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ABSTRACT 

Remembering is not a static process: when retrieved, a memory can be destabilized and 

become prone to modifications. This phenomenon has been demonstrated in a number of brain 

regions, but the neuronal mechanisms that rule memory destabilization and its boundary 

conditions remain elusive.  Using two distinct computational models that combine Hebbian 

plasticity and synaptic downscaling, we show that homeostatic plasticity can function as a 

destabilization mechanism, accounting for behavioral results of protein synthesis inhibition upon 

reactivation with different reexposure times. Furthermore, by performing systematic reviews, we 

identify a series of overlapping molecular mechanisms between memory destabilization and 

synaptic downscaling, although direct experimental links between both phenomena remain 

scarce. In light of these results, we propose a theoretical framework where memory 

destabilization can emerge as an epiphenomenon of homeostatic adaptations prompted by 

memory retrieval.  

INTRODUCTION 

 After retrieval, processes such as reconsolidation or extinction can alter the content and/or 

strength of memories. Behavioral studies typically describe these two phenomena as separate 

entities that are triggered by distinct retrieval conditions. In fear conditioning, for example, a 

long session of nonreinforced reexposure to the context leads to a decrease in the conditioned 

response through extinction, while shorter reexposure durations lead to reconsolidation and 

reinstate susceptibility to amnestic agents (Bustos et al., 2009; Pedreira and Maldonado, 2003). 

Other boundary conditions such as the strength and age of the memory and the degree of 

prediction error can also influence which process will occur (Eisenberg et al., 2003). However, it 
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is still unclear how the transition between these opposite behavioral outcomes develops 

(Almeida-Corrêa and Amaral, 2014; Cassini et al., 2017; Merlo et al., 2014). 

Pharmacological interventions such as protein synthesis inhibitors can block both 

reconsolidation and extinction, suggesting that similar plasticity systems might underlie the two 

phenomena. To address this hypothesis, Osan et al. (2011) investigated the transition between 

them using an attractor neural network model, in which the interaction between Hebbian 

plasticity and a mismatch-driven synaptic weakening process led to different behavioral 

outcomes, depending on the similarity between the original learning and the new experience. 

Although their results showed that both reconsolidation and extinction could be produced by 

similar plasticity systems, the mismatch-induced degradation term was not related to a 

biologically plausible form of plasticity, making this a largely theoretical proposal. 

Nevertheless, pharmacological evidence does suggest the existence of a memory 

destabilization system, which includes mechanisms such as NMDA receptors (Ben Mamou et al., 

2006; Milton et al., 2013; Nakayama et al., 2016; Yu et al., 2016), the ubiquitin-proteasome 

system (Da Silva et al., 2013; Fustiñana et al., 2014; Lee, 2008; Lee et al., 2008), CB1 receptors 

(Lee et al., 2019), L-type voltage-gated calcium channels (LVGCCs) (Suzuki et al., 2008) and 

calcineurin (Fukushima et al., 2014; Yu et al., 2016). This set of mechanisms, derived from 

behavioral studies in which destabilization is blocked by pharmacological agents, can be useful 

to speculate on possible synaptic correlates of memory destabilization. 

Interestingly, there is evidence that some forms of negative synaptic plasticity share 

molecular mechanisms with memory labilization. The induction of long-term depression (LTD), 

for example, requires NMDA receptors in the hippocampus (Dudek and Bear, 1992) and 

involves endocannabinoids as retrograde messengers in the striatum (Gerdeman et al., 2002), 

neocortex (Nevian and Sakmann, 2006) and cerebellum (Qiu and Knöpfel, 2009). Beyond 

Hebbian mechanisms, synaptic weakening can also be induced by homeostatic plasticity, which 

adjusts synapse number and/or strength in response to chronic changes in neural activity (Marder 

and Goaillard, 2006; Turrigiano, 2012). Several types of plasticity can drive homeostatic 

adjustments at the cellular or network level (Table 1). Among these, synaptic weakening can 

occur through synaptic scaling (Turrigiano, 2008), heterosynaptic plasticity (Chistiakova et al., 

2014), and sliding threshold modifications (Keck et al., 2017). 
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Homeostatic 

Plasticity type 

Spatial 

scale 

Onset 

time 

Spike-time 

dependence  

NMDA 

dependence 

Response mechanisms References 

Synaptic scaling Global (cell-

wide) 

Hours to 

days 

Downscaling 

only 

Downscaling 

only 

Multiplicative change in 

synaptic weights 

(Siddoway et 

al., 2014; 

Turrigiano, 

2008) 

Heterosynaptic 

plasticity 

Local 

synapses 

Minutes 

to hours 

Yes Yes Average changes in the 

weights of specific 

synapses, depending on 

initial synaptic 

properties 

(Chistiakova 

et al., 2015, 

2014) 

Sliding 

threshold (BMC 

model) 

Global (cell-

wide) 

Days Yes Yes LTP/LTD threshold 

change depending on 

initial synaptic 

properties 

(Bridi et al., 

2018; Tara 

Keck et al., 

2017) 

Excitation/ 

inhibition 

balance 

Global 

(circuit-

wide) 

Hours to 

days 

No Yes Circuit-wide 

remodeling of 

inhibitory synapse 

clusters and dendritic 

spines  

(Chen et al., 

2012; Sohal 

and 

Rubenstein, 

2019) 

Intrinsic 

excitability 

modulation 

Local or 

cell-wide 

Seconds 

to hours 

No Yes Modifications of 

membrane conductance 

and voltage-gated ion 

channel expression, 

either locally or cell-

wide. 

(Debanne et 

al., 2019; 

Marder and 

Goaillard, 

2006) 

Table 1: Homeostatic plasticity types and their features. Spatial scale refers to which spatial 

extent a given plasticity operates. Local mechanisms act on individual or small groups of 

synapses within a neuron, while other processes are able to evoke cell-wide or circuit-wide 

responses for excitability adjustment. Onset time denotes the time range in which each type of 

plasticity is commonly observed. Spike-time dependence describes whether a form of plasticity 

follows spike-timing plasticity rules. NMDA dependence describes whether it depends on 

NMDA receptors. Neuronal response to activity change briefly describes the circuit and cellular 

adaptations to chronic changes in the firing rate. BCM, Bienenstock-Cooper-Munro; NMDAR, 

N-methyl-D-aspartate receptor; LTP, long-term potentiation; LTD, long-term depression. 

 

Unlike Hebbian plasticity, which is typically fast, homeostatic plasticity can take place 

across a variety of timescales (Zenke and Gerstner, 2017). Synaptic downscaling in response to 

increased neuronal firing, for example, can take several hours to occur (Turrigiano et al., 1998), 

matching the relatively slow decay in conditioned responses (Nader et al., 2000) and in synaptic 

potentials (Fonseca et al., 2006) after protein synthesis inhibition upon memory reactivation. 

Moreover, the activity dependence of synaptic downscaling makes it an interesting candidate to 
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explain why memory destabilization requires reactivation to occur. Finally, synaptic downscaling 

also requires mechanisms implicated in labilization, such as NMDA receptor activation (Lee and 

Chung, 2014), AMPA receptor endocytosis (Shepherd et al., 2006), LVGCC activity (Goold and 

Nicoll, 2010; Lee and Chung, 2014), and protein degradation (Jakawich et al., 2010).  

To investigate whether homeostatic plasticity could be a feasible mechanism for retrieval-

induced memory destabilization, we performed a computational study using two different 

network models, previously developed to study each of the processes separately (Osan et al., 

2011; Auth et al., 2020). This was followed by systematic reviews of the molecular mechanisms 

of both phenomena and of existing links between homeostatic plasticity and memory 

destabilization in the literature. 

 

RESULTS 

In order to study whether memory destabilization could arise from homeostatic plasticity, 

we used adaptations of two previously published computational models. The first (Osan et al., 

2011) studied the transition between reconsolidation and extinction in an attractor network, with 

labilization driven by mismatch between the training and reactivation patterns. The second (Auth 

et al., 2020), used a combination of Hebbian plasticity and homeostatic synaptic scaling to 

allocate stimuli as internal representations in a memory network (Auth et al., 2020).  

In both models, we focus on whether synaptic scaling can mediate the different effects of 

Hebbian plasticity blockade on stored memories under various reexposure conditions. More 

specifically, we seek to model the general results observed in Suzuki et al., (2004), in which a 

transition from simple retrieval to reconsolidation to extinction is observed with increasing 

reexposure duration, leading to different effects of protein synthesis inhibition in each case. As in 

Osan et al. (2011), we assume that longer reexposure sessions are associated with increasing 

mismatch between the training and reexposure context representations, and model the patterns 

accordingly in both models. 
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Investigating homeostatic plasticity as a destabilization mechanism in an attractor model of 

reconsolidation and extinction 

Our first model is an adaptation of the attractor network described in Osan et al. (2011). 

This fully connected Hopfield-like network is composed of 100 neurons exhibiting graded 

activity from 0 to 1, driven by their recurrent connections and by an input cue that simulates an 

animal’s current representation of its environment (Figure 1a). In the original model, changes in 

recurrent connection weights occurred through a combination of Hebbian plasticity and a 

mismatch-induced degradation term, which weakened synapses causing mismatch between the 

input cue and the pattern retrieved by the network. The combination of these two forms of 

plasticity led to transitions between simple retrieval, reconsolidation and extinction according to 

the degree of mismatch between initial learning and reexposure, used by the authors to model the 

duration of contextual reexposure in fear conditioning. 

 In our adaptation of the model, the mismatch-degradation term is replaced by a synaptic 

scaling term, which adjusts a neuron’s synaptic input weights according to its firing rate. This 

term, adapted from Tetzlaff et al. (2013), compares a neuron’s firing rate to a desired target 

activity, weakening all excitatory connections received by the neuron if this target is exceeded. 

Thus, while Hebbian plasticity reinforces the connections between two active neurons, synaptic 

weakening due to scaling occurs when the postsynaptic neuron is highly active in the absence of 

presynaptic activity (Figure 1b). 

 The Hebbian learning term is associated with a parameter S that represents the biochemical 

requirements for this form of plasticity. As described in Osan et al. (2011), we vary S to simulate 

the effects of protein synthesis inhibitors or plasticity-enhancing drugs in consolidation, 

reconsolidation, and extinction. Similarly, the synaptic scaling term is associated with a 

parameter κ that represents the ratio between Hebbian plasticity and synaptic scaling. Variation 

in κ is used to simulate the effects of destabilization blockers or enhancers in reconsolidation. 

We model conditioning and reexposure to a context using a sequence of three different cue 

patterns (Figure 1c). After learning a cue pattern unrelated to fear conditioning, the network 

receives a training cue activating two groups of neurons, one representing the context (4 

neurons) and another representing the fearful experience (10 neurons), leading to reinforcement 

of their connections through Hebbian plasticity. The third cue pattern simulates a reexposure 
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session, with activation of context neurons alongside a variable mix of fear neurons and a 

separate group of 10 neurons representing a safe environment. Short reexposure sessions are 

modeled by learning cues that are similar to the training pattern, assuming that presentation of 

the context will initially trigger a strong fear response. For longer reexposure sessions, activation 

of these neurons is gradually replaced by that of safety neurons as a function of reexposure time 

(t), until the extinction pattern (with full activation of the safety neurons and no activation of fear 

neurons) is reached at the maximum duration (t=10). The retrieval test is simulated by presenting 

a cue pattern activating the context neurons and observing the activation pattern to which the 

memory network evolved. As in the original model, retrieval of the training memory attractor is 

assumed to lead to greater freezing behavior than other attractors (see Methods for more detail). 

 

Figure 1: Attractor network model adapted from Osan et al. (2011) (a) Network 

architecture. The model is composed of two networks, representing an animal’s current content 

representation and a memory storage area. Connections from the memory network to the current 

representation are assumed but not explicitly modeled. (b) Network plasticity mechanisms. 

Simultaneous activation of two neurons (red) leads them to reinforce their connections through 

Hebbian plasticity. The Hebbian plasticity term also leads to formation of inhibitory connections 

from active to inactive neurons (blue), presumably mediated by inhibitory neurons. Increased 

activity in a neuron leads to activation of the synaptic scaling term, which lowers the neuron’s 
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input weights globally, leading to weakening of synapses when Hebbian reinforcement is absent. 

(c) Modeling of fear conditioning and reactivation. After learning an unrelated pattern and the 

training memory, the network undergoes a reexposure session with an input of varying similarity 

to the training pattern according to reactivation duration, with longer durations leading to 

progressively dissimilar patterns. After this, retrieval is measured by activating the shared 

neurons between both patterns (i.e. the context) and observing the attractor to which the network 

evolves. 

Results obtained with the model are shown in Figure 2. Under normal conditions, the 

memory network is able to form and retrieve the association between context and fear neurons, 

leading to retrieval of this memory and high freezing at the cued retrieval test. Blockade of 

Hebbian plasticity during the training session prevents this process, leading to a decrease in test 

freezing (Figure 2a), as observed with protein synthesis inhibitor (PSI) administration before or 

shortly after fear conditioning (Schafe et al., 1999; Schafe and LeDoux, 2000).  

The effect of blocking Hebbian plasticity during reactivation, meanwhile, is contingent on 

reexposure duration (i.e., the degree of mismatch between training and reactivation cues). Short 

(t=1, Figure 2b) or intermediate (t=6, Figure 2c) reexposure times lead to retrieval and 

reinforcement of the shock memory in the control group. In this case, blockade of Hebbian 

plasticity during reactivation leads to decay of the original memory, as observed experimentally 

with PSI injection (Nader et al., 2000). For longer reexposure durations, the control group 

network converges to the extinction pattern, leading to low freezing at retrieval. In this case, 

extinction is blocked by inhibition of Hebbian plasticity, causing freezing to be higher than in 

control conditions (Figure 2d). Blockade of synaptic scaling reverses the memory decay caused 

by PSIs in reconsolidation conditions, but potentiates their effect in blocking extinction.  

In accordance with experimental studies (Nader et al., 2000), the effect of PSIs during 

reexposure does not occur if the original learning context is replaced by an unrelated cue pattern 

(Figure 2e). The effect of blocking Hebbian plasticity during low and intermediate reexposure is 

also abolished by blocking synaptic scaling (Figure 2b-c), (Ben Mamou et al., 2006; Lee et al., 

2008). Parameter analysis of the model’s behavior when different values of S (Figure S1) or κ 

(Figure S2) are used during reexposure shows that the effects of PSIs are ‘dose-dependent’, with 

greater inhibition leading to larger effects, while those of synaptic scaling blockade have sharper 

thresholds. We also evaluate how the strength of the original learning influences reconsolidation 

and extinction (Eisenberg et al., 2003; Suzuki et al., 2004) (Figure S3). Different S values in 
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training cause transitions between both processes to occur at different reexposure times in the 

control group, although very low training strength leads to low freezing at the retrieval test 

irrespective of reexposure time or protein synthesis inhibition. 

A summary of results for varying reexposure times can be found in Figure 2f, in which a 

nonlinear transition between reconsolidation and extinction appears around t=7 with standard 

parameters. These results differ from those of Osan et al., 2011 in that memories are sensitive to 

reconsolidation even with short reexposure times (i.e., in the absence of mismatch). This occurs 

because the Hopfield-like framework leads to very accurate pattern completion at reexposure 

when the attractor is reached, leading to similar network activity for short and moderate 

reexposure times (Figure S4). Thus, plasticity rules that are based solely on the activity of the 

memory network (as in the case of our model) will lead to similar results between these 

conditions and thus fail to match experimental results in which reconsolidation blockade is 

contingent upon mismatch (Morris et al., 2006; Pedreira et al., 2004). Nevertheless, it is possible 

that mismatch dependence can occur in models with noisier retrieval, in which patterns retrieved 

during reexposure become progressively dissimilar from training as mismatch increases. 
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Figure 2: Effects of Hebbian plasticity blockade in different protocols. Bars represent mean 

± SEM of freezing values in the retrieval test, calculated on the basis of the retrieved attractor 

(see Methods), for 100 simulations with control conditions (red), Hebbian plasticity blockade by 

PSI injection (blue) or simultaneous Hebbian plasticity and synaptic scaling blockade (green). 

Treatments occur at different moments, as shown by the timelines above graphs, in which M1 

representing an unrelated pattern, M2 corrsponds to the training memory and t indicates the 

reexposure duration. (a) Amnestic effect of Hebbian plasticity blockade (PSI) during initial 

learning of the shock memory. (b) Amnestic effect of Hebbian plasticity blockade in a short 

(t=1) reexposure session. (c) Amnestic effect of Hebbian plasticity blockade in an intermediate 

(t=6) reexposure session. (d) Extinction disruption by Hebbian plasticity blockade in a long 

(t=10) reexposure. (e) No effect of plasticity blockade when an unrelated pattern (M3) is used as 

an input. Blockade of synaptic scaling (No Scal.) reverses the effect of PSIs in reconsolidation 

conditions (b and c) but potentiates extinction blockade in (d). (f) Summary of test freezing for 

the control and PSI groups using reexposure of varying times. A nonlinear transition between 

reconsolidation and extinction is observed between t=6 and t=7, leading to opposite effects of 

PSIs in reconsolidation and extinction. 
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Generating reconsolidation and extinction-like behavior in a network model of homeostatic 

plasticity 

To study whether the network behavior observed in our adaptation of Osan et al.’s model 

could be translated to existing computational models investigating homeostatic plasticity, we 

used a memory allocation model adapted from Auth et al. (2020). This model was originally 

used to show that a combination of Hebbian learning and synaptic scaling could account for 

pattern separation in a recurrently connected network, allocating distinct memories to different 

neuronal populations when partially overlapping cue patterns were presented. 

The model is composed of an input network and a memory network, as well as an inhibitory 

unit connected to the latter (figure 3a). The input area is composed of 36 rate-coded neurons that 

transmit information to a 900-neuron memory network through random feed-forward 

connections, with each neuron in the latter receiving connections from 4 neurons in the former 

(Figure 3b). The memory network is stimulated by setting the firing rate of neurons in the input 

area to 130 Hz for active neurons and 0 for inactive ones. It stores internal representations of the 

environment in its recurrent connections, with each neuron connecting to neighboring neurons 

within a radius of 4 units in a toroidal topology (Figure 3c). The inhibitory unit has bidirectional 

connections with all neurons in the memory area and regulates global activity.  

We consider all connections between excitatory neurons in the model to be plastic. A 

Hebbian plasticity term is activated when pre- and post-synaptic neurons fire simultaneously; in 

our adaptation, we vary its constant S to simulate the effect of protein synthesis inhibitors. As in 

our first model, the synaptic scaling term in the model is dependent on a comparison between 

postsynaptic firing rate and an activity target (Tetzlaff et al.,2011; Tetzlaff et al., 2013).  To 

simulate the effects of blocking synaptic scaling, we vary the constant κ, representing the ratio of 

Hebbian plasticity and synaptic scaling. 

As in the first model, our stimulation protocol aims to model fear conditioning followed by 

different durations of reexposure to the context. Training consists of presenting a cue stimulus 

similar to those used in the original model. This is followed by a reexposure session, in which we 

again assume that increasing duration leads to a gradual increase in mismatch between the 

training and reexposure patterns. With a short reexposure time (t = 0), the same neurons from the 

training session are activated in the input network, while progressively longer reexposure lead to 
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stepwise substitution of these neurons by new neurons until the pattern is completely different 

(i.e., a pure extinction pattern) (Figure 3d). Even though input cues are completely different, 

some degree of activation overlap by the cue can still occur in the memory area due to the 

random divergent connections between neurons in both networks. 

 

Figure 3: Homeostatic plasticity model adapted from Auth et al., 2020. (a) Context 

representation is encoded by the activation of the 36 neurons in the input area. These neurons 

stimulate the 900 neurons in the memory area, which have recurrent connections and 

bidirectional connections with an inhibitory unit. (b) Each excitatory neuron in the memory area 

receives connections from 4 different excitatory neurons in the input area. (c) Recurrent 

connections within the memory area are made with neighboring neurons in a radius of 4, in a 

toroidal topology. (d) Protocol used to model contextual fear conditioning with different 
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reexposure durations. For the training session, a pattern representing the aversive stimulus is 

presented. Afterwards, reactivation is modeled by an input that varies according to reexposure 

duration. Short reexposure durations correspond to patterns similar to that of the training session, 

while progressively longer durations lead to gradual replacement of neurons in the original input 

by new ones. After each session, the recurrent weight of neurons representing each pattern is 

obtained by finding clusters of at least 30 neurons with mean recurrent weights above 40 (see 

Methods). When no cluster is found, the mean weight is considered to be equal to the global 

mean recurrent weight of the memory area. 

After the training and reexposure sessions, we analyze the synaptic weight matrices in the 

memory network to look for neuronal clusters representing each memory. The fear memory 

cluster formed during the training session is observed both after training and after reexposure of 

any duration in the control group (Figure 4a). If there is some degree of mismatch between the 

training and reactivation sessions, this cluster is sometimes updated and allocated in a new 

region that partially overlaps with the original one. When longer reexposure times are used, a 

second memory cluster is formed, which is analogous to an extinction memory and coexists with 

the original one in the network.  

When Hebbian plasticity is decreased to simulate the effect of protein synthesis 

inhibition, the fear memory cluster is maintained when short reexposure times are used (Figure 

4b). With intermediate reexposure durations, however, the decrease of Hebbian plasticity leads 

to marked weakening of synaptic weights in the original memory cluster, mediated by 

uncompensated synaptic scaling. With longer reexposure times, the fear memory is preserved, 

but formation of the extinction cluster is blocked. These results are qualitatively similar to the 

ones obtained in the previous model, with the exception that mismatch is now required for 

reconsolidation blockade, as occurs in Osan et al. (2011) and in several experimental studies (e.g. 

Morris et al., 2006; Pedreira et al., 2004).  

Figure 4c shows the mean recurrent weight of the cluster representing the training session 

for simulations with different reexposure durations. Protein synthesis inhibitors lead to a 

reduction in synaptic strength for all durations, but this effect is more marked in intermediate 

reexposure times (i.e., t values between 6 and 8), and is reduced for longer reexposure sessions in 

which extinction is observed. Meanwhile, the extinction memory cluster starts to appear between 

t values of 8 to 10, reaching a plateau for t ≥ 14, but is not formed when Hebbian plasticity is 

blocked (Figure 4d). When a normalized ratio is used to assess the balance between the fear and 

extinction memories (Figure 4e), the net effect of PSIs on this measure (which is analogous to 
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test freezing) is neutral at short reexposure times, negative at intermediate times and positive at 

longer times, replicating what is observed in Osan et al. (2011) and in experimental studies using 

varying durations of fear conditioning (Bustos et al., 2009; Suzuki et al., 2004).  

We checked the robustness of our analysis by using different minimum cluster sizes and 

weight thresholds for clusters. Variation in minimum cluster size (ρ) has negligible effects on the 

mean weight values observed (Figure S5), while mean weight threshold does affect the results 

when set too low or too high, but not for values between 30 and 50 neurons (Figure S6).  

 

Figure 4: Effects of Hebbian plasticity blockade on synaptic weights within memory 

clusters. (a) Representation of recurrent synaptic weights in the memory area for the control 

group after training (left panel) and after reactivation with different reexposure durations in a 

representative simulation. Heat map represents the mean of recurrent weights for each neuron in 

the memory area, displayed on a 30 x 30 grid. A single cluster, corresponding to the fear 

memory, is observed after training and after short reexposures, while longer reexposure durations 
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lead to the formation of a second cluster representing extinction. (b) Same as (a), but with 

protein synthesis inhibition during reexposure. Decrease of Hebbian plasticity weakens synaptic 

weights in the fear memory cluster, particularly in intermediate reexposure durations, and 

prevents the formation of the extinction cluster. (c) Mean weight value of the fear memory 

cluster in control (blue) and PSI (red) condition after training and reexposure with varying 

duration. Lines represent means of 20 simulations with different connection topologies and 

starting conditions. Dashed green line shows the global connection weight of the network under 

control conditions, including neurons inside and outside the clusters (d) Mean weight value of 

the extinction memory cluster after different durations of reexposure under control and PSI 

conditions. (e) Ratio between the fear and extinction memories for reexposures of different 

durations with and without PSIs. Hebbian plasticity blockade has little effect after short 

reexposure duration, decreases the ratio for intermediate durations and increases it for long 

durations. 

Investigating molecular mechanisms of memory destabilization in the literature 

To investigate whether experimental data support the possibility that homeostatic plasticity 

underlies memory destabilization, we performed a systematic review to investigate the molecular 

mechanisms implied in behavioral studies of destabilization (see Methods for search terms and 

other details). After screening 769 articles, we extracted a total of 88 experiments from 41 

studies that investigated the effect of a pharmacological or genetic manipulation on 

reconsolidation blockade caused by another intervention (Figure S7). The molecular targets 

analyzed in these studies are presented according to brain structure on Table 2.  

Most structure-specific studies were aimed at the amygdala or hippocampus, while others 

targeted the whole brain through systemic injections. For intra-amygdala infusions, NMDA 

receptors were the most commonly studied mechanism, with both nonspecific and GluN2B 

antagonists shown to block destabilization. In the hippocampus, the ubiquitin-proteasome system 

was the most studied mechanism, with its inhibition found to block not only destabilization, but 

also memory enhancement in some studies. LVGCCs and CB1 receptors were also shown to 

block destabilization in the hippocampus in multiple studies. CB1 and dopaminergic receptors, 

as well as the ubiquitin-proteasome system, were implicated in memory destabilization in the 

two structures, suggest that a similar labilization system could be at work in both brain regions.  
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Target # experiments Species Task Main outcome (experiments) 

Amygdala     

NMDA     

GluN2B 

antagonism 

(Ifenprodil) 

5 Rat; 

Mouse 

AFC; 

CFC; CPP 

Blocks destabilization (Ben Mamou et al., 2006; Merlo et 

al., 2015; Nakayama et al., 2016; Yu et al., 2016)  

Antagonism (e.g. 

MK-801) 

2 Rat; 

Mouse 

AFC; CPP Blocks destabilization (Ben Mamou et al., 2006; Li et al., 

2016) 

GluN2A 

overexpression 

1 Mouse AFC Blocks destabilization (Holehonnur et al., 2016) 

Partial agonism 

(D-cycloserine) 

1 Rat CFC Enhances destabilization (Espejo et al., 2016) 

NR2A 

antagonism 

(NVP-AAM077) 

1 Mouse CPP No effect (Yu et al., 2016) 

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (β-

lactacystin) 

3 Rat; 

Mouse 

AFC; 

CFC; IA 

Blocks destabilization (Jarome et al., 2011); blocks 

destabilization and enhancement (Fukushima et al., 2014) 

CB1 receptors     

Antagonism 

(SR141716) 

1 Rat CFC Blocks destabilization (Lee et al., 2019) 

Dopaminergic 

receptors 

    

D1 antagonism 

(SCH23390) 

1 Rat AC Blocks destabilization (Merlo et al., 2015) 

D2 antagonism 

(sulpiride) 

1 Rat AC Blocks destabilization (Merlo et al., 2015) 

Non-selective 

dopamine 

antagonism (α-

flupenthixol) 

1 Rat AC No effect (Merlo et al., 2015) 

AMPA receptors     

GluA2 

endocytosis 

blockade (e.g. 

Tat-GluA23Y) 

2 Rat AFC Blocks destabilization (Hong et al., 2013; Shehata et al., 

2018) 

Antagonism (e.g. 

LY293558) 

3 Rat AFC; 

CTA 

Impairs retrieval (Ben Mamou et al., 2006; Rodriguez-

Ortiz et al., 2012) and no effect (Milton et al., 2013) 

Calcineurin     

Inhibition (e.g. 

FK-506) 

3 Mouse CPP; IA Blocks destabilization (Fukushima et al., 2014); blocks 

destabilization and enhancement (Yu et al., 2016) 

Autophagy     

Inhibition 

(spautin-1) 

1 Rat AFC Partially blocks destabilization (Shehata et al., 2018) 

Induction (tat-

beclin1) 

1 Rat AFC Enhance destabilization (Shehata et al., 2018) 

PP1     

Inhibitor (e.g. 

okadaic acid) 

2 Mouse CPP Blocks destabilization (Yu et al., 2016) 

CaMKII     

Inhibitor (Myr-

AIP) 

1 Rat CFC Blocks destabilization (Jarome et al., 2016) 

Hippocampus 

    

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (e.g. β-

lactacystin) 

6 Rat; 

Mouse 

CFC; 

MWM; 

OR 

Blocks destabilization (Choi et al., 2010; Da Silva et al., 

2013; Furini et al., 2015; Sue-Hyun Lee et al., 2008; Sol 

Fustiñana et al., 2014); blocks destabilization and 
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enhancement (Lee, 2008a) 

CB1 receptors     

Antagonism 

(SR141716) 

3 Rat; 

Mouse 

CFC; 

MWM 

Blocks destabilization (Kim et al., 2011; Lee et al., 2019; 

Suzuki et al., 2008) 

Dopaminergic 

receptors 

    

D1 antagonism 

(SCH23390) 

1 Rat OR Blocks destabilization (Rossato et al., 2015b) 

GABA receptors     

GABAa agonism 

(muscimol) 

2 Rat MWM Impairs retrieval (Rossato et al., 2015a) 

mGLURs     

mGluR1 agonism 

(3HPG) 

1 Rat CFC No effect (Lee and Flavell, 2014) 

LVGCCs     

Antagonism 

(verapamil) 

2 Mouse CFC; 

MWM 

Blocks destabilization (Kim et al., 2011; Suzuki et al., 

2008) 

Na+ channels     

Blockade 

(Tetrodotoxin) 

1 Rat CFC Blocks destabilization (Lee and Flavell, 2014) 

Perirhinal cortex 

    

Cholinergic 

receptors 

    

M1 antagonism 

(pirenzepine) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

M1 agonism 

(CDD-0102A) 

1 Rat OR Enhances destabilization (Stiver et al., 2017) 

Muscarinic 

antagonism 

(scopolamine) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

Non-selective 

agonism 

(carbachol) 

2 Rat OR Enhances destabilization (Stiver et al., 2017) 

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (β-

lactone) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

IP3Rs     

Inhibition (e.g. 

xestospongin C) 

2 Rat OR Blocks destabilization (Stiver et al., 2017) 

GABA receptors     

GABAa agonism 

(muscimol) 

1 Rat OR Impair retrieval (Balderas et al., 2013) 

Nucleus 

accumbens core 

    

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (e.g. 

MG132) 

2 Rat CPP Blocks destabilization (Ren et al., 2013) 

Nucleus 

accumbens shell 

    

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (β-

1 Rat CPP No effect (Ren et al., 2013) 
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lactacystin) 

Medial prefrontal 

cortex 

    

GABA receptors     

GABAa agonism 

(muscimol) 

2 Rat MWM Blocks destabilization (Rossato et al., 2015a) 

Ventral tegmental 

area 

    

Dopaminergic 

receptors 

    

D2 antagonism 

(sulpiride) 

1 Rat AFC Blocks destabilization (Reichelt et al., 2013) 

Systemic injection 

    

NMDA     

Partial agonism 

(D-cycloserine) 

6 Rat CFC Enhances destabilization (Bustos et al., 2010; Espejo et al., 

2016; Ortiz et al., 2014) and no effect (Ortiz et al., 2014) 

Ubiquitin-

proteasome system 

    

Proteasome 

inhibition (β-

lactacystin) 

1 Aplysia BS Blocks destabilization (Lee et al., 2012) 

Cholinergic 

receptors 

    

M1 antagonism 

(dicyclomine) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

M2 antagonism 

(AF-DX 116) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

Muscarinic 

antagonism 

(scopolamine) 

1 Rat OR Blocks destabilization (Stiver et al., 2017) 

Muscarinic 

agonism 

(oxotremorine) 

1 Rat OR Enhances destabilization (Stiver et al., 2017) 

CB1 receptors     

Antagonism 

(SR141716) 

1 Mouse CFC Blocks destabilization (Suzuki et al., 2008) 

Nitric oxide     

Inhibition (e.g. 7-

nitroindazole) 

5 Snail; Rat AFC; 

CFC 

Blocks destabilization (Bal et al., 2017; Balaban et al., 

2014) 

Scavenger 

(carboxy-PTIO) 

1 Snail CFC Blocks destabilization (Balaban et al., 2014) 

Dopaminergic 

receptors 

    

D1 agonism 

(SKF38393) 

1 Rat AFC No effect (Flavell and Lee, 2019) 

D1 blockade 

(modafinil) 

1 Rat AFC No effect (Flavell and Lee, 2019) 

Calcineurin     

Inhibition (e.g. 

FK-506) 

2 Mouse IA Blocks destabilization and enhancement (Fukushima et al., 

2014) 

LVGCCs     

Antagonism (e.g. 

nimodipine) 

3 Rat; 

Mouse 

CFC Blocks destabilization (De Oliveira Alvares et al., 2013; 

Haubrich et al., 2015; Suzuki et al., 2008) 

H3 receptors     

Antagonism 

(thioperamide) 

1 Mouse CFC Blocks destabilization (Charlier and Tirelli, 2011)  

β-adrenergic 

receptors 

    

Antagonism 1 Mouse CFC Blocks destabilization (Lim et al., 2018) 
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(propranolol) 

Table 2: Molecular mechanisms for memory destabilization. AC, appetitive conditioning; AFC, 

auditory fear conditioning; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BS, 

behavioral sensitization; CaMKII, Calcium/calmodulin-dependent protein kinase type II; CB1, 

endocannabinoid receptor type 1; CFC, contextual fear conditioning; conditioned place 

preference; CPP, conditioned place preference; CTA, conditioned taste aversion; GABA, γ-

aminobutyric acid; H3, histamine H3 receptors; IA, inhibitory avoidance; IP3Rs, inositol 

trisphosphate receptors; LVGCCs, L-type voltage-gated calcium channels; MWM, Morris water 

maze; NMDA, N-methyl D-aspartate receptor; OR, object recognition; PP1, protein phosphatase 

1;  

Other brain regions studied were the perirhinal cortex, nucleus accumbens, medial 

prefrontal cortex and ventral tegmental area, but these were evaluated in isolated studies 

investigating particular mechanisms. Studies with systemic injections in rodents confirmed the 

role of NMDA receptors, LVGCCs and CB1 receptors, and added other candidates such as nitric 

oxide and muscarinic, β-adrenergic and H3 receptors, although these were evaluated in a smaller 

number of studies. Interestingly, studies in Aplysia also found the ubiquitin-proteasome system 

and nitric oxide to be important for destabilization, suggesting that this memory labilization 

system is present in invertebrates as well. 

Of note, experiments with negative results – i.e., showing the lack of effect of a 

pharmacological manipulation on destabilization – were very uncommon, comprising only 9% of 

our sample (this does not include studies of boundary conditions that show a negative effect of 

an intervention in a particular condition – i.e., dose or timing – but a positive one in another, 

which are shown on Table S1). Moreover, most of these were drawn from studies in which 

another intervention was found to be effective. This suggests that publication bias is likely in this 

field of study, meaning that the apparent consistency in the results included in the table should be 

interpreted with caution. Lack of publication of negative results also makes it harder to evaluate 

whether discrepancies in labilization mechanisms exist across structures or species. 

Involvement of destabilization mechanisms in synaptic downscaling 

To investigate the relationship between the molecular mechanisms underlying memory 

destabilization and homeostatic plasticity, we went on to review which of the components 

described in Table 2 have been studied in experimental models of homeostatic plasticity. For 

this, we focused on synaptic downscaling, which is arguably the best studied model of 
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homeostatic plasticity, and corresponds more closely to the implementation used in our models. 

By combining data from a synaptic scaling systematic review dataset (Moulin et al., 2020) and 

manual searches in PubMed (see Methods), we identified 13 articles that conducted experiments 

studying 9 molecular mechanisms of memory destabilization (Table 3). Importantly, this search 

strategy focused on identifying whether established mechanisms of destabilization are also 

important for downscaling; thus, it would not be expected to identify mechanisms of 

downscaling that are not involved in destabilization.  

In these studies, we found consistent evidence that AMPA receptor endocytosis, LVGCCs 

and the ubiquitin-proteasome system, are necessary for synaptic downscaling. Experiments 

targeting NMDA receptors and Na+ channels demonstrated that they are required for 

downscaling induced by synaptic receptor activation (i.e., by bicuculline or UV-controlled 

presynaptic terminal excitation); however, their inhibition did not impact optogenetically-

induced downscaling, in which excitation is independent of synapses. Concerning intracellular 

signaling, only one article suggested that the phosphatase PP1 is required for homeostatic 

plasticity. Calcineurin and CaMKII were found to be regulated during the homeostatic response 

to chronic excitation, but were not necessary for it to occur. Lastly, there is conflicting evidence 

on the role of protein synthesis, with different models yielding distinct results.  While an effect 

of PSIs was observed on the AMPAR component of optogenetically induced downscaling, this 

was not the case for the NMDAR component in the same model, or for light-gated GluR6 

stimulation-mediated downscaling.  
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Mechanism Interference 

method 

Excitation 

mechanism 

Biological model Effect on downscaling 

NMDA Receptors 1. APV 
2. APV/ ifenprodil 
3. APV 
4. APV 

1. Optogenetics (ChR2)  

2. Light-gated GluR6 

stimulation 

3. Bicuculline 

4. Bicuculline 

1. Mice organotypic hipp. 

cultures.  
2. Rat primary hipp. cultures.  
3. Rodent primary cortical 

cultures and hipp. slices 
4. Rat primary hipp. cultures 

1. No effect (Goold and Nicoll, 

2010) 
2. Inhibition of AMPAR single-

synapse downscaling (Hou et al., 

2011) 
3. Inhibition of AMPAR 

downscaling (Qiu et al., 2012) 
4. Inhibition of downscaling (Lee 

and Chung, 2014) 

Ubiquitin-proteasome 

system 

    

Proteasome 

function 

Lactacystin Bicuculline Rat primary hipp. cultures Inhibition of downscaling (Jakawich 

et al., 2010) 

Nedd4 (E3 

ubiquitin ligase) 

1. N.A. 
2. Nedd4-1 

shRNA hairpin 

expression 
3. Lentiviral-

induced 

expression of 

Nedd4-2 

1. Light-gated GluR6 

stimulation 

2. Bicuculline 

3. Picrotoxin 

1. Rat primary hipp. cultures. 
2. Rat primary hipp.and 

cortical cultures 
3. Primary hipp. and cortical 

cultures of Fmr1 KO mice 

1. Chronic synaptic stimulation 

increases Nedd4-1 expression (Hou 

et al., 2011) 
2. Inhibition of downscaling 

(Scudder et al., 2014) 
3. Rescue of downscaling in Fmr1 

KO neurons (Lee et al., 2018) 

AMPA receptors     

GluA2 expression Genetic deletion Optogenetics (ChR2) Mice organotypic hipp. 

cultures. 

Inhibition of AMPAR downscaling 

(Goold and Nicoll, 2010) 

MeCP2 

(Regulates GluA2 

expression) 

1. Genetic deletion 

or shRNA 

expression 
2. Genetic deletion 

1. Bicuculline 

2. Bicuculline 

1. Rat/mouse cortical 

primary cultures and hipp. 

slices 
2. Mice hipp. primary 

cultures 

1. Inhibition of downscaling (Qiu et 

al., 2012) 
2. Inhibition of AMPAR 

downscaling (Xu and Pozzo-Miller, 

2017) 

Arc/Arg3.1 

(Induces AMPAR 

endocytosis) 

Genetic deletion Bicuculline Rat/mouse hippocampal and 

cortical neurons. 

Inhibition of AMPAR downscaling 

(Shepherd et al., 2006) 

Calcineurin 1. FK-506 
2. N.A. 

1. Light-gated glut. 

receptor (GluR6) 

2. Bicuculline 

1. Rat primary hipp. cultures.  
2. Mice cortical primary 

cultures 

1. No effect on AMPAR 

downscaling (Hou et al., 2011) 
2. Chronic stimulation reduces 

calcineurin levels (Diering et al., 

2014) 

LVGCCs 1. Nifedipine 
2. Nimodipine 
3. Nifedipine 
4. Nifedipine 

1. Optogenetics (ChR2) 

2. Bicuculline 

3. Bicuculline 

4. Optogenetics (ChR2) 

1. Mice organotypic hipp. 

cultures. 
2. Rat primary cortical 

cultures 
3. Rat primary hipp. cultures 
4. Rat hipp. slice culture. 

1. Inhibition of AMPAR and 

NMDAR downscaling (Goold and 

Nicoll, 2010) 
2. Inhibition of AMPAR 

downscaling (Siddoway et al., 2013) 
3. Inhibition of downscaling (Lee 

and Chung, 2014) 
4. Inhibition of dendritic spine 

downscaling (Mendez et al., 2018) 

PP1 Viral vector 

transfection  

Bicuculline Rat primary cortical cultures Inhibition of AMPAR downscaling 

(Siddoway et al., 2013) 

CaMKII 1. myr-CaMKIIN 

or myr-AIP 
2. KN62 

1. Optogenetics (ChR2) 

2. Light-gated GluR6 

stimulation 

1. Mice organotypic hipp. 

cultures.  
2. Rat primary hipp. cultures 

1. CaMKII expression inhibits 

AMPAR but not NMDAR 

downscaling. Inhibition of CaMKII 

has no effect on AMPAR or 

NMDAR downscaling (Goold and 

Nicoll, 2010)  
2. No effect on downscaling (Hou et 
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al., 2011) 

Na+ channels 1. Tetrodotoxin 
2. Tetrodotoxin 
3. Tetrodotoxin 

4. Tetrodotoxin 

1. Bicuculline 

2. Optogenetics (ChR2) 

3. Light-gated GluR6 

stimulation 

4. Optogenetics (ChR2) 

1. Rat auditory cortex slices 
2. Mice organotypic hipp. 

cultures.  
3. Rat primary hipp. cultures. 

4. Rat hipp. slice culture. 

1. Inhibition of bicuculline-induced 

downscaling (Zhang et al., 2009) 
2. No effect on optogenetically-

induced AMPAR or NMDAR 

downscaling (Goold and Nicoll, 

2010) 
3. Inhibition of AMPAR 

downscaling (Hou et al., 2011) 

4. No effect on dendritic spine 

downscaling (Mendez et al., 2018) 

Protein synthesis 1. Cycloheximide/ 

DRB/ anisomycin 
2. Anisomycin 

1. Optogenetics (ChR2) 

2. Light-gated GluR6 

stimulation 

1. Mice organotypic 

hippocampal slice cultures.  
2. Rat primary hipp. cultures. 

1. Inhibition of AMPAR, but not 

NMDAR, optogenetically-induced 

downscaling (Goold and Nicoll, 

2010) 
2. No effect on AMPAR 

downscaling (Hou et al., 2011) 

Table 3. Role of labilization mechanisms in synaptic downscaling. Columns summarize the 

main findings, models and intervention methods of articles investigating the role of memory 

destabilization components in synaptic downscaling. AMPAR, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid; APV, D(−)-2-Amino-5-phosphonopentanoic acid; CaMKII, 

Calcium/calmodulin-dependent protein kinase type II; ChR2, channelrhodopsin-2; UV, 

ultraviolet; DRB, 5,6-dichloro-1-beta-D-ribobenzimidazole. hipp, hippocampal; K.O., knockout; 

LVGCC, L-type voltage-gated calcium channels; MeCP2, methyl-CpG binding protein 2; 

NMDA, N-methyl D-aspartate receptor; PP1, protein phosphatase 1; TTX, tetrodotoxin. 

 

DISCUSSION 

Homeostatic plasticity can account for memory destabilization in computational 

models of reconsolidation and extinction 

By using two different computational models, we demonstrate that synaptic scaling acting 

as a destabilization mechanism can account for the different effects of protein synthesis 

inhibition on reconsolidation and extinction. Our results are in agreement with behavioral 

experiments where a short nonreinforced contextual reexposure causes reconsolidation, whereas 

a longer reexposure duration leads to extinction, with opposite effects of PSIs in each case 

(Suzuki et al., 2004). In the case of the second model, it also mimics results in which some 

degree of mismatch between training and reexposure is necessary for reconsolidation to occur 

(Bustos et al., 2009; Suzuki et al., 2004). 

Both models are based on abstract networks whose limitations should be noted, such as the 

absence of realistic topology, the use of non-spiking neurons, and an abstract concept of time. 
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The results in both cases also critically depend on the assumption that mismatch between 

representations increases with greater durations of contextual reexposure, as postulated by Osan 

et al. (2011). Nevertheless, bearing in mind the constraints inherent to the models, our results 

suggest that destabilization after contextual reexposure could feasibly emerge as a byproduct of 

synaptic scaling-like homeostatic plasticity. 

The hypothesis that homeostatic plasticity plays a role in memory phenomena such as 

memory consolidation and recall has been addressed in other computational models (Tetzlaff et 

al., 2013, 2011; Zenke et al., 2015). Tetzlaff et al. (2013) proposed a dynamic neural circuit 

where a combination of Hebbian plasticity and synaptic scaling determines memory maintenance 

during synaptic reactivation. In this setup, memories with weights that surpass a certain threshold 

are consolidated by spontaneous reactivation, while others decay over time. Scaling in this model 

also accounted for the destabilization effects of new learning after recall of a motor memory 

(Walker et al., 2003): if retrieval was followed by learning of a partially overlapping pattern, the 

weights underlying the first memory were disrupted. This effect is analogous to what was found 

in our second model, but was observed in the absence of Hebbian plasticity blockade. 

Molecular mechanisms involved in synaptic downscaling and labilization 

Although homeostatic plasticity provides an elegant explanation for the dependence of 

destabilization on memory recall, this is still a speculative hypothesis. We thus attempted to 

investigate whether there is experimental evidence to support this connection by systematically 

reviewing the literature. We found that several molecular mechanisms are involved in both 

memory destabilization and synaptic scaling, suggesting shared requirements for the induction of 

both phenomena. Studies of destabilization generally test whether pharmacological agents can 

prevent the reconsolidation-blocking effects of drugs such as protein synthesis inhibitors in 

behavioral tasks; thus, detecting relevant studies is relatively straightforward. The literature on 

homeostatic plasticity, on the other hand, is more varied, using different models to study synaptic 

responses to changes in firing rate and/or network activity. Thus, it is not always clear whether 

phenomena are comparable across diverse models and preparations, even within the specific 

field of synaptic downscaling. 
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Investigations of labilization mechanisms typically use PSIs such as anisomycin to block 

reconsolidation, indicating that they do not prevent memory destabilization Thus, a requirement 

for a putative synaptic mechanism of destabilization is that it should not critically depend on 

protein synthesis – or at least should be less reliant on it than Hebbian plasticity. For synaptic 

downscaling, different effects of PSIs have been observed. Goold and Nicoll (2010) 

demonstrated that cycloheximide and anisomycin blocked the AMPAR, but not the NMDAR 

component of synaptic downscaling after chronic optogenetic stimulation. On the other hand, 

Hou et al. (2011) showed that anisomycin did not interfere with GluA1 reduction induced by 

light-gated GluR6 stimulation in hippocampal cultures. Additionally, a recent study performed a 

comprehensive mapping of synaptic proteins regulated by synaptic scaling, showing that most 

synaptic proteins exhibited a decrease in synthesis during bicuculline-induced downscaling 

(Dörrbaum et al., 2020). Thus, the requirement of protein synthesis for downscaling seems to 

differ across models; nevertheless, at least in some instances, this type of plasticity seems to 

occur in spite of protein synthesis inhibition.  

The majority of mechanisms implicated in destabilization have been identified in studies of 

fear conditioning, and concern signaling via cell surface receptors. These include GluN2B-

containing NMDARs (Ben Mamou et al., 2006; Merlo et al., 2015; Nakayama et al., 2016; Yu et 

al., 2016) and LVGCCs (De Oliveira Alvares et al., 2013; Haubrich et al., 2015; Kim et al., 

2011; Suzuki et al., 2008), as well as ,the internalization of GluA2-containing AMPARs (Hong 

et al., 2013; Shehata et al., 2018). There is evidence that each of these cell surface mechanisms is 

important for synaptic downscaling. NMDARs are necessary for synaptic downscaling induced 

by bicuculline in hippocampal slice cultures (Qiu et al., 2012) and dissociated hippocampal 

neurons (Lee and Chung, 2014), although Goold and Nicoll (2010) showed that APV treatment 

did not inhibit optogenetically-induced downscaling in hippocampal cultures, suggesting that the 

role of NMDARs is associated with glutamatergic-driven network activation. AMPARs are a 

primary mechanism for expression of homeostatic plasticity through alterations in their number, 

composition, and biophysical properties (Diering and Huganir, 2018). Supporting evidence 

includes the observations that synaptic scaling relies on a switch between GluA2-containing and 

GluA2-lacking AMPARs (Chowdhury and Hell, 2018), and that optogenetically-induced 

AMPAR downscaling does not occur in GluA2-deficient mice (Goold and Nicoll, 2010). Finally, 

LVGCCs have been shown to be necessary for AMPAR and NMDAR downscaling, both after 
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optogenetic stimulation (Goold and Nicoll, 2010) and after prolonged stimulation with AMPA 

(Lin et al., 2000) or bicuculline (Lee and Chung, 2014). 

Intracellularly, the primary mechanism of destabilization is protein degradation by the UPS, 

as evidenced by the effect of the proteasome inhibitor lactacystin on destabilization when 

injected into the hippocampus (Choi et al., 2010; Da Silva et al., 2013; Lee, 2008; Lee and 

Chung, 2014; Lee et al., 2008), amygdala (Fukushima et al., 2014; Jarome et al., 2011), 

perirhinal cortex (Stiver et al., 2017) or nucleus accumbens (Ren et al., 2013). Lactacystin also 

blocks slow homeostatic changes caused by chronic treatment with bicuculline in cultured 

hippocampal neurons (Jakawich et al., 2010). However, most of the evidence on UPS 

involvement in synaptic downscaling comes from work with Nedd4 (E3 ubiquitin ligase 

enzyme), which targets proteins for ubiquitination. Hou et al (2011) demonstrated that Nedd4 

expression increases after chronic neuronal stimulation to mediate AMPAR ubiquitination. Other 

studies showed the involvement of Nedd4 in synaptic downscaling by knocking down its 

endogenous protein levels (Scudder et al., 2014) and by expressing Nedd4-2, an ubiquitin ligase 

from the same family, to restore synaptic downscaling (Lee et al., 2018).  

A synaptic model for memory destabilization proposed by Finnie and Nader (2012) 

proposes that reactivation allows calcium influx at the synapse through LVGCCs, with second 

messengers such as protein phosphatases altering neuronal excitability by modulating NMDARs 

and AMPARs at the synapse through processes such as GluA2 endocytosis. One would expect 

that, if this hypothesis holds true, the calcium influx promoted by LVGCCs during memory 

reactivation might trigger synaptic downscaling pathways that use molecules such as Arc/Arg3 

(Chowdhury et al., 2006) and MeCP2 (Qiu et al., 2012), known to regulate AMPA receptor 

trafficking in models of homeostatic plasticity.  

Theoretical and experimental evidence for a role of homeostatic plasticity in 

destabilization 

Theories postulating a role for homeostatic plasticity in memory need to take into account 

that homeostatic processes such as synaptic scaling operate in a timescale of hours or days 

(Zenke and Gerstner, 2017). Thus, the latency for a memory to decay after reconsolidation 

blockade – around 4 hours after protein synthesis blockade (Nader et al., 2000) – could be related 

to the time required by homeostatic plasticity to occur (Ibata et al., 2008). One criticism of this 
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assumption is that synaptic scaling is usually induced by hours of continued overstimulation, 

something that is unlikely to occur during or after memory retrieval in vivo. However, Mendez et 

al. (2018) showed changes reminiscent of homeostatic plasticity after 10 minutes of in vivo 

stimulation, while Moulin et al. (2019) observed similar effects with low-frequency stimulation 

over a 24h period. Thus, it is possible that in vivo homeostatic plasticity could result from 

periodic reactivations of memory engrams occurring during the post-reexposure period 

(Wittenberg et al., 2002).  

The idea that homeostatic plasticity can play a role in memory processes is not new; 

however, it has not been explored in detail, as shown by a systematic review of the literature 

linking both processes (see Methods and Table S2 for full results). While there are 

computational models suggesting that homeostatic plasticity is related to memory phenomena 

(de Camargo et al., 2018; Susman et al., 2019; Tetzlaff et al., 2013), experimental evidence for 

this relationship is still scarce. Perhaps the most direct attempt at connecting both processes 

comes from Mendez et al (2018), who used optogenetically-induced spike trains in hippocampal 

granule cells of mice to trigger in vivo homeostatic changes. This protocol decreased excitatory 

synaptic density while increasing inhibitory synapses through an LVGCC-dependent mechanism. 

When these spike trains were induced during an extinction session, lower freezing activity was 

observed in a subsequent test. These results are in line with the view that, at least in some cases, 

extinction might have a destabilization component occurring along with the learning of a new 

association, as suggested by previous work (Almeida-Corrêa and Amaral, 2014; Barad, 2006; 

Popik et al., 2020) and by our own model results (see Figure 2d). 

Another set of views postulating a role for basic plasticity mechanisms in memory 

destabilization comes from the observation that reconsolidation-like effects are not restricted to 

learning paradigms in vertebrates, but are also observed in more reductionist preparations. 

Studies of the gill-and-siphon withdrawal reflex in Aplysia showed that non-associative long-

term facilitation was reversed when heterosynaptic reactivation occurred in the presence of 

rapamycin, an inhibitor of ribosomal protein synthesis (Hu and Schacher, 2014). For associative 

long-term facilitation, on the other hand, destabilization required homosynaptic reactivation (Hu 

and Schacher, 2015). Reconsolidation-like phenomena were also observed in spinal cord pain 

processing circuits of mice injected with capsaicin to induce mechanical hyperalgesia, with 

anisomycin reducing hyperalgesia only when paired with another capsaicin injection. (Bonin and 
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De Koninck, 2014) This prompted the authors to postulate that such effects could be due to 

homeostatic plasticity mechanisms, and that reconsolidation might not be best conceptualized as 

a behavioral phenomenon (Bonin and De Koninck, 2015). 

Conceptual gaps and future directions 

Although the destabilization-reconsolidation process has typically been hypothesized to 

serve a high-level cognitive function in memory updating (Exton-McGuinness et al., 2015; 

Fernández et al., 2016; Lee, 2009), it is important to recognize that its existence does not imply a 

functional role (Dudai, 2004). Nevertheless, the accumulation of evidence that the destabilization 

of memories occurs preferentially under conditions of memory updating (Lee, 2009; Rodriguez-

Ortiz and Bermúdez-Rattoni, 2017) strongly supports a cognitively functional process. This 

contrasts with the more basic compensatory nature of homeostatic plasticity (Siddoway et al., 

2014), which is usually seen as a low-level property of neuronal physiology. That said, 

categorization of mechanisms as high-level/cognitive vs low-level/physiological may represent 

an artificial dichotomy, as evolution can lead to repurposing of traits or mechanisms for different 

purposes than those for which they have evolved (Lloyd and Gould, 2017). 

The fact that many cellular mechanisms that are functionally implicated in destabilization 

have also been shown to be important for synaptic downscaling (at least under certain 

circumstances) opens up the possibility that destabilization might be an emergent property of 

homeostatic plasticity that arises from patterns of neuronal activity induced by memory 

reactivation. Moreover, if homeostasis is detrimental to the previously adjusted synaptic weights 

that encode a memory in a neuronal network, this would justify the requirement of a 

reconsolidation process to ensure preservation of the memory trace. This adds to the argument 

that destabilization-reconsolidation is a universal property of memories (Lee, 2009) as in this 

case it would emerge from a fundamental property of neuronal function. 

 The results of our second model are consistent with downscaling being preferentially 

engaged under conditions of conflicting information or mismatch during memory retrieval that 

would be expected under memory-updating conditions. In this simple attractor network, this 

happens as a natural consequence of noisier retrieval when patterns diverge between training and 

reexposure. Such a view must be balanced, however, against the evidence for the involvement of 

prediction error signals in destabilization (Das et al., 2015; Exton-McGuinness et al., 2015; 
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Reichelt et al., 2013; Sinclair and Barense, 2019). Detection of mismatch/prediction error within 

memory-encoding areas could thus be implemented both by novelty signals sent by other brain 

structures (such as the ventral tegmental area) and by internal network dynamics (as occurs in 

our model). Support for this view comes from the asymmetry in the necessity and sufficiency of 

destabilization mechanisms: while dopamine D1 receptors are necessary for fear memory 

destabilization, for instance (Flavell and Lee, 2019; Merlo et al., 2015), their activation is not 

sufficient to induce it (Flavell and Lee, 2019). Thus, it is possible that multiple processes are 

necessary for successful memory destabilization, including an interaction between dopaminergic 

signaling and local network plasticity.  

Many other questions still need to be addressed before a role for homeostatic plasticity in 

memory destabilization can be asserted. Classic destabilization studies with reversal of 

reconsolidation blockade could be used to study whether canonical molecular components of 

homeostatic plasticity, such as the immediate-early genes Homer1a (Hu et al., 2010) and 

Arc/Arg3.1 (Gao et al., 2010) are involved in destabilization. Another molecule involved in 

synaptic scaling that has not been implicated in destabilization is brain-derived neurotrophic 

factor (BDNF) (Reimers et al., 2014). Interestingly, even though BDNF has been extensively 

implicated in memory consolidation (Bekinschtein et al., 2014), it has been suggested not to be 

as important in reconsolidation (Lee, 2008; Lee et al., 2004). This could be due to the fact that, if 

inhibiting BNDF function affects not only Hebbian plasticity but destabilization mechanisms as 

well, it could lead the net effect of this intervention on a reactivated memory to be neutral. 

Nevertheless, evidence obtained by investigating the role of synaptic scaling mechanisms in 

memory destabilization paradigms will still be correlative. For a causal link, experiments that 

can induce or inhibit homeostatic plasticity in neurons related to a fear memory engram through 

artificial stimulation can provide more direct evidence. Particularly, if methods for 

optogenetically-induced homeostatic plasticity in vivo such as that used by Mendez et al. (2018) 

indeed trigger destabilization, pairing this stimulus with reconsolidation blockers such as 

anisomycin should lead to a reduced fear response in animals.  

Even with these more sophisticated studies, however, one still runs into the question of 

specificity – after all, it is unlikely that the effects of neuronal overstimulation are limited to a 

particular plasticity process (Keck et al., 2017). Nevertheless, the notion of a ‘particular 

plasticity process’ might be in itself a paradigm in need of revision, as the division between well-
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delineated, individual classes of plasticity is more of an epistemic convention than a fact of 

nature. With a plethora of processes in distinct models and preparations falling within the 

umbrella of homeostatic plasticity, the most useful way to classify them in order to advance 

research is not obvious, as both overgeneralization and overspecificity can hamper progress (Fox 

and Stryker, 2017). Combining advances in this field with those in memory research and its own 

distinct paradigms presents a further challenge that can only be overcome by better 

communication between experimentalists and theorists on both sides. 
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MATERIALS AND METHODS 

Computational models 

Model 1 – Adaptation of Osan et al. (2011) 

The network consists of a circuit with 100 units connected in an all-to-all manner. Each 

neuron i in the attractor network has a neuronal activity ui which varies continuously from 0 to 1 

and changes according to 

𝜏
𝑑𝑢𝑖

𝑑𝑡
= −𝑢𝑖 +

1

2
(1 + tanh (∑ 𝑤𝑖,𝑗𝑢𝑗 + 𝐼𝑖

𝑁

𝑗=1

)) (1) 

where τ is the neural time constant, which is a combination of properties that denote decay or 

persistent activity outside the task, and 𝑤𝑖,𝑗 represents the synaptic weight associated with a 

particular connection. Ii represents the input provided to the memory network by sensory 

stimulus from the environment and internal information. The feedback between the cue network 

and memory area is not explicitly modeled; nevertheless, it is assumed to be necessary to account 

for changes in the animal’s internal representation according to learned experience. 

Weight changes (ΔW) in the model can be described as 

∆𝑊 = −𝑊 + 𝐻𝐿𝑃 + 𝑆𝐶 (2) 

where HLP is the Hebbian learning plasticity term and SC is the synaptic scaling term. Both 

terms are matrices that are dependent on neuronal activation reached after cue presentation. 

The Hebbian learning plasticity term can be described as 

𝐻𝐿𝑃 = 𝑆(�̅�𝑇 ∗ �̅�) − 𝑆((1 − �̅�)𝑇 ∗ �̅�) (3) 

where S is a factor that represents the biochemical requirements of Hebbian plasticity and �̅� is a 

vector (�̅� = (u1, u2, u3, …, uN)) that represents the stable state of network activity. Thus, when 

two neurons fire together, their connections are reinforced. If a presynaptic neuron fires while the 

postsynaptic one is inactive, an inhibitory connection is created. Although a realistic 

implementation of the rule would require modeling the participation of inhibitory interneurons in 

the process, this simplification allows attractor functioning to occur while eliminating the 

artificial negative activations and ‘mirror attractors’ found in the original Hopfield graded 

activity formulation (Hopfield, 1984). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.05.429950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429950
http://creativecommons.org/licenses/by/4.0/


 30 

The synaptic scaling term can be described as 

𝑆𝐶 =  𝜅−1(𝑢𝑡 − 𝑢𝑗) ∗ (𝑤𝑗,𝑖)
2
 (4) 

where κ is the ratio between Hebbian plasticity and scaling and ut is the desired homeostatic 

activity for the network. Therefore, synaptic scaling adjusts connection weights on the basis of a 

comparison between a neuron’s output activity ui against a desired target activity ut. The term is 

only active if the connection between the pre- and post-synaptic neuron is excitatory. 

Learning is induced by providing a noisy input equals to 𝐼𝑖
𝑙𝑒𝑎𝑟𝑛 ∙ 𝜗 for neuronal activation 

and −𝐼𝑖
𝑙𝑒𝑎𝑟𝑛 ∙ 𝜗 for neuronal inhibition. The input is modulated by a noise term ϑ from a uniform 

distribution [0.9, 1.1]. In the training session, the neurons representing context and aversive 

neurons are activated while other neurons are inhibited. In the nonreinforced reexposure session, 

the cue input is given by 

𝐼 = (𝐼3 − 𝐼2) ∗ 𝑓(𝑡) + 𝐼2 (5) 

where vectors I2 and I3 represent the cue inputs for the training and extinction pattern, 

respectively, and t represents reexposure duration, varying from tmin = 0 to tmax = 10. For the 

encoding of reexposure time in the input cues, we use a sigmoid function defined as: 

𝑓(𝑡) =
1

(1 + 𝑒𝑥𝑝 (
𝑡𝑚𝑎𝑥

2
− 𝑡))

 
(6) 

 Retrieval tests consist of activating the neurons that represent the context while maintaining 

the input to other units at 0. After the input is given, the pattern to which the network evolves 

determines the degree of freezing in the test session, with retrieval of the training pattern 

resulting in 90% freezing and other patterns resulting in 10% freezing. For pattern determination, 

we compare the current activity of each neuron with that of the same neuron in the training 

pattern. If a neuron’s output activity ui  is greater than 0, the neuron is considered to be active; 

otherwise, is considered to be silent. The fear memory is considered to be successfully retrieved 

when it has more than 95% similarity with the training pattern in this binary classification. We 

perform 100 simulations with different initial conditions in the retrieval session and obtain the 

mean ± S.E.M. freezing behavior for each reexposure time. All model simulations are developed 

using Matlab R2018a. 
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To check the robustness of our results to different parameters, we vary the value of S during 

training or reexposure and the value of κ during reexposure. S during reexposure is varied from 0 

to 1 with steps of 0.025 in Fig. S1. κ during reexposure is varied from 0 to 4 with steps of 0.2 in 

Fig. S2. S during training is varied from 0 to 2 with steps of 0.1 in Fig S3. 

If not stated otherwise, we used the parameters described in Table 4. Code for the 

simulations is available at https://github.com/Felippe-espinelli/scaling_destabilization_models. 

Table 4. Model parameters used by the attractor network adapted from Osan et al (2011). 

Variable Description Value 

S Biochemical requirements for Hebbian synaptic plasticity 0.8 

ut Desired target activity of synaptic scaling 0 

κ Ratio between Hebbian plasticity and scaling 1.2 

N Number of neurons 100 

τ Neural time constant 1 

𝐼𝑖
𝑙𝑒𝑎𝑟𝑛 Learning input strength 8 

𝐼𝑖
𝑟𝑒𝑡 Retrieval input strength 8 

 

Model 2 – Adaptation of Auth et al. (2020) 

The model is composed of an input network and a memory network with 36 and 900 

neurons, respectively. The memory network is a grid of 30 x 30 neurons organized in a toroidal 

topology; each of them connects with 4 random neurons in the input area and with their nearest-

neighbors in the memory area within a radius of 4 neurons. An inhibitory unit represents a 

population of inhibitory neurons connected bidirectionally in an all-to-all manner with neurons in 

the memory area.  

For each excitatory neuron j in the memory area (𝑗 𝜖 {1, … , 𝑁𝑀}), the membrane potential 𝑢𝑗 

is determined by the following differential equation: 

𝑑𝑢𝑗

𝑑𝑡
= −

𝑢𝑗

𝜏
+ 𝑅 (∑ 𝑤𝑗,𝑖

𝑟𝑒𝑐𝐹𝑖 + 𝑤𝑗,𝑖𝑛ℎ𝐹𝑖𝑛ℎ + ∑ 𝑤𝑗,𝑘
𝑓𝑓

𝐼𝑘

𝑁𝐼

𝑘

𝑁𝑀

𝑗

) (7) 

Afterwards, the firing rate Fj of each neuron j is dependent of the membrane potential uj as 

follows: 

𝐹𝑗(𝑢𝑗) =
𝛼

1 + 𝑒𝑥𝑝 (𝛽(𝜀 − 𝑢𝑗))
 (8) 
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Initial membrane potential and firing rate are drawn from a normal random distribution with a 

mean of 0 and a variance of 1. 

The inhibitory unit updates the membrane potential uinh and converts it into a firing rate Finh 

as described below: 

𝑑𝑢𝑖𝑛ℎ

𝑑𝑡
= −

𝑢𝑖𝑛ℎ

𝜏𝑖𝑛ℎ
+ 𝑅𝑖𝑛ℎ ∙ ∑ 𝑤𝑖𝑛ℎ,𝑗𝐹𝑗

𝑁𝑀

𝑖

 (9) 

𝐹𝑖𝑛ℎ(𝑢𝑖𝑛ℎ) =
𝛼

1 + 𝑒𝑥𝑝(𝛽(𝜀 − 𝑢𝑖𝑛ℎ))
 (10) 

 

Excitatory feed-forward and recurrent connections are plastic, while others remain constant. 

These weight changes are dependent on a combination of Hebbian synaptic plasticity and 

synaptic scaling. The feed-forward synaptic weight 𝑤𝑗,𝑘
𝑓𝑓

, formed by connecting an excitatory 

input neuron k (𝑘 𝜖 {1, … , 𝑁𝐼}) to a memory neuron j (𝑗 𝜖 {1, … , 𝑁𝑀}), is initially drawn from a 

uniform distribution {0, 0.7 ∙ �̂�𝑓𝑓} with weight changes described as: 

𝑑𝑤𝑗,𝑘
𝑓𝑓

𝑑𝑡
= 𝜇 (𝐹𝑗𝐼𝑘 + (𝜅𝑓𝑓)−1 ∙ (𝐹𝑇 − 𝐹𝑗) ∙ (𝑤𝑗,𝑘

𝑓𝑓
)

2
) ∙ 𝑐𝑗,𝑘

𝑓𝑓
 (11) 

where 𝑐𝑗,𝑘
𝑓𝑓

 is a feed-forward connectivity matrix, with each unit equal to 1 if the connection 

exists or 0 if it does not.  

Recurrent synaptic weights 𝑤𝑗,𝑖
𝑟𝑒𝑐, formed by connecting an excitatory memory neuron i 

(𝑖 𝜖 {1, … , 𝑁𝑀}) to a memory neuron j (𝑗 𝜖 {1, … , 𝑁𝑀}) are initially set as 0.25 ∙ �̂�𝑟𝑒𝑐 with 

weight changes described as 

𝑑𝑤𝑗,𝑖
𝑟𝑒𝑐

𝑑𝑡
= 𝜇 (𝐹𝑗𝐹𝑖 + (𝜅𝑟𝑒𝑐)−1 ∙ (𝐹𝑇 − 𝐹𝑗) ∙ (𝑤𝑗,𝑖

𝑟𝑒𝑐)
2

) ∙ 𝑐𝑗,𝑖
𝑟𝑒𝑐 (12) 

where 𝑐𝑗,𝑖
𝑟𝑒𝑐 is a feed-forward connectivity matrix, with each unit equal to 1 if the connection 

exists or 0 if it does not.  

A training session is simulated by activating 18 input area neurons with an input rate of 

130 Hz, while the remaining ones receive 0 Hz. This activation is performed in 10 periods of 5 s 

each, with a 1 s rest period between them. For non-reinforced reexposure, we also use 10 periods 

with 5 s of activation and 1 s of rest. For the shortest possible reactivation (t=0), the input pattern 

in the reexposure session is equal to the training cue. Progressively longer reexposure durations 

are simulated by substituting input neurons from the training cue by those representing the 
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extinction pattern, two at a time. Thus, the longest possible reexposure (t=18) corresponds to the 

full extinction pattern, while for intermediate values t corresponds to the number of divergent 

neurons between the training and reexposure patterns. As in the training session, activated 

neurons are stimulated at 130 Hz while the others are set at 0 Hz. 

All model simulations were developed using Python 3.7, with the code available at 

https://github.com/Felippe-espinelli/scaling_destabilization_models. Equations were solved 

using the Euler method with a time step of 0.005 s. For each time step, the network is updated in 

the following order, (1) membrane potential of each neuron in memory area; (2) membrane 

potential of inhibitory unit; (3) firing rate of memory area; (4) firing rate of inhibitory unit; (5) 

recurrent weight; (6) feed-forward weight. All model parameters are described in Table 5. 

Table 5. Model parameters used in the adaptation of Auth et al. (2020). 

Variable Description Value 

τ Membrane time constant (memory area) 0.01 

R Membrane resistance (memory area) 1/11 

NM Number of neurons in memory area 900 

NI Number of neurons in input area 36 

Ik Input rate {0,130} 

α Maximum firing rate 100 

β Sigmoid steepness 0.05 

ε Sigmoid inflexion point 130 

µ Plasticity time constant 1/15 

FT Target firing rate 0.1 

κrec Scaling time constant (recurrent) 60 

κff Scaling time constant (feed-forward) 720 

τinh Membrane time constant (inhibitory unit) 0.02 

Rinh Membrane resistance (inhibitory unit) 1 

winh,i Synaptic weight: memory area to inhibitory unit 0.6 

Wj,inh Synaptic weight: inhibitory unit to memory area 6000 

ŵrec Initial recurrent synaptic weights √
𝜅𝑟𝑒𝑐𝛼2

𝛼 − 𝐹𝑇
 

ŵff Initial feed-forward synaptic weights √
𝜅𝑓𝑓𝛼 ∙ 130

𝛼 − 𝐹𝑇
 

Cluster analysis 

Each consolidated memory is represented by the network as a cluster of neurons recurrently 

connected by strengthened memory weights. Memory clusters after the training session are 

defined as neurons with a mean postsynaptic weight for all their recurrent connections above a 

threshold ϕ, set to 40 for the main simulations. As random connections can occasionally rise 
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above this threshold, we only define a cluster if a minimum amount ρ of 30 neurons is above the 

threshold. When a cluster is identified, the mean connection weight between neurons belonging 

to the cluster is used as a measure of memory strength. If no clusters are identified, memory 

strength is defined as the global mean weight of the network. 

To identify modifications in consolidated clusters and formation of new ones after 

reexposure, we initially identify the training session cluster. Neurons that have a recurrent 

connection with any neuron from the original training cluster are considered to be part of the 

training cluster if the mean weight of all their postsynaptic connections is above the threshold ϕ . 

This allows slight modifications in cluster position to be viewed as an update of the original 

memory rather than a new cluster. Neurons with recurrent weights above the threshold that do 

not connect to the training cluster will be considered as being part of a new (extinction) cluster. 

Note that all active neurons that do not belong to the training cluster will be placed in the 

extinction cluster, even if they have no mutual connections between them. 

Systematic review of labilization mechanisms in different structures 

Search strategy 

The protocol for this systematic review was preregistered in the Open Science 

Framework at 10.17605/OSF.IO/ZHPR4. Briefly, we performed a search in PubMed and Web of 

Science using the search terms (destabili* OR labil*) AND (reconsolidat* OR reactivat*), 

including studies published until November 4th, 2019. These terms were developed and refined 

based on a systematic review performed by our group as part of a previous study (Lee et al., 

2019) 

Study selection 

Two independent investigators (F.E.A. and R.L.C.) screened titles and abstracts for (i) 

original studies; (ii) written in English, (iii) that included experiments evaluating the modulation 

of reconsolidation blockade by an intervention targeting a specific molecular mechanism. We 

used the Rayyan platform (Ouzzani et al., 2016) to select studies and exclude duplicates. An 

article proceeded to the full-text screening stage if it was included by at least one reviewer. 

Agreement between investigators was 98.3%. 
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Inclusion criteria in full-text screening (which included supplemental material when 

available) were the following: (i) studies describing the behavioral effects of an intervention 

directed at a specific molecular mechanism, (ii) performed up to 6h before or after a reactivation 

session (iii) that modulated the effect of reconsolidation blockade by another drug (e.g., 

anisomycin and MK-801). As in the previous step, two reviewers (F.E.A. and R.L.C.) evaluated 

all studies. Disagreements were discussed and solved with the help of a third investigator 

(O.B.A.).  

Information from each article was extracted by a single reviewer and reviewed by the other. 

Extracted variables included the reconsolidation inhibitor used, its injection time and site, the 

destabilization treatment with its own infusion time and site, the molecular target of the 

treatment and the behavioral outcome as described by the authors, All extracted information was 

inserted in a .xls spreadsheet (Supplementary Raw Data 1).  

Review of the role of memory destabilization mechanisms in synaptic downscaling 

To search for articles relating mechanisms of memory destabilization to synaptic 

downscaling, we initially analyzed the dataset from a recent scoping review of the field that 

included 168 studies (Moulin et al., 2020). One of the authors (T.C.M) screened the full text of 

51 articles in which chronic excitation experiments were performed to induce downscaling, 

along with pharmacological or genetic interventions to investigate the underlying molecular 

machinery. All articles reporting results relating synaptic downscaling to one of the memory 

destabilization components described in Table 2 were selected for further analysis, irrespective 

of their results. 

As the analyzed systematic review dataset comprised studies published until 2017, we 

manually performed individual searches combining the term "synaptic scaling" with keywords 

associated with the molecular mechanisms shown in table 2 to obtain updated results. The 

searches were performed on June 29th, 2020 using the following search terms: "synaptic scaling 

AND NMDA" for NMDA receptors; "synaptic scaling AND (UPS OR ubiquitin*)" for the 

ubiquitin-proteasome system; "synaptic scaling AND AMPA" for  AMPA receptors; "synaptic 

scaling AND calcineurin" for calcineurin; "synaptic scaling AND L-type calcium channel" for 

LVGCCs; "synaptic scaling AND (PP1 OR protein phosphatase-1)" for PP1; "synaptic scaling 
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AND CaMKII" for CaMKII; "synaptic scaling AND (sodium channels OR Na channels)" for 

Na+ channels; "synaptic scaling AND ("protein synthesis" OR cycloheximide OR anisomycin)" 

for protein synthesis; "synaptic scaling AND (cholinergic receptor OR acetylcholine receptor)"  

for cholinergic receptors; "synaptic scaling AND CB1" for CB1 receptors; “synaptic scaling 

AND nitric oxide” for nitric oxide; “synaptic scaling AND dopamine receptor” for  

dopaminergic receptors; “synaptic scaling AND autophagy” for autophagy; “synaptic scaling 

AND histamine receptor” for H3 receptors; “synaptic scaling AND IP3” for IP3Rs; and 

“synaptic scaling AND beta adrenergic receptor” for β-adrenergic receptors. The term "NOT 

review" was added to all searches in order to narrow the results to original studies.  

Articles investigating synaptic downscaling were identified through abstract and full-text 

screening by a single investigator (T.C.M.). Inclusion criteria were (i) articles written in English, 

(ii) presenting original results, and (iii) describing animal experiments using chronic stimulation 

of neurons to study synaptic downscaling. If the title and abstract were not clear about the three 

criteria described above, articles were still considered for full-text screening. Articles were 

included after full-text screening if they described experiments manipulating and/or measuring 

the activity or expression of the molecule of interest as part of a protocol previously or 

concurrently shown to induce synaptic downscaling. The main findings and brief descriptions of 

the methods and biological models from the 13 articles describing the involvement of a memory 

destabilization mechanism in synaptic downscaling were included in Table 3. 

Systematic review of connections between homeostatic plasticity and memory phenomena 

Search strategy 

A systematic review was performed in PubMed and Web of Science using the search terms 

((“destabilization” OR “destabilisation” OR “labilization” OR “labilisation” OR "labile" OR 

“reconsolidation” OR "reactivation" OR “extinction*” OR “recall” OR “retrieval” OR “update” 

OR “updating” OR forget*) AND (“memory” OR “learning” OR “conditioning” OR 

“plasticity”) AND (“homeostatic” OR “synaptic scaling” OR “heterosynaptic” OR 

"metaplasticity")). We refined search terms in order to include studies that we considered 

important to the subject prior to the review (Bonin and De Koninck, 2014; Mendez et al., 2018; 
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Tetzlaff et al., 2013, 2011; Zenke et al., 2015). The search included articles published until 

November 4th, 2019, and there were no exclusion criteria for article type. 

Study selection 

Title and abstract screening excluded (i) articles not in English, and (ii) articles without 

mentions to memory phenomena such as reconsolidation, extinction or labilization or 

homeostatic plasticity. To be included, at least one reviewer had to include the reference for it to 

proceed to the next screening stage. Agreement between reviewers in this stage was 84.3%. 

The second screening stage considered the full text of the article, including supplemental 

material if available. Two investigators (F.E.A. and R.L.C.) included studies for later data 

extraction if they demonstrated or discussed a direct relationship between memory processes 

(e.g., reconsolidation, extinction, and labilization) and homeostatic plasticity. A reason for the 

exclusion of an article had to be included in this step. Disagreements between reviewers in this 

step were solved with the help of a third one (O.B.A.). Included studies were used for the 

discussion section and are listed in Table S2, with the search flowchart presented in Figure S8. 
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SUPPLEMENTARY MATERIAL 

 

 

Figure S1: Effects of variable S values during reexposure on test freezing. Heat map shows 

the effects of variable S values (y axis) during reexposure sessions of various durations (x axis) 

on mean test freezing (color scale) for 100 simulations. High S values (S > 0.6) lead to a 

nonlinear transition from reconsolidation to extinction with increasing reexposure time, as 

observed in the control groups (S=0.8) in Fig. 2. Low S values (S = 0 to 0.15) lead to 

reconsolidation blockade (blue bins) with lower reexposure times and maintenance of freezing 

(red bins) with larger reexposure values, as observed in the PSI groups (S=0) in Fig. 2. N = 100 

simulations. y-axis: S values vary with steps of 0.025.  
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Figure S2: Effects of variable κ values during reexposure on test freezing. (a) Heat map 

shows the effects of varying κ values (y axis) in reexposure sessions of various durations (x axis) 

on mean test freezing (color scale) in the control group (S = 0.8) for 100 simulations. The 

nonlinear transition from reconsolidation to extinction still occurs with low values of scaling and 

only disappears at high values (κ > 3), in which the network is not capable of maintaining 

previous plasticity in activated neurons. (b) Effects of varying κ values during reexposure 

sessions under Hebbian plasticity blockade (S=0). At lower scaling values, freezing remains high 

as the training memory is preserved. With higher values, the training memory is degraded with κ 

values above 1 with t values between 0 and 7. As in the control group, higher values of κ degrade 

the training memory irrespective of reexposure time. N = 100 simulations. y-axis: Scaling values 

vary with steps of 0.2. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.05.429950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429950
http://creativecommons.org/licenses/by/4.0/


 53 

 

Figure S3: Effects of variable S values during training on test freezing. (a) Heat map of the 

effects of varying S during training (y Axis) for various reexposure times (x axis) on mean test 

freezing (color scale) in the control group for 100 simulations. Freezing is maintained after 

shorter reexposures, while extinction occurs at progressively higher reexposure durations as 

training strength increases. (b) Effects of varying S during training for various reexposure times 

under Hebbian plasticity blockade during reexposure. Freezing is maintained after long 

reexposures due to extinction blockade for S values o 0.8 or higher, while test freezing is low for 

all other conditions (blue). N = 100 simulations. S values vary with steps of 0.1.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.05.429950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429950
http://creativecommons.org/licenses/by/4.0/


 54 

 

Figure S4: Neuronal activity matrix at the end of reexposure sessions using different 

reexposure values. Patterns correspond to those shown on Fig. 2, with different neuronal groups 

representing the context (4 neurons), fear (10 neurons) and safety (10 neurons). With reexposure 

times between t = 1 and t = 6, the retrieved pattern is identical to that used in the training session, 

while with longer reexposure durations (t = 7 to t = 10), the network switches to the activity 

pattern corresponding to the extinction session. 
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Figure S5: Effects of Hebbian plasticity blockade on synaptic weights using different 

minimum cluster sizes. Subpanels show the same results as in Fig. 4, but with different 

minimum numbers of neurons used to define a cluster. (a) Recurrent mean weight values for the 

training memory (left), extinction memory (center) and their normalized ratio (right) under 

control (blue) and PSI (orange) conditions using a minimum cluster size of 1 neuron. In this case, 

formation of the extinction cluster occurs at a lower reexposure time compared with the results 

described in figure 4d. (b) Results using a minimum cluster size of 10 neurons. These are similar 

to the ones using the default values on Fig. 4. (c) Results using a minimum cluster size of 20 

neurons, also similar to the default values. All results were acquired using the same 20 

simulations of Fig. 4, using different criteria for defining clusters. 
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Figure S6: Effects of Hebbian plasticity blockade on synaptic weights using different 

cluster weight thresholds. Subpanels show the same results as in Fig. 4, but with different mean 

recurrent weights used to define neurons belonging to a cluster. (a) Recurrent mean weight 

values of the training memory (left), extinction memory (center) and their normalized ratio 

(right) using clusters defined by neurons with mean weight values above a threshold of 20. With 

this threshold, clusters have weights that are similar to the global mean weight, indicating that 

most or all neurons in the memory area are included in the same cluster. (b) Results using a 

weight threshold of 30. These are similar to the ones using the default values on Fig. 4. (c) 

Results using a weight threshold of 50, also similar to the default values. All results were 

acquired using the same 20 simulations of Fig. 4, using different cluster weight thresholds. 
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Figure S7: Flowchart of systematic review on labilization mechanisms in different 

structures. The search process yielded 777 search hits and 7 additional studies were included. 

With the further exclusion of duplicates, we ended up with 769 articles, of which 672 were 

excluded during the first screening. For full-text screening, we started with 97 studies, with 41 

meeting our criteria for inclusion. 
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Figure S8: Flowchart of systematic review on relation between homeostatic plasticity in 

memory phenomena in different structures. The search process yielded 482 search hits. After 

further exclusion of duplicates, we ended up with 312, of which 233 were excluded during the 

first screening. In full-text screening, we started with 79 studies, with only 12 meeting our 

criteria, where 8 were original research articles, 3 were reviews, and 1 was an opinion article. 
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Target # experiments Boundary condition Details 

NMDA    

Partial agonism (D-

cycloserine) 

1 Reconsolidation blocker (Ortiz et al., 2015) An experiment using midazolam as 

reconsolidation inhibitor showed no effect of 

D-cycloserine, while another using 

propranolol showed destabilization 

enhancement. 

NR2B antagonism 

(ifenprodil) 

1 Timing (Ben Mamou et al., 2006) Post-reactivation ifenprodil infusion did not 

prevent reconsolidation blockade, while pre-

reactivation ifenprodil infusion blocked 

destabilization. 

CB1 receptors    

Antagonism (SR141716) 2 Timing (Lee et al., 2019) In the amygdala, post-reactivation SR141716 

infusion did not prevent amnesia induced by 

MK-801, while pre-reactivation infusion 

blocked destabilization. In the hippocampus, 

post-reactivation SR141716 infusion blocked 

destabilization, while pre-reactivation 

infusion did not. 

β-adrenergic receptors    

Antagonism 

(propranolol) 

1 Timing (Lim et al., 2018) I.P. injection of propranolol 30 min before 

reexposure blocked destabilization. If the 

injection was performed immediately post-

reexposure, there was no effect 

H3 receptors    

Antagonism 

(thioperamide) 

1 Dose (Charlier and Tirelli, 2011) 5 mg/kg promoted no effect on memory 

destabilization. Doses of 10 and 20 mg/kg 

blocked memory destabilization. 

Table S1: Experiments demonstrating boundary conditions of destabilization-blocking 

interventions. The table shows cases in which negative and positive results were found for the 

same intervention and brain structure within a single study. For each of these, the boundary 

condition defining whether results were positive or negative is described. Negative results in 

which no positive effects of the same intervention were found in a particular brain structure are 

shown in Table 2. NMDA, N-methyl D-aspartate receptor; CB1, endocannabinoid receptor type 

1; I.P., intraperitoneal; H3, histamine H3 receptors. 
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Article type Article  Study purpose 

Opinion Bonin and De Koninck, 2015 Hypothesizes that memory reconsolidation is a 

byproduct of depotentiation and repotentiation of 

potentiated synapses 

Review Finnie and Nader, 2012 Reviews several mechanisms that may have a role in 

memory stability 

 Zhang et al., 2018 Discusses the role of NMDA receptors in 

reconsolidation boundary conditions and the influence 

of GluN2A/GluN2B on memory destabilization 

 Shepherd, 2012 Discusses the role of CP-AMPA receptors in neuronal 

plasticity, memory and sleep 

Experimental 

research 

Hu & Schacher, 2014 Studies which types of reactivation could lead PNA-

LTF potentiated synapses to enter a labile state in 

Aplysia 

 

Hu et al., 2011 Studies the effects of additional stimuli on Aplysia LTF 

in the presence or absence of pharmacological 

tretament 

 
Hu and Schacher, 2015 Studies which types of reactivation could lead Aplysia 

PA-LTF potentiated synapses to enter a labile state 

 

Mendez et al., 2018a Using optogenetic tools, describes the influence of 

induced homeostatic plasticity in mouse DG granule 

cells on memory processes 

 

Rodríguez-Durán et al., 2017 Studies the possibility that in vivo LTD can be induced 

in the rat BLA-IC pathway and how LTP and LTD in 

this connection influence extinction. 

Computational 

research 

Tetzlaff et al., 2013 Studies if synaptic scaling can integrate short- and 

long-term memories and how this mechanism affects 

memory consolidation and recall 

 de Camargo et al., 2018 Develops a heteroassociative network with synaptic 

scaling as a model for the CA3 region of the 

hippocampus 

 
Susman et al., 2019 Develops a network to demonstrate that memories can 

be stored in the presence of synaptic fluctuations 

Table S2: Features of the studies extracted during the systematic review of homeostatic 

plasticity in memory. Studies are classified as opinion articles, reviews, experimental studies 

and computational studies according to their methodology. BLA-IC: Basolateral-insular cortex; 

CP-AMPA: calcium-permeable AMPA; PNA-LTF: persistent non-associative long-term 

facilitation; DG: Dentate gyrus; LTD: Long-term depression; LTF: Long-term facilitation; LTP: 

Long-term potentiation; NMDA: N-methyl D-aspartate; PA-LTF: persistent associative long-

term facilitation. 
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