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Abstract 22 

BACKGROUND: Stroke is a leading cause of disability, and language impairments (aphasia) 23 

after stroke are both common and particularly feared. Most stroke survivors with aphasia 24 

exhibit anomia (difficulties with naming common objects), but while many therapeutic 25 

interventions for anomia have been proposed, treatment effects are typically much larger in 26 

some patients than others. Here, we asked whether that variation might be more systematic, 27 

and even predictable, than previously thought. 28 

METHODS: 18 patients, each at least 6 months after left hemisphere stroke, engaged in a 29 

computerised treatment for their anomia over a 6 week period. Using only: (a) the patients’ 30 

initial accuracy when naming (to-be) trained items; (b) the hours of therapy that they devoted 31 

to the therapy; and (c) whole-brain lesion location data, derived from structural MRI; we 32 

developed Partial Least Squares regression models to predict the patients’ improvements on 33 

treated items, and tested them in cross-validation. 34 

RESULTS: Somewhat surprisingly, the best model included only lesion location data and the 35 

hours of therapy undertaken. In cross-validation, this model significantly out-performed the 36 

null model, in which the prediction for each patient was simply the mean treatment effect of 37 

the group. This model also made promisingly accurate predictions in absolute terms: the 38 

correlation between empirical and predicted treatment response was 0.62 (95%CI: 0.27, 0.95). 39 

DISCUSSION: Our results indicate that individuals’ variation in response to anomia treatment 40 

are, at least somewhat, systematic and predictable, from the interaction between where and 41 

how much lesion damage they have suffered, and the time they devoted to the therapy. 42 

  43 
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1. Introduction 44 

Stroke is a leading cause of disability [1], and language impairments (aphasia) after stroke are 45 

both common [2] and particularly feared [3]. Most stroke survivors with aphasia exhibit 46 

anomia, a difficulty finding words when naming common objects [4], but while many 47 

therapeutic interventions for anomia have been proposed, treatment effects typically vary, 48 

substantially, from patient to patient [5]. Inter-individual variation in treatment responses is 49 

ubiquitous in medicine (e.g. in psychiatry and pharmacology, respectively [6, 7]), but emerging 50 

evidence suggests that variation in responses to therapy for aphasia after stroke might be more 51 

systematic than previously thought [5, 8, 9]. To the extent that this is true, the implication is 52 

that we can use pre-treatment (e.g. behavioural and / or brain imaging) data to explain and even 53 

predict patients’ likely treatment responses. 54 

For example, we recently showed that a model derived from: (a) pre-treatment scores 55 

on standardised cognitive and language tasks; and (b) lesion location data, derived from pre-56 

treatment structural MRI, could be used to predict 23 aphasic stroke patients’ responses to a 57 

treatment for acquired reading impairments (central alexia) [8]. Like the treatment considered 58 

here, for anomia, this earlier treatment for alexia was a computerised application designed to 59 

engage participants in massed practice of trained items at home, over a period of weeks. Using 60 

stepwise forward feature selection, we selected specific predictors from the pre-treatment data 61 

for entry into a multiple linear regression model, which explained over 90% of the variance in 62 

patients’ empirical treatment responses. This result is biased by over-fitting, because all of the 63 

patients’ data were used to select features, but even when the feature selection was nested 64 

within each fold of a leave-one-out cross-validation process (i.e. removing the bias), the 65 

resulting predictions were significantly correlated with patients’ empirical treatment responses 66 

(r = 0.48, p < 0.05) [8]. 67 
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In what follows, we add to the evidence that responses to aphasia treatment might be 68 

predictable from patients’ pre-treatment data. Here, we focus on a computerised treatment for 69 

naming difficulties (anomia) that is the most common language impairment after stroke [4]. 70 

This treatment’s effectiveness at the group level has already been verified [10]; here, we 71 

attempt to explain and predict the same treatment effects at the individual level. Our main 72 

hypothesis was that the individual patients’ responses to the treatment are systematic and 73 

predictable given where and how much lesion damage they had suffered. We tested this by 74 

comparing predictions made by models derived from those data (alone or in combination 75 

with their pre-treatment anomia severity, demographic data and the hours that they devoted to 76 

the therapy), to the predictions made by a ‘null’ model, which simply predicts the mean 77 

treatment response of its training sample. If (any of) the former are significantly more 78 

accurate than the latter, the implication is that individual variation in responses to this 79 

treatment is systematic and predictable, at least to some extent. 80 

 81 

2. Methods 82 

The current analysis employs pre-treatment: (a) demographic data (age at stroke onset, time 83 

post-stroke at assessment, and sex); (b) patients’ initial impairment severity (i.e. their 84 

accuracies when naming to-be-treated items, pre-treatment; (c) the hours of therapy actually 85 

undertaken; and (d) structural MRI, which we use to extract lesion location data. We use 86 

these data to predict and explain patients’ responses to therapy, measured as the absolute 87 

change in naming accuracy, from pre- to post-treatment, for ‘trained’ items (i.e. items 88 

practiced during the therapy). 89 

The therapy was designed to engage participants in massed practice of object naming, 90 

over a 6 week period at home.  A variety of phonemic cues (e.g. an audio recording of the 91 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429894doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429894


5 
 

object’s name, or of the name’s first phoneme) were presented concurrently with the picture 92 

to be named during treatment to encourage error-reducing learning. The approach was both 93 

effective and specific to spoken word production, significantly improving patients’ overall 94 

object naming accuracy and reaction time immediately post-treatment (unstandardized effect 95 

size: 29% and 17%, respectively; Cohen’s d: 3.45 and 1.83). Longer term gains in naming 96 

were maintained three months later, though in this study we focus only on the immediate 97 

gains made for items trained during the therapy. 98 

2.1 Participants 99 

The study participants were 18 right-handed native English-speakers, with normal 100 

hearing, no history of psychiatric disease and no prior history of neurological disorder before 101 

suffering a left-hemisphere stroke, causing language impairment (aphasia). Participants were 102 

recruited either from an aphasia clinic, run by JC, or via the Predicting Language Outcomes 103 

After Stroke (PLORAS) study, run by CJP, between 2009 and 2012. The study size was 104 

arrived at via a power calculation based on the expected effect size of the treatment 105 

considered. 106 

Participants were only included if they had: (i) naming difficulties (anomia), as assessed 107 

via the Boston Naming Test (cut-off <56); (ii) relatively preserved single-word 108 

comprehension as assessed via the Comprehensive Aphasia Test (CAT) [11]; (iii) good 109 

mono-syllabic word repetition as assessed via the Psycholinguistic Assessments of Language 110 

Processing in Aphasia [12]; (iv) no speech apraxia as determined by the Apraxia Battery for 111 

Adults [13]; and, (v) at least partially spared left inferior frontal cortex (thought to support 112 

speech re-learning [10]). All gave written informed consent to take part in the study, which 113 

was approved by the Central London Research Ethics Committee and conducted in 114 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429894doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429894


6 
 

accordance with the ethical principles stated by the Declaration of Helsinki. A table of the 115 

participants’ key characteristics, reproduced from [10], is included in supplementary material. 116 

2.2 Stimuli and procedure 117 

The procedure for the treatment study [10] involved behavioural assessments and 118 

neuroimaging data acquisition both pre- and post-treatment. Here, we use pre-treatment data 119 

only, to predict treatment response, calculated as the change in the number of trained items 120 

that patients could name correctly.  121 

Stimuli were drawn from a pool consisting of 299 black and white line drawings of 122 

objects adapted from the International Picture-Naming Project 123 

(https://crl.ucsd.edu/experiments/ipnp/). All object names were monosyllabic, with a 124 

consonant-vowel-consonant structure and high name agreement (e.g. ‘car’). The treatment 125 

employed 150 of the 299 stimuli: i.e. for each patient, there were 150 treated items and 149 126 

untreated items. 54/150 to-be-trained items and 53/149 un-trained items were kept common 127 

across all patients (for use in an FMRI experiment [10], which we do not consider here). The 128 

remaining items (96/150 to be trained; 95 /150 to be untrained) were determined for each 129 

patient on the basis of their individual pre-treatment naming performance (accuracy) on the 130 

299 items, to match each patient’s pre-treatment performance on treated and untreated lists, 131 

respectively.  132 

After baseline assessment and pre-treatment structural MRI, patients were given a laptop 133 

and asked to complete a minimum of two hours of naming practice 5 days a week, over a six-134 

week period. The pictures and auditory cues were presented using the ‘StepByStep’ aphasia 135 

treatment software (http://www.aphasia-software.com). The naming practice was designed to 136 

be completed in an error-reducing manner [14]. For example, in naming a picture of a car the 137 
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patient was asked to name it three times: (i) after a whole word auditory cue /ka:r/; (ii) after 138 

an initial phonemic cue /ka/; (iii) after a whole word cue again. Only then would the patient 139 

proceed to the next item to be named. Patients completed on average a total of 73 (± 25) 140 

hours of naming practice: i.e. within one standard deviation of the mean therapy dose found, 141 

in a meta-analysis of aphasia treatment studies [15], to improve patients’ communicative 142 

ability. After the six-week period, patients were assessed again exactly as at baseline. Naming 143 

accuracy was scored according to the standardized Comprehensive Aphasia Test guidelines 144 

[11]. Our analyses here are separately focused on absolute change in naming accuracy (from 145 

pre- to post-treatment) on the 150 treated items.  146 

2.3 Imaging acquisition and analysis 147 

The same scanner and hardware were used for the acquisition of all images. Whole-brain 148 

imaging was performed on a 3 T Siemens TIM-Trio system (Siemens) at the Wellcome 149 

Centre for Human Neuroimaging. Lesion images were derived from structural MRI using the 150 

Automatic Lesion Identification toolbox [16], and then double-checked for accuracy by a 151 

researcher experienced in manual lesion-tracking (DN), , working on individual axial slices.  152 

Lesion data were then encoded as lesion load in a series of 398 anatomically defined 153 

regions of interest, derived from four publicly available atlases (two focused on grey matter 154 

and two focused on white matter) [17-20]. Where regions were represented in probabilistic 155 

format, they were re-encoded as binary images at a 50% threshold. For each region, lesion 156 

load was calculated as the number of (2mm3) voxels shared by the lesion and the region, 157 

divided by the total number of voxels in that region. Notably, there was significant overlap 158 

between these regions, across atlases. Rather than deciding a priori what the best or most 159 

useful atlas might be, our goal was simply to reduce the dimensionality of the lesion data in a 160 

manner that retained an explicit link with familiar brain regions and / or tracts. 161 
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 162 

2.4 Modelling Methods 163 

Our key aim here was to assess whether individual patients’ treatment responses could be 164 

predicted from pre-treatment data alone. Here, we define ‘treatment responses’ as the 165 

absolute change in patients’ naming accuracies from pre- to post-treatment.  166 

Treatment studies in this domain are resource intensive and typically involve massed 167 

practice, so take time to complete. Like most others in the field, our sample is therefore 168 

smaller (n=18) than is usually desirable when building predictive models, increasing the risk 169 

of over-fitting. That risk is further increased because we have so much pre-treatment data to 170 

consider, including behavioural data, and lesion data derived from structural MRI.  171 

One way to manage this risk is via feature selection, as we employed in similar, previous 172 

work [8]. But though successful, that work still revealed significant over-fitting, because our 173 

in-sample results (using the whole dataset to select features) were so much stronger than our 174 

out-of-sample results (i.e. nesting feature selection in cross-validation): R2 (predicted 175 

response, empirical response) = 0.94 (in-sample); 0.23 (out-of-sample). Accordingly, we took 176 

a simpler approach in this work by using dimensionality reduction, rather than feature 177 

selection, to manage the high dimensionality of the pre-treatment (behavioural and brain 178 

imaging) predictors. 179 

2.4.1 Predictive models 180 

We used Partial Least Squares (PLS) regression, as implemented in Matlab 2019a, to develop 181 

our models, using either: (a) demographic variables, including age at stroke onset, sex and 182 

time post-stroke; (b) pre-treatment naming accuracy (i.e. measuring the initial severity of 183 

each patient’s anomia); and / or (c) lesion data, derived from pre-treatment structural MRI. 184 
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We additionally considered one further variable, both singly and in combination with the 185 

other data: the hours of therapy actually completed by each patient.  There were no missing 186 

data for any patient for any of these variables. All predictor variables were standardised (z-187 

scored) prior to entry into models. 188 

PLS regression is appropriate, here, because it employs dimensionality reduction 189 

analogous to, but more efficient than, that implemented by Principal Components Analysis 190 

(PCA): i.e. where PCA identifies latent variables which explain maximal variance in the 191 

predictors, PLS regression identifies variables that explain maximal variance in the response 192 

variable(s). PLS regression thus allows us to build potentially effective models that are (at 193 

least somewhat) robust to irrelevant predictors, rather than excluding those predictors 194 

explicitly.  195 

The behavioural model employed 28 predictors: i.e. scores on our battery of pre-196 

treatment language and cognitive assessments (as described in detail in [10]). The lesion data 197 

were encoded as described previously, into 398 lesion load variables: however, all patients 198 

had left-hemisphere lesions, and in fact all patients had zero lesion load in 220/398 regions. 199 

These were removed from the analysis (leaving 178 variables), but their removal had no 200 

substantive effect on the results. We trained models employing predictors derived from each 201 

data type separately, and all higher order combinations of data types.  202 

 203 

2.4.2 Model assessment and model comparison 204 

Predictive performance was assessed with cross-validation. We report results using 1,000 205 

times 10-fold cross-validation here, but analyses employing different types of cross-206 

validation were substantially similar. Absolute measures of predictive performance are 207 

suspect in small samples, so we assessed our models in relative terms, by comparing them to 208 
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an empty, or baseline (i.e. null) model, which simply predicts the average treatment response 209 

for all patients in the group. This model reflects our null hypothesis, that treatment responses 210 

are not predictable at the individual level, leaving group-level averages as the only recourse. 211 

When our empirical models outperform the empty model, we reject the null hypothesis, 212 

concluding that individual treatment responses are predictable, at least to some extent. We 213 

compare models by recording the Root Mean Squared Error (MSE) for predictions made in 214 

each of 1,000 repetitions of a 10-fold cross-validation. These folds are kept identical across 215 

models, so the MSE values can be compared pair-wise. 216 

Traditional paired tests are not appropriate on their own here because different partitions 217 

of the data will create overlapping training datasets, which are therefore not independent of 218 

each other. Accordingly, while we use the traditional, paired, non-parametric Wilcoxon 219 

signed rank test to compare MSEs across models, we further threshold those statistics with 220 

paired permutation test. The test construes the two vectors to be compared as having labels, 221 

reflecting the models used to generate them. The null hypothesis is that those labels are 222 

arbitrary, because the models’ performance do not differ except by chance. We therefore 223 

create a null distribution of paired test statistics by randomly permuting those labels within 224 

each pair, and repeating the original paired (signed rank) test. If the original statistic is 225 

extreme relative to the null distribution, we conclude that the performance difference between 226 

the models is significant (p < 0.05) after a correction for FamilyWise Error (FWE).  227 

 228 

2.4.3 Model interpretation 229 

PLS regression models can be interpreted by examining the weights of each of their 230 

components on each of the original variables. However, this approach can be challenging 231 

when there are multiple components to consider, and because the sign of each component is 232 
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arbitrary: i.e. positive weights on a given component do not necessarily imply a positive 233 

relationship between the highly weighted independent variables and the dependent 234 

variable(s). We circumvent these issues with ‘data perturbation’. 235 

The data perturbation procedure involves permuting random subsamples of the empirical 236 

independent variables and recording the effect of the perturbation on the model’s predictions. 237 

The PLS model beta weights themselves are fixed based on the original empirical data: our 238 

goal is not to fit further models, but rather to better understand the relationships that have 239 

already been encoded. We do this by: (a) permuting random subsets of the independent 240 

variables; (b) observing the effect on the models’ predictions; and (c) relating perturbed 241 

variable values to the resulting predictions with mass univariate correlation analyses. The 242 

resultant correlation coefficients approximate the influence that each variable has on the 243 

model’s predictions. We ran 1,000 iterations of the process per model, yielding a total sample 244 

size of 18 (patients) * 1,000 (iterations), including both perturbed independent variables and 245 

the resultant, predicted dependent variable (treatment response). Repeated analyses with this 246 

number of iterations yielded very consistent coefficients for all of the models we report 247 

across ten repetitions of 1,000 iterations of this process, all pairwise correlations between 248 

derived weights on behavioural and lesion variables were >0.99. 249 

 250 

3. Results 251 

3.1 Predictive performance 252 

Table 1 reports predictive performances (median and inter-quartile ranges of Mean Square 253 

Errors, or MSEs) of models driven by all combinations of the data we considered. All but one 254 

of the models that out-performed the null model, with lower MSEs, included lesion data. The 255 

exception was a model including hours of therapy only, with a median MSE of 300 (IQR = 256 
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16): i.e. a very small difference relative to the null model, albeit a significant one (FWE 257 

adjusted p < 0.05). The best combination was hours of therapy plus lesion data (MSE median 258 

/ inter-quartile range = 182 / 21), and indeed this was the only combination which improved 259 

upon lesion data alone: see Table 1. The mean predictions of that best model, across the 260 

1,000 repetitions, were strongly and significantly correlated with empirical treatment 261 

responses (r = 0.62, p = 0.006, 95% CI = 0.27, 0.95): see Figure 1.  262 

 263 

Figure 1: Predicted responses versus 

empirical responses, for the best model 

identified in Table 1 (lesion load 

variables + hours of therapy 

undertaken). 

 
 264 

 265 

Data types Median / IQR MSE 

Null 303/16 

Hrs (Therapy) 300/16 

Initial (severity) 396/31 

Demographics 321/24 

Lesions 205/30 

Initial + Hrs 364/30 

Demographics + Hrs 316/26 

Lesions + Hrs 182/21 

Initial + Demographics 364/30 

Initial + Lesions 253/29 

Lesions + Demographics 267/21 

Hrs + Initial + Demographics 355/30 

Hrs + Initial + Lesions 220/32 

Hrs + Demographics + Lesions 253/21 
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Initial + Demographics + Lesions 274/23 

Hrs + Initial + Demographics + Lesions 261/23 

 266 

Table 1: Data configurations and predictive performance, as assessed across the same 1,000 267 

10-fold cross-validation runs. MSE = Mean Squared Errors of the model predictions; IQR = 268 

Inter-Quartile Range of the model predictions. These quantities are employed in preference to 269 

mean and standard deviation because MSEs typically have a Poisson distribution rather than 270 

a normal distribution. Lower MSEs imply more accurate predictions. The best model 271 

configuration is underlined (Hrs + Lesions): the most accurate predictions are derived from 272 

these data.  273 

 274 

 275 

3.2 Interpreting the best model 276 

Variable weights for the best models predicting change on treated items, using a combination 277 

of the hours of therapy undertaken and lesion location data, were calculated via data 278 

perturbation, as described in the Methods.  279 

 First, as expected, the best model predicted better improvement when patients devoted 280 

more hours to practice (r = 0.33). Regional weights for the lesion data in this model (i.e. 281 

taking therapy hours into account) are displayed in Figure 2, with the most negative weights 282 

(predicting lesser treatment benefit with more damage) in and around the left inferior frontal 283 

gyrus, and positive weights (predicting greater treatment benefit with more damage) in the 284 

middle, superior and anterior temporal lobe regions. Where voxels appear in two overlapping 285 

regions with different weights (e.g. we had one region covering the whole of the 286 

hippocampus and others covering only its cornu ammonis and dentate gyrus subfields), the 287 

most extreme of those two weights is displayed. 288 
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 289 

Figure 2: Relating lesion locations to predicted treatment responses. Correlation 290 

coefficients, derived via data perturbation, relating the lesion load in each of 177 regions, to 291 

treatment responses predicted by our best model (appending lesion data to the hours of 292 

therapy actually undertaken). 293 

 294 

Notably, weights in many brain areas, including the auditory cortex and the superior, 295 

middle and anterior temporal lobes, are positive. The potentially curious implication here, is 296 

that more damage predicts larger treatment responses. Instead, we suggest that these positive 297 

regions are driven by the contingent distribution of the patients’ lesions: more damage in 298 

those positively weighted regions implies less damage in the negatively weighted regions 299 

(where the latter make the more intuitive association between more damage and smaller 300 

treatment responses). As an illustration of this relationship, we considered area TE11 of the 301 

primary auditory cortex, where the strongest, positive weight was observed (0.47). Pairwise 302 

correlations, between lesion loads in this region and lesion loads in each of the other (177) 303 

regions under consideration, were very strongly correlated with the weights displayed in 304 

Figure 2, which were assigned to those regions by our best PLS regression model (r = 0.90): 305 

see Figure 3.  306 

  307 
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 308 

 309 

Figure 3: Scatter plot relating: (i) coefficients of the pairwise correlations between lesion 310 

load values in primary auditory cortex area TE11, and lesion loads in all of the 177 brain 311 

regions that we considered (y-axis); to (ii) the weights assigned to each of those same brain 312 

regions by our best PLS regression model, as derived via data perturbation (described in the 313 

Methods). The strong correlation between these two quantities implies that lesser lesion load 314 

in primary auditory cortex area TE11 serves as a proxy for greater lesion load in areas where 315 

that extra damage most strongly predicts poorer treatment responses. 316 

 317 

4. Discussion 318 

Recent results suggest that individual stroke patients’ responses to aphasia treatment are to 319 

some extent systematic and predictable [8]. Our results add to this evidence, showing that 320 

responses to a behavioural treatment for anomia are at least somewhat predictable at the 321 
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individual level. We assessed models derived from demographic variables, and from pre-322 

treatment behavioural and lesion data. Models were derived via PLS regression, drawing on 323 

efficient predictor dimensionality reduction and thus obviating the need for either algorithmic 324 

or a priori feature selection. These models provide a sound way to establish at an individual 325 

level whether pre-treatment data include signals that might be used to predict treatment 326 

responses.  327 

Many of the models we tested made significantly better predictions than those of a 328 

baseline model, in which each patient’s prediction was simply the mean response of the 329 

group (see Table 1). However, the best model employed lesion location data, derived from 330 

MRI, plus the hours of therapy undertaken by each patient. As hours of therapy alone has 331 

very little predictive power, the results suggest that the benefit of increased therapy depends 332 

on lesion location. This may explain why detecting therapy dose effects has been so 333 

challenging [21]. Notably, we could not predict training effort, as indexed by hours of 334 

therapy undertaken at the individual level, from any of the other data considered here.  335 

Our best prognostic model, including lesion data and hours of therapy, is broadly 336 

sensible. The negative weights assigned to the left inferior frontal gyrus, the hippocampus 337 

and the cerebellum (more damage = less improvement) are consistent with prior work 338 

emphasising the importance of the preservation of these regions in the response to aphasia 339 

therapy (e.g. [22-24]). And the positive weights may best be explained as emphasising those 340 

regions where more extensive damage predicts better preservation of the regions that appear 341 

to support better responses to treatment (see Figure 3).  342 

Notably, we did not employ any feature selection in this work: i.e. we did not attempt 343 

to select the subset of lesion location variables that might best explain the patients’ treatment 344 

responses. This is a limitation of the current work, made necessary because feature selection 345 
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encourages over-fitting in small samples [8]: the only general way to circumvent this issue is 346 

via external validation: testing the best model from this study in a second, completely 347 

independent sample. But this is no simple endeavour, because the time and effort required to 348 

run these studies is substantial, and we do not yet know how similar such a study would need 349 

to be to that reported here. Does the treatment have to stay exactly the same? How much can 350 

the inclusion criteria vary? Work to address these questions, by measuring how prognostic 351 

models generalise across independent samples (e.g. as in [25]) and different therapy studies, 352 

is ongoing.  353 

Perhaps surprisingly, our models did not benefit from the addition, either of the initial 354 

severity or the demographic data that we considered – suggesting that this treatment’s 355 

efficacy did not depend on the patients’ ages, sex, time post-stroke or pre-treatment 356 

impairment severity (once lesion location had been taken into account). Whether these null 357 

results generalise in larger samples, is a question for future work. But our results do suggest 358 

that pre-treatment structural neuroimaging (lesion data), in combination with treatment dose, 359 

can be used to predict individual patients’ therapeutic anomia intervention response. This is 360 

consistent with prior results, suggesting that the individual responses to treatment for aphasic 361 

stroke might interact with where and how much lesion damage individual patients have 362 

suffered [8]. We hope that these results will encourage further attempts to explain and predict 363 

inter-individual differences in treatment responses, with pre-treatment data, opening the way 364 

for a more positive and personalised treatment approach for aphasia. 365 
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Supplementary Table S1: Demographic and clinical data of the patients 429 

Patient 

ID 

Sex Age Lesion 

volume 

(cm3) 

Months 

post-stroke 

BNT CAT PALPA 

9 

PALPA 

8 

Hours of 

training 

P1  M  64  171  78  47  15  20  6  40  

P2  F  49  44  17  12  15  21  6  31  

P3  M  54  294  78  14  11  10  0  77  

P4  M  41  234  65  28  14  24  8  116  

P5  M  49  144  57  34  15  17  2  50  

P6  M  66  109  61  52  15  24  6  63  

P7  F  44  82  72  34  14  24  10  59  

P8  M  54  95  34  35  15  24  8  70  

P9  M  67  341  47  42  14  24  9  85  

P10  M  41  75  8  23  13  23  8  89  

P11  M  63  139  264  51  15  24  9  81  

P12  M  47  314  52  16  15  22  6  77  

P13  M  56  150  40  1  14  18  2  61  

P14  F  60  104  121  27  13  22  7  120  

P15  M  41  114  18  42  14  21  3  43  

P16  F  21  155  33  18  15  20  3  108  

P17  F  47  161  53  9  9a  12  0  76  

P18  F  43  165  5  21  15  23  1  67  

Mean (SD)  50 

(12)  

161 (84)  61 (58)  28 

(15)  
14 

(2)  

21 (4)  5 (3)  73 (25)  

  Max score possible  60  15  24  10    
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TRIPOD checklist for prediction model development. 432 

Section/Topic Item Checklist Item Page 

Title and abstract 

Title 1 
Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted. 

X 

Abstract 2 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions. 

X 

Introduction 

Background and 
objectives 

3a 
Explain the medical context (including whether diagnostic or prognostic) and rationale for 
developing or validating the multivariable prediction model, including references to existing 
models. 

x 

3b 
Specify the objectives, including whether the study describes the development or validation of 
the model or both. 

x 

Methods 

Source of data 
4a 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), 
separately for the development and validation data sets, if applicable. 

x 

4b 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of 
follow-up.  

X 

Participants 

5a 
Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres. 

x 

5b Describe eligibility criteria for participants.  X 

5c Give details of treatments received, if relevant.  X 

Outcome 
6a 

Clearly define the outcome that is predicted by the prediction model, including how and when 
assessed.  

X 

6b Report any actions to blind assessment of the outcome to be predicted.  X 

Predictors 
7a 

Clearly define all predictors used in developing or validating the multivariable prediction model, 
including how and when they were measured. 

X 

7b Report any actions to blind assessment of predictors for the outcome and other predictors.  X 

Sample size 8 Explain how the study size was arrived at. x 

Missing data 9 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, 
multiple imputation) with details of any imputation method.  

x 

Statistical analysis 
methods 

10a Describe how predictors were handled in the analyses.  X 

10b 
Specify type of model, all model-building procedures (including any predictor selection), and 
method for internal validation. 

X 

10d 
Specify all measures used to assess model performance and, if relevant, to compare multiple 
models.  

X 

Risk groups 11 Provide details on how risk groups were created, if done.  X 

Results 

Participants 

13a 
Describe the flow of participants through the study, including the number of participants with 
and without the outcome and, if applicable, a summary of the follow-up time. A diagram may 
be helpful.  

X 

13b 
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for predictors and 
outcome.  

X 

Model 
development  

14a Specify the number of participants and outcome events in each analysis.  X 

14b If done, report the unadjusted association between each candidate predictor and outcome. X 

Model 
specification 

15a 
Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 

X 

15b Explain how to the use the prediction model. X 

Model 
performance 

16 Report performance measures (with CIs) for the prediction model. X 

Discussion 

Limitations 18 
Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 
missing data).  

X 

Interpretation 19b 
Give an overall interpretation of the results, considering objectives, limitations, and results 

from similar studies, and other relevant evidence.  
X 

Implications 20 Discuss the potential clinical use of the model and implications for future research.  X 

Other information 

Supplementary 
information 

21 
Provide information about the availability of supplementary resources, such as study protocol, Web 
calculator, and data sets.  

x 

Funding 22 Give the source of funding and the role of the funders for the present study.  x 
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