 112 

 113 

To construct realistic phenological responses of virtual species, we first fit a hierarchical non-114 

linear model describing species-specific phenologies and responses to climate for the combined 115 

three field datasets. Because the model drew species-specific parameters from statistical 116 

distributions, we could use this model to generate realistic phenological responses for 45 virtual 117 

species (Fig. 1). Virtual species are distinguished by their abundances, their means and 118 

variances for phenological response dates, and their peak abundance distributions across 119 

environmental gradients. Similarly, empirical measurements of microclimate at each field site 120 

were used to fit variogram models describing the pattern of spatial covariance of environmental 121 

variables at the study sites. These models were used to construct virtual landscapes with 122 

realistic spatial patterns of microclimate (Fig. 1), which in turn drive realistic spatial patterns of 123 

plant phenology. We then sampled plant phenology on the virtual landscapes at a variety of 124 

different spatial grains (from 2m - 1024m) and temporal grains (sampling intervals from 1 - 17 125 

days), spanning the most prevalent spatial and temporal grains represented in the literature 126 

(Park et al., in review) (throughout the manuscript, spatial grains are reported as the linear 127 

measure of one side of a square unit, for example, 2m grain size corresponds to 4m2 area 128 

units). This allowed us to calculate a variety of measures of flowering phenology, including 129 
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dates of first flowering, peak flowering, last flowering (or “First Flower,” “Peak Flower,” and “Last 130 

Flower,” respectively) and flowering duration, for each virtual species at each spatial and 131 

temporal grain.  132 

 133 

Our approach makes use of “fully-nested” data structure, that is, data that have full spatial and 134 

temporal data associated with phenological events, which can be aggregated to increasingly 135 

coarser resolutions without loss of information. In the simulation, we have “perfect knowledge” 136 

of all phenological events, and from these, we can construct a scaling law related to what date 137 

of first, last, or peak event emerges from each resolution, up to the full spatial or temporal extent 138 

under consideration. This approach is similar to that sometimes used in macroecology, where 139 

mathematical scaling laws are constructed, and then extrapolated to unmeasured scales (Harte 140 

2011; Harte and Newman 2014).For each phenology measure, we determined scaling effects 141 

by comparing the phenology measures computed at a given scale to the measures taken at the 142 

finest spatial and temporal scale available: 2m grain size and daily sampling. Code for the 143 

simulation and detailed methods can be found at: 144 

https://github.com/ibreckhe/phenoscaling_sims  145 

 146 

Our simulation approach also allowed us to examine the scale-dependence of observed 147 

environmental sensitivities. The phenology of the virtual species respond to two aspects of the 148 

environment: the timing of seasonal snowpack disappearance (snow disappearance day, SDD) 149 

and the accumulation of air temperature forcing (growing degree-days) in the 90 days after 150 

snow disappearance (GDD), both of which vary across each virtual landscape. By relating 151 

measures of phenology calculated at a given spatial and temporal grain to average 152 

environmental conditions at that same grain size, we can determine observed environmental 153 

sensitivities at that spatial and temporal scale (Fig. 1). Because the “true” environmental 154 

sensitivities of these virtual species are known (as they were generated from distributions of 155 
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sensitivities in the hierarchical model), we can measure scale effects by comparing the 156 

observed sensitivities at a given scale to the true values. 157 

 158 

Results 159 

Landscape phenology simulations 160 

Simulated landscapes populated by virtual species can be used to examine the spatiotemporal 161 

scale-dependence of multiple phenology measures, and their sensitivity to environmental 162 

forcings. For instance, here, simulated landscapes and species were constructed to have similar 163 

properties to flowering plant communities in montane to subalpine environments in western 164 

North America, derived from a synthesis of plot-scale flowering phenology datasets (Theobald, 165 

Breckheimer, and HilleRisLambers 2017; Durham et al. 2017; Iler et al. 2017). Because the 166 

“true” environmental sensitivities of these virtual species are known, we were able to measure 167 

scale effects by comparing the observed sensitivities at a given spatial or temporal scale to their 168 

true values.  169 

 170 

Comparing the scale dependence of phenological metrics  171 

To better understand the effects of scale and environmental forcings on phenological metrics, 172 

we investigated four measures of phenology – (the dates of) First Flower, Peak Flower, Last 173 

Flower, and Flowering Duration – and their sensitivity to environmental conditions using the 174 

simulation approach described in Figure 1. All examined metrics were scale-dependent, with 175 

some processes being more sensitive to statistical aggregation over time and space than others 176 

(Fig. 2). At coarser spatial grains, First Flower always appeared earlier, Last Flower always 177 

appeared later, and Flowering Duration therefore became longer. This was because coarser 178 

spatial samples incorporated more microclimate heterogeneity, and thus included some areas 179 

where flowering started earlier and later. At coarser temporal grains, observations of First 180 

Flower became later, Last Flower became earlier, and Flowering Duration therefore decreased. 181 
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This was because less frequent observations were likely to miss the true start and end of the 182 

season, delivering estimates that skewed late for First Flower, and early for Last Flower. We 183 

consistently found that measures involving the start and end of the flowering season (Flowering 184 

Duration, First Flower, Last Flower), were considerably more scale-sensitive than the timing of 185 

Peak Flower, both in spatial and temporal grain.  186 

 187 

Scale dependence in phenological sensitivity 188 

Observed phenological sensitivities can also be strongly scale-dependent (Fig.3, top panels). 189 

Spatial scaling effects caused sensitivity estimates to differ at 1km scales by up to +0.38 days 190 

per snow disappearance day, and by up to 0.02 days per accumulated °C compared to 191 

estimates at the finest spatial grain of 2m (Fig.3, top panels). The environmental sensitivities of 192 

start and end of season measures were considerably more scale dependent than the 193 

environmental sensitivity of Peak Flower, which was essentially stable across the spatial grains 194 

we tested. For most of the virtual species and landscape combinations, changes in spatial grain 195 

altered the magnitude, but not direction, of expected phenological shifts in response to changing 196 

forcing. For some species/landscape combinations, however, shifts in observation grain caused 197 

environment – phenology relationships to change sign. This was especially common for the 198 

environmental sensitivities of Flowering Duration, which changed sign in 24% of 199 

species/landscape combinations for SDD, and 21% of combinations for GDD at 1km spatial 200 

grains, compared to 2m grains (Fig. 3, bottom panels). These results highlight the importance of 201 

spatiotemporal grain in the reporting and analysis of phenology measures, especially for those 202 

that correspond to the start or end of a process.  203 

 204 

Discussion 205 

Understanding and predicting the timing of phenological events is critically important to 206 

ecologists, conservation biologists, and evolutionary biologists. Climate change simultaneously 207 
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alters multiple ecological axes, and phenological events are among the most prominently 208 

affected (Wolkovich, Cook, and Davies 2014). The timing and location of phenological events 209 

provides structure to plant communities and their associated mutualists and predators, and 210 

although consequences of disruptions to these patterns have unknown consequences, lack of 211 

availability of resources at critical times are expected to negatively impact abundance of 212 

individual species as well as community structure, and may lead to extinctions (Memmott et al. 213 

2007). Spatiotemporal biodiversity increases niche complementarity in species interactions and 214 

affects resource partitioning, reducing competition among co-occurring species (Venjakob et al. 215 

2016). Thus, changes in temporal plant community composition can affect resource availability, 216 

trophic interactions, diversity of associated animal communities, and ecosystem services 217 

(Corlett and Lafrankie 1998; Edwards and Richardson 2004; Post and Forchhammer 2008; 218 

Sackett et al. 2011; Kudo and Ida 2013; Kendrick et al. 2015). Despite the importance of the 219 

interaction between climate and phenology, we have lacked an understanding of key scale-220 

dependent mechanisms that influence phenological responses across landscapes. Indeed, it 221 

has become increasingly clear that we cannot simply extrapolate phenological knowledge 222 

across scales (Tian et al. 2020; Xie and Wilson 2020). 223 

 224 

The scale dependence we observe in the phenological responses of species and communities 225 

can be attributed to a number of factors. These include environmental heterogeneity, variation in 226 

species’ sensitivities to environmental forcings across the landscape, as well as artifacts of 227 

statistical aggregation (Levin 1992). To account for these effects when integrating knowledge 228 

across scales, it is necessary to not only quantify the degree of scale dependence, but to 229 

elucidate the cause. The simulation approach we outline provides a way to address this issue 230 

and facilitate the informative integration of phenological information across scales.  231 

 232 

We recognize several limitations to our study, enumerated here: (1) Our simulation approach 233 
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assumes that the same level of detail is captured at every scale of observation; (2) Our 234 

simulated landscape and species were based on empirical data on flowering plant communities 235 

in montane to subalpine environments in western North America; (3) The results of our 236 

simulations may not apply universally across systems and all measures of phenological events, 237 

however, they should be general enough to apply to systems with well-defined seasons, and 238 

spatial domains; (4) The type of data needed to extract these scaling laws have the requirement 239 

that they be “fully-nested,” that is, to have full spatial and temporal data associated with 240 

phenological events that can then be aggregated to coarser and coarser resolution. However, 241 

recent advances in remote sensing technologies and machine learning applications are making 242 

it increasingly possible to overcome these limitations, and to identify functional types, species, 243 

and even individuals from large scale data collected from phenocams, drones, and satellites 244 

(Assmann et al. 2020; Rossi et al. 2019). Furthermore, our simulation approach can be adapted 245 

to less than ideal datasets to parse and account for at least a portion of the variation in 246 

phenological measurements among studies conducted at different scales. 247 

 248 

We present a conceptual framework for landscape-scale simulations of phenological time series 249 

that builds off of multiscale observations to better investigate how the seasonality of ecosystems 250 

across landscapes and seascapes respond to environmental variability and change. Along 251 

these lines, we provide an example approach for estimating scale dependence for phenological 252 

metrics for plants across both spatial and temporal grain and resolution, which makes use of 253 

fully-nested data structures. We provide guidance on how to create null models for spatial and 254 

temporal scaling with individual phenological metrics, as well as software code in support of 255 

these null models. These methods can be easily adapted to other phenological metrics, 256 

landscapes, and ecosystems. These efforts may lead to better disentangling of the effects of 257 

landscape heterogeneity and scale from the true effects of climate change. We thus set the 258 

stage for a new generation of empirical research in the field that builds off of multi-scale 259 
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observations to understand how phenology across Earth’s ecosystems respond to 260 

environmental variability and change. 261 
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 271 

  272 

Figure 1. Summary of the simulation approach. Realistic flowering phenologies and responses 273 

to climate for virtual species (top-right panel), were generated from a Bayesian nonlinear model. 274 

Modeled flower densities were a function of day of year (DOY) and two climate variables: the 275 

snowpack disappearance day (SDD), and post-snow air temperature accumulation (Growing 276 

Degree-Days; GDD), both of which were allowed to vary across virtual landscapes as 277 

multivariate Gaussian random fields (top-right panels). Simulated flower counts were generated 278 

across the growing season on these landscapes (middle panels), and the progression of 279 

flowering was then summarized at a variety of spatial grains (bottom-left panel). Phenology 280 

measures such as date of First Flower were extracted from these time series at each spatial 281 

and temporal grain and used to examine scaling relationships (bottom-right panel).  282 
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 283 

284 

 285 

Figure 2. Simulation results demonstrating how phenology measures can vary with spatial and 286 

temporal grain of observations (left and right panels, respectively). Simulations place virtual 287 

plant species with a variety of realistic phenological responses to climate on virtual landscapes 288 

modeled after subalpine meadow ecosystems. Four phenology measures (First Flower, Peak 289 

Flower, Last Flower, and Flowering Duration) were computed after sampling these virtual 290 

landscapes at 10 different spatial grains (between 2 and 1000m), and 10 different temporal 291 

grains (between 1 per day and one per 17 days). Thick bars and thin bars represent 25/75% 292 

and 10/90% quantiles of the measures across all virtual species and landscapes.  293 

 294 

 295 

 296 

 297 

 298 

 299 

 

13
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 300 

301 

 302 

Figure 3. Simulation results demonstrating how environmental sensitivities can vary with the 303 

spatial grain of observations. Climate variables driving plant phenology were spring air 304 

temperature (Growing Degree-Days or GDD; left panels), and the timing of snowpack 305 

disappearance (SDD; right panels). Top panels show the change in environmental sensitivities 306 

as a function of spatial grain. Thick bars and thin bars represent 25/75% and 10/90% quantiles 307 

of the measures across all virtual species and landscapes. To put these anomalies in 308 

proportion, the median GDD sensitivity across all species and phenology measures at 2m grain 309 
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was 0.10 days / 10 °C, and the median SDD sensitivity was 0.52 days / day. Bottom panels 310 

show the percent of virtual species and landscapes where observed environmental sensitivities 311 

at a given scale were of a different sign than sensitivities at the finest spatial grain (2m). 312 
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