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Abstract

Finding optimal parameters for force fields used in molecular simulation is a
challenging and time-consuming task, partly due to the difficulty of tuning mul-
tiple parameters at once. Automatic differentiation presents a general solution:
run a simulation, obtain gradients of a loss function with respect to all the pa-
rameters, and use these to improve the force field. This approach takes ad-
vantage of the deep learning revolution whilst retaining the interpretability and
efficiency of existing force fields. We demonstrate that this is possible by pa-
rameterising a simple coarse-grained force field for proteins, based on training
simulations of up to 2,000 steps learning to keep the native structure stable. The
learned potential matches chemical knowledge and PDB data, can fold and re-
produce the dynamics of small proteins, and shows ability in protein design and
model scoring applications. Problems in applying differentiable molecular simu-
lation to all-atom models of proteins are discussed along with possible solutions.
The learned potential, simulation scripts and training code are made available at
https://github.com/psipred/cgdms.

Introduction
Molecular simulation has been successful in making predictions and understanding exper-
imental data [1, 2]. Treating the system with an appropriate level of complexity, usually
all-atom molecular mechanics or residue-level coarse-graining when simulation proteins, is
necessary to access the timescales required for the property under investigation [3, 4]. It is
generally agreed that force fields are not optimally parameterised [5, 6], for example signifi-
cant effort has gone into modifying a handful of parameters in standard force fields to better
represent both ordered and disordered proteins [7, 8, 9]. Such efforts have improved the force
fields without changing their functional form, an attractive proposition when the alternative
is adding complexity that restricts the timescales available for study.
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Meanwhile, deep learning has had a major impact on many areas of biology, achieving state
of the art performance in fields such as protein structure prediction [10]. A number of groups
have applied these advances to molecular simulations [11, 12, 13] including learning coarse-
grained potentials [14, 15, 16, 17, 18], learning quantum mechanical potentials [19, 20, 21,
22], improving sampling [23], and improving atom typing [24]. Whilst promising, many
of these approaches show limited success when used on systems they were not trained on.
Methods trained on trajectory data also suffer from a lack of standardised simulations across
many systems due to the high cost of obtaining such trajectories. Other groups have used
inventive machine learning strategies for end-to-end protein structure prediction [25] and to
score static conformations [26, 27].

The idea of differentiating through the numerical solution of Newton’s equations of motion to
obtain gradients that can be used to improve a learned force field has been discussed [28], but
is yet to produce generally useful force fields. Conceptually the idea is related to recent work
on neural differential equations [29, 30]. The idea is appealing because a large number of
parameters can be improved at once, rather than the small numbers currently modified. The
gradients are also exact, at least with respect to the limitations of the numerical integration
and the loss function used. Only recently has the hardware and software been available to run
such simulations.

Previous studies utilising differentiable molecular simulation (DMS) have trained neural net-
work potentials, ranging from graph neural networks [28] to ambitious protein folding simu-
lators running Langevin dynamics [31]. Whilst training neural networks may be an effective
solution, as discussed above there is much room for improvement in existing force fields.
It makes sense to try and improve these where possible rather than moving to a new func-
tional form, which has the additional advantage of retaining the physical interpretability of
conventional force fields. Neural networks are also slower to run than existing force fields,
meaning that to avoid reducing available simulation time the network has to be trained to
jump multiple time steps, a rather different problem to learning the instantaneous potential.
This work is also influenced by a number of studies that compare native and training ensem-
bles to improve force fields for protein folding using maximum likelihood and contrastive
divergence approaches [32, 33, 34, 35, 36]. These methods are able to modify many param-
eters at once, but they generally involve comparing conformations to distinguish ensembles
rather than obtaining gradients of some loss function through the simulation.

In this study we use automatic differentiation (AD) [37], the procedure used to train neu-
ral networks where it is called backpropagation, to learn all the parameters from scratch in
a simple coarse-grained force field for proteins. This learned potential matches potentials
derived from chemical knowledge and Protein Data Bank (PDB) statistics, reproduces na-
tive flexibility when used in simulation, is able to fold a set of small proteins not used for
training, and shows promise for protein design and model scoring applications. It adds to
existing coarse-grained potentials used for simulation [38, 39] and model scoring approaches
[40, 41, 42]. More broadly, it points to DMS as a useful technology falling under the banner
of differentiable programming [43], an expansion of the principles of deep learning to the
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concept of taking gradients through arbitrary algorithms.

Results
Differentiable molecular simulation

In this study a coarse-grained potential for proteins is learned in which a protein is repre-
sented by 4 point particles per residue (N, Cα, C and sidechain centroid) with no explicit
solvent. The potential consists of 3 components: pairwise distance potentials (including
covalent bonds), bond angle potentials, and torsion angle potentials associated with the pre-
dicted secondary structure type of a residue. Overall there are 29,360 individual potentials
and 4.1m learnable parameters. The high number of parameters indicates some redundancy
due to the nature of the potentials, but also demonstrates that DMS can be used to learn a large
number of parameters at once. See the methods for further details on the functional form of
the potentials, how forces are calculated and how the model is trained. Proteins presented in
the results do not have homologs present in the training set and single sequence secondary
structure prediction is used throughout the study, so the results are not due to overtraining or
direct learning of evolutionary information. Assessing the method on proteins not used for
training distinguishes this approach from many approaches used to date for machine learning
of molecular simulations.

During training, proteins are simulated using the velocity Verlet integrator in the NVE en-
semble, i.e. with no thermostat. The starting conformation is the native structure and up to
2,000 steps are run. Due to shared parameters at each time step this can be thought of as anal-
ogous to a recurrent neural network (RNN) running on a sequence of length 2,000, as shown
in Figure 1A. In particular, implementing the simulation in the AD framework PyTorch [44]
allows the gradients of a given loss function with respect to each learned parameter to be
calculated, allowing an optimiser to change the parameters to reduce the loss function. How-
ever, the learned parameters are those of the force field rather than the weights and biases
of a standard neural network. log(1+R f ) is used as the loss function, where R f is the root-
mean-square deviation (RMSD) across all atoms in the coarse-grained model between the
conformation at the end of the simulation and the native structure. At the start of learning
the potentials are flat, the forces are zero and the proteins distort according to the randomised
starting velocities, as shown in Figure 1B. Over the course of training, the R f values decrease
as the potential learns to stabilise the proteins in the training set. The training and validation
R f values throughout training are shown in Figure S1.

After training on a dataset of 2,004 diverse proteins up to 100 residues long the potentials
resemble those derived from chemical knowledge and PDB statistics, as shown in Figure 2.
Due to the coarse-grained nature of the simulation the energy values, along with other proper-
ties such as the time step and the temperature used later in the thermostat, cannot be assigned
standard units. Covalent bond distance potentials have strong minima at the correct distance
and steep barriers preventing steric clashing. The steep drops at the edges are an artifact of
training and do not affect simulations or energy scoring, since these values are never occu-
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Figure 1 Differentiable molecular simulation. (A) The analogy between a RNN
and DMS. Learnable parameters are shown in red. The same parameters are used
at each step. There are many variants of RNNs; the architecture shown here has a
single output for a variable length input, which could for example represent sentiment
classification of a series of input words. (B) Learning the potential. A representation
of a component of the potential is shown with energy E plotted against inter-atomic
distance d. At the start of training the potential is flat and the atoms deform according
to their starting velocities. During training the potential learns to stabilise the native
structures of the training set. (C) Force calculation from the potential. Adjacent bins
to the occupied bin are used to derive the force using finite differences. In this case
the force acts to reduce the distance d. See the methods for more details.
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pied when using the trained potential. Bond angle potentials have minima at the true values
with a few degrees of tolerance allowed either side. Same residue Cα-sidechain distance po-
tentials indicate that different rotamer conformations have been learned; Figure 2C shows
that the energy minima for isoleucine agree with the two minima found in the PDB distance
distributions, which correspond to different rotamers. Other cases showing different rotamer
conformations include glutamic acid, glutamine, lysine, methionine and tryptophan. These
can be seen in the complete set of such potentials shown in Figure S2. The torsion angle po-
tentials show different preferences for residues predicted as α-helical, β-sheet and coiled, and
these agree with the true Ramachandran distributions. The glycine torsion angle potentials
indicate lower energy regions in the positive φ space and the proline potentials display a mini-
mum at 0◦ for the ω angle corresponding to cis-proline (data not shown). The potentials most
important for the tertiary structure are the general distance potentials. As shown in Figure 2E
these match potentials of mean force (PMFs) derived from the PDB in many cases, with min-
ima for many pairs around 6 Å driving hydrophobic packing. The steep energy barriers to
steric clashing do not generally extend below 4 Å because extending these is not required
to improve R f during training. Steric clashing is not seen during simulations provided that
a suitable time step is used. The complete set of potentials for general sidechain-sidechain
distances are shown in Figure S3.

We find that the learned potential has surprising local detail, despite being trained only to
minimise the final RMSD. The potential energy when modifying the φ and ψ torsion angles
of alanine dipeptide is shown in Figure 3A. Also shown is the free energy calculated from an
all-atom simulation in Wang et al. 2019 [15]. The learned potential matches the major low
energy conformations of the all-atom model.

Protein structure and dynamics

A learned potential can be used to run a simulation of arbitrary length since gradients are not
recorded. Here we study four small, fast-folding proteins investigated with molecular simula-
tion previously [45, 8, 46]. They all have NMR ensembles or crystal structures available from
experiments [47, 48]. Details on all proteins presented in the results are in Table S1. First we
investigate whether the learned potential can keep the native structures stable and reproduce
residue-level flexibility. As shown in Figure 4B, the native structures are stable under simu-
lation in the NVT ensemble using the Andersen thermostat, with Cα RMSDs less than 4 Å
in all cases. Figure 3B shows that the root-mean-square fluctuation (RMSF) of the Cα atom
of each residue over the simulation generally matches that of the native NMR ensembles,
with an expected increase in flexibility for terminal residues. Chignolin displays more flexil-
ity under simulation than in the NMR ensemble, likely due to the lack of explicit hydrogen
bonding in the coarse-grained model to keep the beta-turn structure rigid. For villin HP36,
we see general agreement between the residue RMSF and the crystal temperature factors.

Next, we ask whether we can fold small proteins and peptides in the NVT ensemble. We find
that the (AAQAA)3 repeat peptide folds into an α-helix over 12m steps when started from a
random conformation, accompanied by a reduction in the energy under the learned potential.
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Figure 2 Components of the learned coarse-grained potential compared to true val-
ues. The energy scale is the same for each plot. Each individual potential consists of
discrete energy values for 140 evenly-spaced bins. (A) Distance potential between
N and Cα in the same alanine residue, i.e. a covalent bond. (B) Bond angle potential
for the N-Cα-C angle in glutamic acid. (C) Distance potential between Cα and the
sidechain centroid on the same residue in isoleucine. (D) Torsion angle potentials in
valine. There are different potentials for residues predicted as α-helical, β-sheet and
coiled. The true ranges of α-helices and β-sheets are shown. (E) Distance potentials
between sidechains for two pairs of amino acids. A PMF calculated from the PDB is
also shown for comparison.
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Figure 3 Protein energy and dynamics. (A) The energy of alanine dipeptide in the
learned potential for different φ and ψ torsion angles. Conformations are generated
with PeptideBuilder [49] at intervals of 2◦ and scored. (B) Free energy for different
φ and ψ torsion angles for all-atom alanine dipeptide. The energy is obtained from
direct histogram estimation from all-atom simulations. The data is taken from Wang
et al. 2019 [15] and provided by the authors. (C) Cα atom RMSF values for simu-
lations of 6m steps using the learned potential starting from the native structure. An
initial burn-in period of 6m steps was discarded. The RMSF values from the NMR
ensembles are also shown, or the crystal temperature factors in the case of villin
HP36.
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This is shown in Figure 4A. We do find that longer sequences are able to form the correct
secondary structure, and often the correct tertiary structure given enough simulation time.
However to better explore tertiary structure formation with available compute resources we
started the proteins from extended conformations containing predicted secondary structure,
i.e. α-helical φ/ψ angles for predicted α-helical residues and extended φ/ψ angles for residues
predicted β-sheet or coiled. The Cα RMSD distributions of the trajectories after a burn-in
period, the starting Cα RMSDs and representative models from the trajectories are shown in
Figure 4B. All the proteins fold to a native-like structure over 12m steps, taking about 36
hours on a single graphics processing unit (GPU) or about 3 times as long on the central pro-
cessing unit (CPU). Chignolin adopts approximately the correct turn structure; the minimum
sampled Cα RMSD of 2.15 Å is comparable to the Cα RMSD of 1.82 Å between the first
model in the NMR ensemble and the crystal structure. Trp-cage lacks native helix formation
in the middle of the protein but the overall shape is correct. BBA forms a native-like structure
with a minimum Cα RMSD during the simulation of 3.47 Å. For villin HP36 the N-terminal
helix faces the wrong direction but the location of the turns and the rest of the structure is
correct.

Models are also shown from web servers implementing two popular methods that carry out
coarse-grained protein folding: UNRES [50, 38], which has two interacting sites per protein,
and CABS-fold [51, 39], which uses a lattice model. Both make use of predicted secondary
structure, and are given the same single sequence prediction used here. Performance of the
learned potential is comparable to these established methods across the proteins tested, with
the learned potential able to break secondary structure elements and add turns in the correct
locations. The comparison to these methods is not exact; they provide less compute resources
on their servers than the 36 hours of GPU time per protein used here, whereas this method
does not employ the replica exchange algorithms used to enhance sampling in UNRES and
CABS-fold. Enhanced sampling approaches to predict the structures of larger proteins with
the learned potential is a topic of future work. We note that larger proteins remain close to
their native structure with low energy when simulated, suggesting that the native structure
is in an energy minimum that can be accessed with appropriate sampling. Another point
of note is that the same simulation parameters are used when simulating all four proteins
(temperature 0.015, coupling constant 25). More accurate models can likely be obtained by
optimising these for each protein but we did not want to risk overfitting. The (AAQAA)3
repeat peptide helix formation simulations were, however, carried out at a higher temperature
(temperature 0.022, coupling constant 100) to faster explore the conformational space needed
to form the helix. We do notice some success in folding from an extended chain with these
higher temperature parameters. For example, villin HP36 reaches a minimum Cα RMSD of
4.19 Å over 12m steps, with the orientation of all the helices correct.

Protein design and model scoring

In order to see whether native sequences are optimal for native structures in the learned poten-
tial, we thread sequences with varying fractions of native amino acids onto the native back-
bone and calculate the energy. Non-native residues are drawn randomly from the distribution
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Figure 4 Folding small proteins and peptides. (A) The (AAQAA)3 repeat peptide
folds from a random starting conformation into an α-helix over 12m steps. The α-
helical fraction and energy in the learned potential are shown with a snapshot taken
every 15,000 steps. (B) Cα RMSD distributions from simulations of 3m steps for 4
proteins starting from predicted secondary structure and native conformations. An
initial burn-in period of 9m steps was discarded. The starting Cα RMSD for the
predicted secondary structure conformation is also shown. A representative structure
found with MDAnalysis [52] is shown (orange) along with models generated from
the web servers of UNRES [50] and CABS-fold [51]. The Cα RMSD to the native
structure (blue) is given for each model.
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of amino acids in the PDB. As shown in Figure 5A we find that an increased fraction of native
amino acids gives a lower energy, with the native sequence lower in energy than most 90%
native sequences and considerably lower in energy than less native sequences. For chignolin
we are able to recover a native-like sequence by starting from a random sequence and making
mutations. At each trial a residue is mutated and the mutation is accepted or rejected based
on the energy change when threaded onto the native structure and the distance through the
trial process (see the methods). After 1,000 trials the sequence obtained is FYDPSTGVSK,
which has 5 of 10 residues identical to the native sequence of YYDPETGTWY.

We also investigate whether the potential is able to distinguish between native structures and
close decoys. Models up to 12 Å from the native structure were obtained using 3DRobot
[53], which generates diverse and well-packed decoys using fragment assembly and energy
minimisation. As shown in Figure 5B, the native structure has low energy compared to the
decoys for Trp-cage and villin HP36. Chignolin was too small to run 3DRobot on. For BBA
many decoys are lower in energy than the native structure. A number of these lower energy
decoys are topological mirrors in which the β-turn faces the other way, but the structure of
the protein is otherwise native-like. The problem of mirror topologies has been discussed
previously for protein structure determination [54] and de novo protein structure prediction
[55].

Discussion
The purpose of learning a coarse-grained force field for proteins is to demonstrate that DMS
can be used to learn all the parameters from scratch in simple, interpretable force fields. It is
notable that running training simulations from the native structure, reaching up to 4 Å RMSD
to the native structure over 2,000 steps during training, is sufficient to learn a potential that
can fold proteins from an extended chain of secondary structure elements over a few million
steps. The same potential can also be used for model scoring, despite the energy not being
explicitly used at all beyond force calculation during training. This particular force field may
be useful for exploring the conformational space of proteins, discovering folding pathways,
assessing flexible or disordered regions of proteins, or predicting structure in combination
with co-evolutionary or experimental constraints [56].

Here we have used RMSD as a simple loss function, but there are a variety of possible loss
functions for DMS suitable for other systems. Examples include RMSD over the course
of a simulation, the radial distribution function, the flexibility of a set of atoms during the
simulation, the distance between two molecules, supramolecular geometry (e.g. assembly of
molecules into fibres), the correlation of different particle velocities, the energy of a system,
the temperature of a system, a measure of phase change, steered molecular dynamics, or some
combination of the above. Many of the possible properties are based on static reference struc-
tures, thermodynamic observables or chemical knowledge, meaning that expensive trajectory
data is not necessarily required. Complex constraints that might be difficult to use in the sim-
ulation itself can be targeted via the loss function. Any property that can be computed from
the system with a meaningful gradient can be used to guide a learned force field to reproduce
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Figure 5 Protein design and model scoring. (A) The energy of sequences with vary-
ing fractions of native residues threaded onto the native structure. 30 sequences are
scored for each fraction. A short minimisation of 100 steps is carried out for each se-
quence and the energy is recorded at the end of the minimisation. (B) The energy of
well-packed decoys generated using 3DRobot [53] is compared to the Cα RMSD of
the decoys (blue dots) and the energy of the native structure (orange line). Chignolin
was too small to run 3DRobot on.
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desired behaviour. This sets DMS apart from contrastive divergence approaches that train
entire force fields by teaching them to distinguish native and non-native ensembles. Possible
applications include combining DMS with learned atom typing [24] to study protein-ligand
binding, improving torsion angle potentials to balance bonded and non-bonded terms [57],
and exploring whether multi-body terms can make molecular mechanics potentials more ac-
curate. The development of software packages appropriate for DMS such as JAX MD [58],
TorchMD [18], DeePMD-kit [59], SchNetPack [60], and DiffTaichi [61], along with the ef-
fort to make programming languages such as Julia differentiable by default [62], will assist
in the development of DMS.

Other coarse-grained systems may be immediately amenable to DMS, for example protein
aggregation [63]. For DMS to be used to parameterise all-atom molecular mechanics force
fields - either from scratch, by tuning existing parameters, or by adding new atom types -
a few issues need to be addressed. Algorithms such as particle mesh Ewald for long-range
electrostatic interactions [64] will have to be implemented in differentiable frameworks. The
best form for temperature control during training will have to be considered, as stochasticity
will likely affect the gradients. In this study, the thermostat was not used during training.
Even the form of the numerical integration will have to be explored, as it is unclear that
velocity Verlet integration with a standard time step is best-suited to DMS. It has been shown
that discrete time steps can lead to incorrect gradients [61]. Ensuring continuous potentials
should prevent this, and the standard all-atom potentials - harmonic, cosine, Coulomb and
Lennard-Jones - are all continuous. However, cutoffs for short-range forces and neighbour
lists will have to be carefully considered. Finding the parameters for a simple water model
would be an ideal system to start with [18].

DMS, like deep learning, appears to be quite sensitive to hyperparameters, and generally
appropriate choices for these will have to be discovered. Learned potentials being amenable
to physical interpretation helps when investigating such issues, as well as alleviating problems
of under-specification and shortcut learning identified for neural networks [65]. For example,
increasing the learning rate in this study gives jagged potentials, whereas decreasing it leads
to prohibitively slow training.

As with analogous developments in deep learning, a limitation of DMS is the GPU memory
required. Most deep learning software frameworks are geared towards reverse-mode AD, in
which intermediate results of the forward pass of the network are stored and used during the
reverse pass to calculate gradients. This approach is efficient when the number of trainable
parameters is large, as is usually the case with neural networks. However, the requirement
to store intermediate results means that it scales linearly in memory with the number of
steps for DMS. By contrast, forward-mode AD does not store intermediate results because
the gradients are calculated in tandem with the forward pass. The memory required does
not therefore increase with the number of steps, though the number of learned parameters
does affect the computation speed. Use of forward-mode AD may provide a way for DMS
to use the large number of steps during training that would be required to learn molecular
mechanics force fields. Advances in hardware, GPU parallelism and algorithmic techniques
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such as gradient checkpointing, invertible simulations [66] and offloading compute to the
CPU [67] also present solutions to the issue of GPU memory.

Though applications of deep learning in biology have been impressive, the models used have
been largely taken off the shelf from other fields. DMS provides a general approach to im-
proving and expanding the force fields that have been crucial for biological understanding.
It uses the techniques and frameworks of neural network training but relies on proven, inter-
pretable functional forms rather than deep neural networks themselves.

Methods
Dataset

The PDB [47] was searched for protein chains with 20 to 100 residues, no internal missing
residues and resolution 2.5 Å or better. These chains were clustered at 30% sequence identity
to reduce redundancy. Proteins homologous to those used in the results were removed from
the dataset by eliminating overlap at the same ECOD T-level [68] and removing hits when
searching the PDB using BLAST with an E-value of 1.0. The resulting chains were randomly
split into a training set of 2,004 chains and a validation set of 200 chains used to monitor
training. Single sequence secondary structure prediction was carried out using PSIPRED
[69]. Details of the proteins used in the results are given in Table S1. Dataset collection
and other aspects of the work were carried out using BioStructures.jl [70] and the Bio.PDB
module of Biopython [71].

Molecular simulation

The system was implemented in PyTorch [44]. A protein is represented in a coarse-grained
manner with 4 point particles for each residue corresponding to backbone nitrogen, backbone
Cα, backbone carbonyl carbon and the centroid of the sidechain heavy atoms. There is no
explicit solvent, no periodic boundary conditions and no neighbour list. The masses are set to
15 for N (includes amide H), 13 for Cα (includes H) and 28 for C (includes carbonyl O). The
sidechain mass for each amino acid is the sum of the atom masses in the all-atom sidechain,
with glycine set artificially heavier at a mass of 10.

The overall learned potential used to obtain the forces at each time step consists of 3 com-
ponents, each consisting of many individual potentials. Each individual potential consists of
a number of energy values corresponding to 140 bins evenly distributed over a specified dis-
tance or angle range. Overall there are 29,360 individual potentials and 4,111,000 learnable
parameters.

1. Pairwise distance potentials. There are 80 atom types (4 atoms for 20 amino acids) and
each pair has a distance potential. In addition there are separate potentials for each atom
pair on residues close in sequence with residue separations i→ i to i→ i+4, allowing
the model to learn local constraints separately from global preferences. Covalent bond
interactions are included implicitly in the potentials for atom pairs on the same residue,
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and the i→ i+1 potentials in the case of the C-N backbone covalent bond. There are
28,960 pairwise distance potentials in total (3,240 general, 120 same residue, 6,400 ×
4 close residues). Each distance potential has 140 bins distributed between 1 Å and
15 Å (0.1 Å width per bin). For the close residue potentials the bins are distributed
between 0.7 Å and 14.7 Å (0.1 Å width per bin), and for same residue pairs between
0.7 Å and 5.6 Å (0.035 Å width per bin).

2. Bond angle potentials. There are 5 bond angles in the model - 3 in the backbone, 2
to the sidechain centroid - and there is a separate potential for each of these for each
amino acid. There are 100 bond angle potentials in total (5× 20). Each angle potential
has 140 bins distributed between 60◦ and 180◦ (0.86◦ width per bin).

3. Torsion angle potentials. There are 5 torsion angles in the model - 3 in the backbone,
2 to the sidechain centroid - and there is a separate potential for each of these for each
amino acid. There are also separate potentials for residues predicted as α-helical, β-
sheet or coiled to help in secondary structure formation. There are 300 torsion angle
potentials in total (5 × 20 × 3). Each torsion angle potential has 140 bins distributed
between -180◦ and 180◦ (2.57◦ width per bin) with an extra bin on either end to allow
the derived force to be periodic.

At each simulation time step the force is calculated as the negative gradient of the potential
using the following finite differencing procedure for each individual potential:

1. Calculate the current value of the property, e.g. the distance between two atoms or a
bond angle.

2. Find the bin bi with the closest bin centre to the value, excluding the first and last bins.
For distances this means that all distances over the maximum bin distance (e.g. 15 Å)
are treated as being in the penultimate bin.

3. Calculate F = 1
2(E(bi−1)−E(bi+1)), where E(bi) is the energy of bin bi.

4. Multiply F by the appropriate vector on each atom to apply the force [72].

This is shown in Figure 1C. The sum of the resulting forces on each atom is divided by
the atomic masses to get the accelerations. This approach is differentiable since it can be
implemented in a vectorised manner in PyTorch. Whilst more sophisticated methods such as
a sum of Gaussians or spline fitting could be adopted to obtain the force from the potential,
this finite differencing procedure was found to be memory-efficient and effective. It was
also found to be more effective than learning force values directly, an approach that does not
immediately provide an interpretable potential that can be used to calculate energies.

The coordinates and velocities are updated at every time step using the velocity Verlet integra-
tor. If x(t) is the coordinates at time t, v(t) is the velocities at time t, a(t) is the accelerations
at time t, and ∆t is the time step, then the procedure is:

1. Calculate x(t +∆t) = x(t)+v(t)∆t + 1
2a(t)∆t2.
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2. Obtain a(t +∆t) from the learned potential as described above using x(t +∆t).

3. Calculate v(t +∆t) = v(t)+ 1
2(a(t)+a(t +∆t))∆t.

4. Update t +∆t to t and go to step 1.

No thermostat was used during training as it was not found to improve performance. Training
therefore takes place in the NVE ensemble. A time step of 0.02 was used for training.

During production runs used to obtain results, which consisted of many more steps than
during training, the Andersen thermostat was used to keep temperature constant [73]. Pro-
duction runs therefore take place in the NVT ensemble. At each step, each atom is given a
new velocity with probability equal to the time step divided by a coupling constant. The new
velocities are drawn from a normal distribution with mean 0 and standard deviation equal to
a temperature value. Simulations were run with temperature 0.015 and coupling constant 25,
apart from the (AAQAA)3 repeat peptide helix formation simulations which were run with
temperature 0.022 and coupling constant 100. A lower time step of 0.004 was used during
production runs to ensure stability of the simulations. We did try using Langevin dynamics
for production runs but found it did not improve the results.

Training

During training, simulations are started from the native structure. Starting velocities are
drawn from a normal distribution with mean 0 and standard deviation 0.1. At the end of each
simulation R f is calculated as the RMSD across all atoms in the coarse-grained model of the
final conformation compared to the native structure using the Kabsch algorithm. log(1+R f )
was used as the loss function, which was found to give better performance than using R f .
Each parameter in the learned potential then has an associated gradient from AD in PyTorch,
which the optimiser uses to modify the potential to reduce the R f from future simulations. At
the start of training all values in the potential are set to zero. We did try starting the potentials
from PMFs derived from the PDB but this did not improve results. The Adam optimiser [74]
was used with a learning rate of 10−4. Gradients are accumulated for 100 proteins before the
optimiser updates the gradients. At epoch 38 the ADAM optimiser was reset with a lower
learning rate of 5×10−5.

One epoch of training consists of simulating each protein in the training set in a random order.
A batch size of 1 was used due to memory constraints. The number of steps in the simulation
was increased over the course of training, starting at 250 for the first epoch and increasing
by 250 every 5 epochs to a maximum of 2,000 at epoch 36 and beyond. This allowed the
model to access lower R f values during early epochs to learn basic chemical principles such
as steric clashing and covalent bonding. Further increasing the step number was prevented by
memory limitations of the GPU (32 GB); during training the memory required scales linearly
with the number of steps due to the requirements of storing intermediate computations for
reverse mode AD. This limitation is not present for production runs, which use memory
constant in the number of steps and typically less than 1 GB. Training was carried out on a
NVIDIA Tesla V100 for 45 epochs, which took around 2 months. This can likely be sped up
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using multiple GPUs. The training and validation R f values throughout training are shown
in Figure S1. The protein folding simulations shown in Figure 4B took around 36 hours for
12m steps, equating to around 10 ms per time step. This was constant across protein sizes
tested due to the vectorised operations used. Simulation time is around 3 times slower on the
CPU depending on the hardware used.

Analysis

Throughout this study we analyse only coarse-grained models, however all-atom models can
be generated using software such as PULCHRA [75] if required. Alanine dipeptide confor-
mations were generated using PeptideBuilder [49] at intervals of 2◦. The (AAQAA)3 repeat
peptide simulation was started from a random conformation where each residue was given a φ
angle between -180◦ and -30◦ and a ψ angle between -180◦ and 180◦. α-helical fraction was
determined by the fraction of non-terminal residues where the φ angle was between -120◦

and -30◦ and the ψ angle was between -60◦ and 30◦. The α-helical fraction was averaged
over a window of 5 snapshots either side of the snapshot in question for ease of visualisation.
For simulations starting from predicted secondary structure, a residue was given an α-helical
starting conformation (φ -60◦, ψ -60◦) if predicted α-helical and an extended starting con-
formation (φ -120◦, ψ 140◦) if predicted β-sheet or coiled. The representative structures in
Figure 4 were found using MDAnalysis [52] and were visualised in PyMOL [76] after be-
ing run through PULCHRA. UNRES models were generated on the web server [50] using
the parameters for the MREMD structure prediction example in the tutorial. The number of
steps was increased to the maximum of 107. CABS-fold models were generated on the web
server [51] with default de novo parameters. In both cases we use the same single sequence
secondary structure prediction as for our method.

The fraction of native sequence results involved threading a sequence onto the native struc-
ture. Sequences were chosen by mutating a given fraction of residues to amino acids taken
from the distribution of amino acids in the PDB. 30 sequences are generated for each fraction.
Each sidechain centroid is placed at a distance from the Cα atom corresponding to the mini-
mum in the learned potential for that amino acid, along the vector linking the Cα atom and the
native sidechain centroid. A brief energy minimisation of 100 steps in the learned potential
is carried out and the final energy is used as the energy of the sequence. For the chignolin
design task 1,000 trial mutations were made. Each trial involved mutating one residue to
an amino acid taken from the PDB distribution, calculating the new energy by threading the
sequence and running energy minimisation as above, and accepting or rejecting the mutation.
Mutations resulting in lower energy are always accepted, and mutations resulting in a higher
energy of 10 or more energy units are always rejected. Mutations resulting in an energy in-
crease up to 10 energy units are accepted with a probability that changes linearly from 0.25
at the start of the simulation to 0.0 at 500 trials, and remains at 0.0 for the remaining trials.

3DRobot models were generated using the 3DRobot standalone software with default param-
eters [53]. Plots throughout were produced with Matplotlib [77], seaborn [78] and PyEMMA
[79] for Figure 3B.
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Data availability

The learned potential, simulation scripts and training code are made available under a per-
missive license at https://github.com/psipred/cgdms.
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Figure S1 Training progress. The mean final RMSD across all atoms in the coarse-
grained model for each epoch is shown for the training set and the validation set.
As outlined in the methods the number of steps simulated starts at 250 and increases
by 250 every 5 epochs, reaching a maximum of 2,000 steps at epoch 36. At epoch
38 the ADAM optimiser was reset with a lower learning rate. The parameters after
epoch 45 are used in the results.
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Figure S2 Learned distance potentials between the Cα atom and the sidechain cen-
troid for each amino acid. The orange lines indicate minima in the PDB distributions
of these distances, corresponding to different rotamers.
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Figure S3 Learned distance potentials between the sidechain centroids for each
amino acid pair. On each plot the x-axis is the distance between the sidechain cen-
troids and runs from 1 Å to 15 Å. The y-axis is the energy in the learned potential and
runs from -0.2 to 0.23. There are separate potentials for residues close in sequence,
not shown here.
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