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SUMMARY

The 1000 Genomes Project (1kGP) is the largest fully open resource of whole genome
sequencing (WGS) data consented for public distribution of raw sequence data without access
or use restrictions. The final release of the 1kGP included 2,504 unrelated samples from 26
populations and was based primarily on low coverage WGS. Here, we present a new, high
coverage 3,202-sample WGS 1kGP resource, sequenced to a targeted depth of 30X using the
Illumina NovaSeq 6000 system, which now includes 602 complete trios. We performed
SNV/INDEL calling against the GRCh38 reference using GATK’s HaplotypeCaller, and
generated a comprehensive set of SVs by integrating multiple analytic methods through a
sophisticated machine learning model. We make all the data generated as part of this project
publicly available and we envision it to become the new de facto public resource for the
worldwide genomics and genetics community.
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INTRODUCTION
The 1000 Genomes Project (1kGP) was the first large-scale whole genome sequencing (WGS)
effort to deliver a catalog of human genetic variation (Sudmant et al., 2015; The 1000 Genomes
Project Consortium, 2010, 2012, 2015). The project sampled participants from 26 populations
across five continental regions of the world. Spanning seven years of data generation and
analysis, it culminated in 2015 with a publication of the final, phase 3, variant call set (Sudmant
et al., 2015; The 1000 Genomes Project Consortium, 2015) consisting of 2,504 unrelated
samples, a subset of which is from the HapMap collection (The International HapMap 3
Consortium, 2010). The set of 2,504 samples was selected with the goal of maximizing the
discovery of single nucleotide variants (SNVs) at minor allele frequencies (MAF) of 1% or higher
in diverse populations, hence related samples were not included. The phase 3 call set was
generated based on the combination of low coverage WGS (mean depth 7.4X), high-coverage
whole exome sequencing (WES, mean depth 65.7X), and microarray genotyping data. It
included 84.7 million SNVs, and 3.6 million short insertions and deletions (INDELs), as well as a
separate set of 68,818 structural variants (SVs; alterations ≥ 50 bp). The 1kGP resources have
been collectively cited over 16,000 times to date and have been utilized for foundational
applications such as genotype imputation, eQTL mapping, variant pathogenicity prioritization,
population history, and evolutionary genetics studies (Almeida et al., 2014; Hara et al., 2014;
Horikoshi et al., 2015; Huang et al., 2015; Khurana et al., 2013; Kircher et al., 2014;
Lappalainen et al., 2013; Nikpay et al., 2015; Ritchie et al., 2014; Zheng-Bradley and Flicek,
2017). While the phase 3 dataset captured the vast majority of common variants (MAF > 1%) in
the population (> 99% of SNVs and > 85 % INDELs) (The 1000 Genomes Project Consortium,
2015), detection of rare variants (MAF ≤ 1%) was limited due to low sequencing coverage
outside of the coding regions of the genome.
Here, we present high coverage WGS and comprehensive analyses of the original 2,504 1kGP
samples, as well as of 698 additional related samples. These related samples were not included
as part of the phase 3 call set, but now provide complete WGS on 602 trios in the 1kGP cohort.
A small subset of these pedigrees have been sequenced previously as part of various efforts,
such as Platinum Genomes (Eberle et al., 2017), Complete Genomics (The 1000 Genomes
Project Consortium, 2015), and the Human Genome Structural Variation Consortium (HGSVC),
which generated long-read WGS from Pacific Biosciences (PacBio), Bionano Genomics, and
Strand-seq technology (Chaisson et al., 2019; Ebert et al., 2021); however, this is the first time
that nearly all 1kGP trios have been sequenced at high coverage and jointly analyzed for the
discovery and genotyping of genomic variation across the size and frequency spectrum, ranging
from SNVs to large and complex SVs in a singular resource. We sequenced the expanded
cohort of 3,202 samples to a targeted depth of 30X (minimum 27X, mean 34X) genome
coverage using Illumina NovaSeq 6000 instruments. We aligned reads to the GRCh38
reference and performed SNV/INDEL calling using GATK’s HaplotypeCaller. Using this strategy,
we called over 111 million SNVs and over 14 million INDELs with false discovery rate (FDR) of
0.3% and 1.15%, respectively, across the entire cohort of 3,202 samples. We also discovered
and genotyped a comprehensive set of SVs, including insertions, deletions, duplications,
inversions, and multiallelic copy number variants, by integrating multiple algorithms and analytic
pipelines, including GATK-SV (Collins et al., 2020), svtools (Larson et al., 2019), and Absinthe
(Corvelo et al., 2021). Comparison with previous low coverage sequencing performed in phase
3 of the 1kGP demonstrates significant improvements in sensitivity and specificity in the SNV,
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INDEL and SV call sets, highlighting that the re-sequencing effort and expansion of the cohort to
include trios brought significant value to the resource.
One of the major applications of the phase 3 1kGP call set has been its widespread use as a
reference panel for variant imputation in sparse, array-based genotyping data with a goal of
improving the statistical power of downstream genome-wide association studies (GWAS) and
facilitating fine-mapping of causal variants. We leveraged the presence of full trios in the
expanded 1kGP cohort and performed haplotype phasing of SNVs and INDELs using a
statistical phasing approach with pedigree-based correction. We demonstrate the improvements
brought by including family members when phasing variants and show how it compares to the
phase 3 version. Finally, we evaluate the imputation performance of the high coverage panel
and demonstrate improved results especially in INDEL imputation as compared to the phase 3
panel.
Over the past few years, the cost of high coverage WGS has decreased dramatically which,
combined with substantial progress in analytics tools, has contributed to the emergence of
several population-scale high coverage WGS panels, such as the Genome Aggregation
Database (gnomAD; 76,156 WGS and 125,748 WES samples) (Karczewski et al., 2020),
Trans-Omics for Precision Medicine (TOPMed, ~180,000 samples) (Taliun et al., 2021), or the
UK Biobank (UKBB, goal to sequence 500,000 samples by 2023) to name a few. These growing
resources, many fold larger in sample size than the 1kGP cohort, enable continuous expansion
of the catalog of genetic variation in the human population and facilitate discoveries that
improve human health. Unlike the 1kGP, these recent large-scale WGS efforts have restrictions
on public data sharing as they are often linked to clinical data, which amplifies privacy concerns.
As a result, only aggregate population-level allele frequencies are typically available for public
access. In contrast, samples within the 1kGP cohort have been consented for full public release
of genetic information which allows for unrestricted sharing of the complete sample-level
genotype (GT) data. This enables granting access to a downloadable reference imputation
panel, as well as use of the dataset for methods development and benchmarking, among other
applications. All the data generated as part of this project, including CRAM files and VCFs, have
been made publicly available (see the Resource Availability section). We envision this updated
version of the 1kGP cohort to become the new de facto public resource for the worldwide
scientific community working on genomics and genetics.

RESULTS
Small variation across the 3,202 1kGP samples. Using the Illumina NovaSeq 6000 System,
we performed WGS of the original 2,504 1kGP unrelated samples as well as additional 698
related samples. This completed 602 parent-child trios in the 1kGP cohort and brought the total
number of sequenced and jointly-genotyped samples to 3,202 (Figure 1A, Table S1). At the
cohort-level, we discovered a total of 117,256,690 small variant loci, which represent
125,484,020 unique alternate alleles, including 111,048,944 SNVs and 14,435,076 INDELs
(Table 1). Across all SNVs and INDELs, there are 58,379,163 (47.6%) singletons (allele count
(AC)=1), 45,931,977 (37.5%) rare (allele frequency (AF) ≤ 1%), and 18,212,589 (14.9%)
common (AF > 1%) alleles, as defined using AF estimates based on unrelated samples in the
cohort (Figure 1B). Out of all small variants, 19,237,848 (15.3%) represent novel alleles,
defined here as not reported in dbSNP build 151 (Sherry et al., 1999). Among the novel
variants, 63.0% are singletons, 32.3% are rare, and 4.7% are common in the population (Figure
1B).
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To better characterize our variant calls, we divided the genome into easy- and
difficult-to-sequence regions (see Methods), based on stratification intervals generated by the
Genome in a Bottle (GIAB) Consortium (Krusche et al., 2019). At the locus-level, 6.6%
(7,706,051 out of 117,256,690) of small variant sites across the 3,202-sample cohort are
multiallelic. The difficult regions constitute only 20% of the genome but they contain a
disproportionately high fraction of multiallelic sites (74.5%) as well as INDEL loci (64.3%). This
is in contrast to SNV loci which fall mostly in the easy regions of the genome (easy: 76.9% vs.
difficult: 23.1%). The enrichment for multiallelic and INDEL calls in difficult regions is consistent
with expectation, as these regions mostly consist of low complexity and repetitive elements
where alignment of sequencing reads is particularly challenging and where INDELs are known
to typically form (Montgomery et al., 2013).
At a genome level, we called an average of 4,952,915 small variants (Figure 1C, Table 1). This
includes an average of 4,080,992 SNVs and 871,923 INDELs per genome, across samples
from all populations (Table 1, Figure S1A, S1B). We observed an average transition to
transversion ratio (Ti/Tv) of 2.01 and heterozygous to non-reference homozygous ratio
(Het/Hom) of 1.70 (Figure S1C), consistent with expectations for WGS data. As expected, the
average number of variant sites was higher in the individuals from populations with African
ancestry (AFR), with 4,653,521 SNVs and 969,792 INDELs per genome (Table 1). In line with
that, we also observed a higher Het/Hom ratio of 2.03 among the AFR samples (Figure S1C).
We also noticed higher variability in the number of variants in individuals belonging to the
admixed populations with American ancestry (AMR) (Figure 1C).

Predicted functional consequence of small variants. To assess functional consequences of
SNVs and INDELs in the high coverage call set, we annotated all variant loci using the Ensembl
Variant Effect Predictor (VEP) v104 tool (McLaren et al., 2016). Across the unrelated samples,
we found a total of 605,896 missense, 384,451 synonymous, as well as 36,520 predicted loss of
function mutations (pLOF), defined here as stop-gains (n=12,181), frameshift (n=10,850), and
splice mutations (n=13,489) (Figure 1D, purple bar plots). Depending on the functional
consequence category, 86-97% and 67-95% of predicted functional SNVs and INDELs,
respectively, are rare (MAF ≤ 1%), with 4-15% SNVs and 13-49% INDELs being novel (i.e.
absent from dbSNP build 151) (Figure 1D, blue and green bar plots). At a genome level, we
found on average 10,625 missense, 11,956 synonymous, 76 stop-gain, 195 frameshift, and 314
splice mutations, without applying MAF filtering (Figure 1D, Table S3). At MAF ≤ 1%, each
sample carries on average 11 stop-gain, 18 essential splice, and 14 frameshift mutations. These
cohort- and genome-level counts are consistent with previous reports (Karczewski et al., 2020;
Taliun et al., 2021). As expected, AFR samples carry the highest counts of variants across all
functional categories as compared to other populations (Figure S1G, Table S3), with
magnitudes of difference between populations being similar across high and low impact
functional categories (Figure S1H).

False discovery rate among small variants. We determined the FDR of the high coverage call
set by comparing our genotype calls in sample NA12878 to the GIAB NA12878 truth set v3.3.2
(Zook et al., 2019), in the high confidence regions of the genome. Using this approach, the
estimated FDR is 0.3% for SNVs and 1.15% for INDELs. We observed ~10-fold lower FDR
(=1-Precision in Figure 1E) in the easy as compared to difficult subsets of the high confidence
regions for both SNVs (0.10% vs. 1.40%, respectively) and INDELs (0.17% vs. 1.54%) (Figure
1E & S1D). In the easy regions, sensitivity of SNV and INDEL calls reaches 99.89% and
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99.14%, respectively, whereas in difficult regions it is slightly lower, 99.13% for SNVs and
97.53% for INDELs (Figure 1E & S1D).
To further evaluate the quality of the high coverage call set, we separately analyzed the subset
of small variants which tends to be the most enriched for false positive calls, namely the
singletons (defined here as variants with AC=1 across the entire 3,202-sample cohort). Due to
the mixed nature of the expanded 1kGP cohort, which now includes both unrelated as well as
related samples, it is important to note that the number of singletons per genome varies
depending on the sample's relatedness status, with children having the fewest singletons,
followed by parents, and unrelated samples in the cohort (Figure S1E). We observed a nearly
bimodal distribution of per-genome singleton counts among children with modes at 444 and
1,108 and the mean of 1,340, and a unimodal distribution among parents as well as unrelated
samples with means at 12,365 and 23,197, respectively (Figure S1E). These differences are
due to “private” variants (i.e. inherited variants that are private to a single family) which are not
being counted as singletons in children, while 50% and 100% of them are being counted as
singletons in each of the parents and in unrelated samples, respectively. Singletons among
children that are part of the 602 trios in the cohort represent putative de novo mutations
(DNMs). The expected number of germline DNMs is ~100 per child (Jónsson et al., 2017; Kong
et al., 2012), which suggests that the mean number of singletons among children exceeds the
expectation by about a factor of 10, although this varies rather widely from sample to sample
(Figure S1E). Given that all 1kGP samples are derived from lymphoblastoid cell lines (LCLs) of
various ages, these additional singletons likely represent somatic artifacts from cell line
propagation (Ng et al., 2021), as well as some false positive calls. As evidence of the presence
of somatic artifacts, we observed aneuploidy of allosomes in 0.94% of the samples, and
sub-chromosomal level mosaic copy number variants (CNVs) on multiple autosomes (Figure
S2). This is in agreement with findings from the Polaris project (Illumina Inc., 2019).
To estimate FDR among singletons, we evaluated singletons in sample NA12878 against the
GIAB NA12878 truth set v3.3.2 (Zook et al., 2019). Since NA12878 is a child in the expanded
1kGP cohort, we jointly assessed both its de novo variants (n=2,404) as well as inherited
heterozygous variants that are private to the NA12878 trio (n=15,131). Based on that, the
estimated FDR among singletons is 1.01% (see Methods; Figure S1F). To ensure that this
approach for FDR estimation is not biased due to inclusion of NA12878’s parents in
joint-genotyping, we also computed FDR among singletons in NA12878 from an independent
jointly-genotyped high coverage call set consisting of just the original 2,504 1kGP unrelated
samples. Using this orthogonal validation, the estimated FDR is 0.98%, which agrees closely
with the analysis based on the 3,202-sample call set (Figure S1F). Additionally, we evaluated
singletons against the recently released GIAB NA12878 truth set v4.2.1 (Wagner et al., 2021).
Thanks to inclusion of additional technologies such as PacBio-HiFi and 10X Genomics, the
GIAB v4.2.1 truth set excludes some of the calls believed to be mosaic variants that arose due
to cell line propagation that were present in the GIAB v3.3.2 truth set. Based on this
comparison, the FDR among singletons is 5.93% (combined analysis of DNMs and private
variants in NA12878 from the 3,202-sample joint call set) or 5.78% (analysis of singletons from
the 2,504-sample joint call set) (Figure S1F; see Methods). This indicates that ~5% of singleton
calls in the high coverage call set appear to be truly present in the cell lines but may not
represent true population variants or even real DNMs in the original donors, highlighting
potential shortcomings of using cell line derived DNA for this study.
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Structural variation across the 3,202 1kGP samples. We generated an SV call set across all
3,202 1kGP samples with short read sequencing data. These SV genotypes were discovered
and integrated from three analytic pipelines: GATK-SV (Collins et al., 2020), svtools (Abel et al.,
2020), and Absinthe (Corvelo et al., 2021) (see Methods) (Table S4, Figure S3). This final
ensemble call set included 173,366 loci, comprised of 90,259 deletions, 28,242 duplications,
673 multiallelic copy number variants (mCNVs), 49,693 insertions, 920 inversions, 3,568
complex SVs (CPX) consisting of a combination of multiple SV signatures, and 11
inter-chromosomal translocations (CTX, Figure 2A, Table 1). The size and allele frequency
distribution of SVs followed expectations; mobile element signatures were observed for ALU
(200-300 bp), SVA (1-2 kb), and LINE1 (5-6 kb) variants (Figure 2B). Most SVs were rare, and
SV allele frequencies were inversely correlated with SV size (Figure 2C). On average, ~9,679
SVs were discovered in each genome (see Figure 2D, Table 1). The distribution of SVs
observed per individual followed expectations for ancestry with the greatest number of SVs per
genome derived from AFR populations (Figure 2E, Table 1) (Campbell and Tishkoff, 2008). The
specificity of the SV call set was also quite high, with a de novo SV rate of 3.2%, which
represents the combination of false positive SVs in children, false negative SVs in parents, and
cell line artifacts in children (Figure 2F).

Comparison of the small variant calls to the 1kGP phase 3 call set. To quantify the
improvements that the high coverage sequencing and pipeline upgrades brought to the new
1kGP call set, we compared our small variant calls against the original phase 3 call set. For
consistency, we restricted this comparison to variants discovered in the 2,504 samples that are
common to both datasets. For that purpose, we generated an independent jointly-genotyped
high coverage call set, consisting of just the original samples, and used it for the comparison.
Direct comparison to the original call set was not possible as the phase 3 dataset was aligned to
the GRCh37 reference. To overcome this issue, we lifted-over the phase 3 call set to the
GRCh38 build using CrossMap (Zhao et al., 2014) (see Methods).
The 2,504-sample high coverage call set includes 96,950,998 SNVs and 13,132,415 INDELs
across the autosomes. This represents a 1.24-fold cohort-level increase in the number of SNVs
and 4.05-fold increase in the number of INDELs, compared to the lifted-over phase 3 call set
(78,324,761 SNVs and 3,244,241 INDELs). Among SNVs, we observed the largest gains in the
number of singletons (AC=1; gain of 15,123,906 SNVs) and rare (AC > 1 and AF ≤ 1%; gain of
3,557,925 SNVs) allele categories in the high coverage relative to the phase 3 call set. As
expected, the number of common (AF > 1%) SNVs was similar across both call sets (Figure
3A). In the case of INDELs, we observed gains across the entire AF spectrum relative to the
phase 3 call set (Figure 3B). The highest increase (676-fold) is in the singleton category where
the phase 3 call set contains only 4,437 singleton INDELs, as compared to 2,999,027 in the
high coverage call set. The low number of ultra-rare INDEL calls in the phase 3 set can be
attributed to more stringent filtering applied to INDELs as compared to biallelic SNVs (The 1000
Genomes Project Consortium, 2015) and limitations of low coverage sequencing. The increase
in the number of rare and common INDELs in the high coverage vs. phase 3 call set is also
significant, 3.49- and 2.72-fold, respectively (Figure 3B). Additionally, we called significantly
more INDELs above 50 bp in length (182,579 vs. 2,172 in phase 3, Figure S4A).
Overall, we recalled 98.3% of the phase 3 small variants in the high coverage call set. SNV
recall rate is over 99% in the easy regions of the genome, and over 96% in the difficult regions
across all AF bins (Figure 3A). In the easy regions of the genome, INDEL recall rate is above
97% in rare and common AF bins, but is down to 88% among singletons (Figure 3B). In the
difficult regions of the genome, INDEL recall rate decreases significantly with decreasing AF,
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from 96% in the common allele bin, 92% in the rare, down to only 61% in the singleton bin
(Figure 3B). We observed high correlation of AF among shared variants between the high
coverage and phase 3 call sets (Figure S4C). In the easy regions of the genome, the Pearson
correlation coefficient of AFs is above 0.99 for both SNVs and INDELs, whereas in the difficult
regions it drops to 0.98 for SNVs and 0.93 for INDELs  (Figure S4C).
At a per sample level, we observed a 1.05-fold average increase in the number of SNVs and
1.47-fold increase in the number of INDELs in the high coverage (3,950,455 SNVs and 838,249
INDELs across the 2,504 samples) as compared to the phase 3 call set (3,759,570 SNVs and
570,067 INDELs; Figure 3E, 3F).
The FDR of the 2,504-sample high coverage call set is 0.1% for SNVs and 1.1% for INDELs, as
compared to 0.6% for SNVs and 12.4% for INDELs in the lifted-over phase 3 call set. When we
stratified the FDR estimation by AF bins and genomic regions, we observed significantly lower
FDR across the entire AF spectrum, in both easy and difficult genomic regions, in the high
coverage as compared to the phase 3 call set (Figure 3C, 3D, S4B). This trend was particularly
pronounced among rare (AF ≤ 1%) SNVs and INDELs in the difficult regions of the genome.
We observed 1.01-1.40-fold increase in the number of SNVs falling into various functional
categories in the high coverage as compared to the phase 3 call set at a cohort-level (Figure
3G, top row). This increase was especially pronounced (≥ 1.2-fold) in the intronic, intergenic,
and untranslated region (UTR) categories. The rather insignificant increase in the number of
SNVs in protein-coding categories (1.01-1.13-fold; Figure 3G, top row) was expected since
variant discovery in the phase 3 call set was based on high coverage WES, in addition to low
coverage WGS. We observed a more significant increase, between 2.5- and 5-fold, in the
number of predicted functional INDELs in the high coverage vs. phase 3 call set at the
cohort-level (Figure 3H, top row). This is consistent with larger overall gains in INDEL calls as
compared to SNVs in the high coverage call set. At a genome level, the ratios of predicted
functional SNV counts in the high coverage vs. phase 3 call set were close to 1 (i.e. no
significant difference) with well-controlled FDR in both call sets across nearly all categories. The
two exceptions were stop-loss and stop-gain categories for which mean ratios were 1.11 and
1.09 (Figure 3G, middle row), respectively, with stop-gain category having a particularly high
FDR in the phase 3 call set (25% vs. 2% in high coverage; Figure 3G, bottom row; Figure S4D).
Among INDELs, the genome-level ratios in high coverage vs. phase 3 were higher than for
SNVs, reaching over 1.5 in case of inframe deletions, as well as intergenic, and intronic
INDELs, consistently with larger proportion of common INDELs relative to SNVs among new loci
discovered in the high coverage call set. We observed a slight decrease in the mean number of
frameshift (7%) and stop-gain (11%) INDELs in the high coverage as compared to the phase 3
call set (Figure 3H, middle row). In case of frameshift mutations, this decrease might be
explained by a particularly high FDR rate in the phase 3 call set (55% vs. 5% in the high
coverage call set; Figure 3H bottom row; Figure S4E).

Comparison of the SV calls to the 1kGP phase 3 call set. The ensemble SV call set was
compared to the 1kGP phase 3 SVs (7.4X average coverage) (Sudmant et al., 2015) on the
2,504 shared samples to assess the quality and unique value brought by high coverage
sequencing and genotyping capabilities of new analytic pipelines. The current ensemble SV call
set discovered over two-fold more SV sites than phase 3 (169,713 vs. 68,697), and
encompassed 87.7% of the phase 3 SV calls (Figure 4A). This increased sensitivity and high
overlap of phase 3 SVs was consistent across all SV classes (Figure 4A), with an average of
9,655 SVs detected per genome in the current ensemble call set compared to 3,431 SVs in the
phase 3 call set (Figure 4B).
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The high coverage SV call set provided significant added value in terms of the discovery of SVs
that alter gene function by comparison to the phase 3 low-coverage SV dataset. Consistent with
a previous large population study from short-read WGS that predicted disruption of 180 genes
by SVs in each genome (Collins et al., 2020), as well as a recent study from the HGSVC using
long-read WGS and complementary technologies that estimated 189 SVs per genome that
altered protein coding genes (Ebert et al., 2021), we observed that biallelic SVs in each genome
resulted in alteration of 162 genes per genome, including probable loss of function (pLoF) of 97
protein coding genes, complete copy gain (CG) of 50 genes, and duplications of intragenic
exons (IED) of 15 genes. Notably, the functional impact of IEDs has been previously shown to
be correlated with negative selection against LoF point mutations (Collins et al., 2020). This
represents a considerable increase in the estimates from the low-coverage phase 3 call set that
predicted an average of 32 genes disrupted by SVs per genome (30 pLoF, 1 CG and 1 IEDs;
Figure 4C, S5). The high-coverage 1kGP dataset also offered an estimate in the population
diversity of functional SV variation, where AFR populations had the highest number of SVs per
genome (Figure 4D), and similar patterns were observed when evaluating pLoF, CG and IED
SVs that altered protein coding gene sequences individually (Figure S5).

Haplotype phasing of small variants. We performed haplotype phasing of high quality SNVs
and INDELs across the 3,202-sample 1kGP cohort using statistical phasing with
pedigree-based correction (chromosome X was phased without the correction; see Methods).
Prior to phasing, we filtered the small variant call set (see Methods) which resulted in a selection
of 72,065,314 high quality variants across autosomes and chromosome X (Figure 5A). Included
among these are 61,411,215 SNVs, 9,954,481 INDELs, and 699,618 multi-nucleotide
polymorphisms (MNPs) (counts at the alternate allele (ALT) level) (Table S6).
We evaluated phasing accuracy of the phased panel by computing switch error rate (SER) in
sample NA12878 relative to the gold standard phasing truth set, i.e. Platinum Genome
NA12878 call set generated by Illumina (Eberle et al., 2017). The SER across all autosomes
was 0.074% (1,754 switch errors (SEs) across 2,338,955 assessed SNV/INDEL heterozygous
(HET) pairs), indicating high accuracy of phasing. As expected, chromosome X (phased using
statistical phasing alone) displayed higher SER as compared to autosomes (SER=0.491%; 362
SEs across 73,794 HET pairs; Figure S6A). We did not observe a significant difference in
phasing accuracy between SNVs and INDELs, other than on chromosome X, where SER for
INDELs was 2.01% (187 SEs across 9,298 assessed INDEL HET pairs) as compared to 0.51%
for SNVs (328 SEs across 64,583 SNV HET pairs) (Figure S6B). We observed an expected
increase in SER with decrease in MAF, but the SER remained low throughout the entire MAF
spectrum, reaching a maximum of 1.14% in the ≤ 0.1% MAF bin across autosomes (Figure 5B,
violet solid line; see Figure S6A for per chromosome breakdown). Such high phasing accuracy
at the low end of the MAF spectrum can be attributed to both the presence of family members in
the expanded 1kGP cohort (Figure 5B, dashed violet line with open triangles vs. dashed violet
line with open diamonds) as well as pedigree-based correction applied after statistical phasing
(Figure 5B, solid violet line vs. dashed violet line with open triangles).
Finally, we compared the phasing accuracy of the high coverage panel to the phase 3 panel,
which was phased using statistical phasing with family-based scaffold built from chip array data
(The 1000 Genomes Project Consortium, 2015). The overall SER across autosomal SNVs and
INDELs for the phase 3 panel was 0.76% (16,938 SEs across 2,238,400 HET pairs), which is
10-fold higher than SER in the high coverage call set. The SER on chrX was 1.29% (879 SEs
across 68,290 HET pairs) in the phase 3 panel, which is 2.6-fold higher than SER on chrX in the
high coverage panel. The significantly lower SER in the high coverage as compared to the
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phase 3 panel was also observed in a stratified analysis across all four MAF bins (Figure 5B,
solid violet vs. solid aqua line), with magnitude of decrease ranging from 3.6-fold in the case of
the most common MAF bin up to 34-fold in the rarest MAF bin. The significant improvement in
phasing accuracy underscores the benefit of including trios while building the new panel. It is
worth noting that the phasing accuracy of the 2,504-sample phase 3 dataset was slightly better
than that of the unrelated 2,504-sample high coverage dataset (Figure 5B, solid aqua line vs.
dashed violet line with open diamonds) due to the fact that the latter dataset was phased using
statistical phasing alone, without the family-based scaffold.

Imputation performance of the small variant reference panel. To assess imputation
performance of the high coverage panel, and to compare it with the original phase 3 panel, we
imputed a set of 279 diverse samples from the Simons Genome Diversity Project (SGDP)
(Mallick et al., 2016) with either the high coverage or the phase 3 panel as the reference. We
evaluated the accuracy of imputed genotypes by computing the squared Pearson correlation
coefficient (r2) between imputed allelic dosages and dosages from publicly available WGS data
(Mallick et al., 2016) used here as a truth set (see Methods). Using the high coverage reference
panel, we observed significantly higher mean imputation accuracy, for both SNVs and INDELs,
in easy as compared to the difficult regions of the genome (r2=0.8 attained at AF=~2% for SNVs
and INDELs in easy regions, compared to AF=~10% and AF=~30% for SNVs and INDELs,
respectively, in difficult regions) (Figure 5C). This expected pattern of improved imputation
performance in easy-to-sequence regions was also observed in a stratified analysis, across all
five super-populations (Figures S6C, S6D).
When compared with the phase 3 reference panel, the high coverage panel displays superior
imputation accuracy across shared loci for all five super-populations, especially in the case of
INDELs and, to a lesser extent, rare SNVs (Figure 5D). Depending on the ancestry group, the
high coverage panel achieves a mean imputation accuracy r2 of 0.8 at AF=1-4% across SNVs
and AF=2-4% across INDELs (Figure 5D). In the case of the phase 3 panel, the mean r2=0.8 is
achieved at AF=2-4% across SNVs and AF=5-70% (with AFR super-population being the
biggest outlier at AF=70%) across INDELs (Figure 5D). Improvements in INDEL imputation
using the high coverage panel are significant across the entire AF spectrum. At an AF=0.5%, for
example, we observe a mean r2 increase ranging from 1.8-fold (AFR) to 4.3-fold (AMR) in the
high coverage relative to the phase 3 panel. At an AF=5%, the improvement in INDEL
imputation accuracy is still significant, ranging from 1.2-fold (EUR, SAS, AFR, EAS) to 1.4-fold
(AMR), across the populations (Figure 5D). As expected, imputation performance for SNVs is
comparable between the high coverage and phase 3 panels at AF > 5%. At AF < 5%, we
observe slightly better performance with the high coverage panel across all 5 super-populations
(e.g., SNVs at AF=0.2% are imputed with r2=0.54 using the high coverage panel vs. r2=0.45 with
the phase 3 panel across EUR samples; Figure 5D).

DISCUSSION
We present results from high coverage WGS of the expanded 1kGP cohort, consisting of 2,504
original samples as well as additional 698 related samples, completing 602 trios in the cohort.
We called 111,048,944 SNVs, 14,435,076 INDELs, and 173,366 SVs across the 3,202 samples,
using state-of-the-art methods. When compared to the low coverage phase 3 1kGP dataset
published in 2015, the variant counts in the high coverage call set reflect an estimated average
increase of 190,885 SNVs (1.05-fold), 268,182 INDELs (1.47-fold), and 5,835 (2.81-fold) SVs
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per genome, and a cohort-level increase of over 18.6 million SNV (1.24-fold), 9.8 million INDEL
(4.05-fold), and ~100 thousand SV loci (2.47-fold), across the original 2,504 unrelated samples.
A direct comparison of the high coverage 1kGP SNV/INDEL dataset against the phase 3 set
was impossible due to differences in genomic reference builds that were used for variant calling
during generation of the two call sets. To enable a locus-level comparison, we lifted-over the
phase 3 dataset from the GRCh37 to the GRCh38 reference, which was successful for 99.9% of
phase 3 variants. Our goal was not to dissect all of the factors that likely influenced variant
discovery in the high coverage and phase 3 datasets. Differences in sequencing platforms and
read length (phase 3: Illumina HiSeq 2000 and HiSeq 2500, 76 bp or 101 bp paired-end reads;
high coverage: Illumina NovaSeq 6000, 150 bp paired-end reads), library preparation (phase 3:
PCR-based; high coverage: PCR-free), sequencing coverage (phase 3: mean depth 7.4X; high
coverage: mean depth 34X), reference genome (phase 3: GRCh37; high coverage: GRCh38),
alignment software (phase 3: BWA 0.5.9; high coverage: BWA-MEM 0.7.15), as well as in
downstream bioinformatics pipeline most likely all contributed to various degrees to the
differences in variant calls that we described here. Overall, despite these differences, we found
high concordance between the high coverage and the phase 3 SNV/INDEL call set. Over 98%
of small variants from the phase 3 call set were recalled in the high coverage dataset with AF
correlation coefficient above 0.99 in the easy- and 0.93 in the difficult-to-sequence regions of
the genome.
As expected, given that the phase 3 dataset identified nearly all common SNVs (MAF > 1%) in
the population, the vast majority of the new SNVs identified here were in the rare MAF spectrum
(≤ 1%). In terms of predicted functional SNVs, we called a comparable number of protein-coding
variants relative to the phase 3 call set, which is in agreement with the expectation since the
original call set included high coverage WES data in addition to low coverage WGS. We saw a
more significant increase (~1.2- to 1.4-fold) in the number of UTR and intronic SNVs, which
typically exhibit lower coverage in WES. Consistent with the fact that high coverage sequencing
and new variant callers bring greater improvements to INDEL as compared to SNV calling, we
observed gains in INDEL counts across the entire MAF spectrum with gains in the rare end of
the spectrum being the most pronounced. These gains in INDEL calls were apparent across all
predicted functional categories, with cohort-level increases relative to the phase 3 call set
ranging from 2.5-fold in start-loss category to 5-fold in the inframe insertion and stop-gain
categories.
The SVs presented here provide a significant increase in discovery power over the phase 3 call
set (9,655 vs. 3,431 SVs per genome) across all 1kGP populations. We further performed
manual inspection of all large CNVs (> 50 kb, n=4,180), and benchmarked large inversions
against Strand-seq (> 5 kb, n=250) to assess orthogonal support. Notably, an important
advance from the SV discovery in this dataset is the updated prediction of functional alterations
from SVs in each human genome. These analyses predicted that 162 protein coding genes
were likely to be altered per genome across all SVs captured from short-read WGS. This
updated result greatly exceeds estimates in the phase 3 call set (n=32 genes altered per
genome). This prediction is comparable to prior estimates from SVs in short-read WGS from
~15,000 individuals using blood-derived DNA in gnomAD (n=180 genes altered per genome
(Collins et al., 2020)). If we consider the existing landscape of SVs from long-read WGS
datasets in a subset of 34 of these samples, analyses from the HGSVC estimated an average of
24,653 SVs in each human genome, including 189 genes altered by SVs (Ebert et al., 2021).
The data presented here, coupled with the availability of inheritance information from a large
number of 602 complete trios in this dataset, and the independent long read WGS, Strand-seq,
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and optical mapping datasets on 34 of these samples from the HGSVC (Ebert et al., 2021),
provides an unprecedented open access SV resource for methods development and genomic
studies.
Inclusion of 602 trios in the expanded 1kGP cohort led to an order of magnitude greater
accuracy of SNV/INDEL haplotype phasing due to both an increase in long-range haplotype
sharing between related samples, and pedigree-based correction applied after statistical
phasing to ensure consistency of phased haplotypes with the pedigree structure. Moreover,
improvements in small variant calling, coupled with higher phasing accuracy of the high
coverage panel, translated into significantly better imputation accuracy, especially for INDELs,
across all of the 1kGP super-populations when the high coverage panel was used as the
reference for imputation as compared to the phase 3 panel.
For more than a decade, the 1000 Genomes collection has been a key resource in the field of
genomics. These datasets have produced scientific insights into population genetics and
genome biology, as well as provided an openly sharable resource that has been widely used in
methods development and testing as well as for technical validation. By generating high
coverage sequencing data for the complete phase 3 set of 2,504 unrelated individuals and
completing 602 trios with 698 additional samples, we have updated this critical resource with
benchmarks and standards for a new generation of large-scale international whole genome
sequencing initiatives. Our state of the art SNV, INDEL, and SV call sets, freely released,
provide the most accurate and comprehensive catalog of variation compiled to date across this
diverse genomic resource, particularly in rare SNVs and all classes of INDELs and SVs that
were challenging to detect using earlier sequencing and analysis methods on low coverage
data. We also present an improved phasing and imputation panel leveraging full sequence from
trios that outperforms the existing imputation panel. Importantly, this panel is fully public and can
be freely downloaded and used in combination with other panels and for use with any target
dataset. Although many larger sequencing projects have now been conducted, the open nature
of the 1000 Genomes samples will continue to make this a foundational resource for the
community in the years to come.
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FIGURES

Figure 1. SNV/INDEL discovery in the high coverage WGS data across the 3,202 1kGP
samples. (A) Counts of sequenced 1kGP samples stratified by sex and super-population.
Transparent areas represent counts coming from the newly added 698 related samples that
were not part of the original 1kGP call set. (B) Cohort-level counts across the 3,202 samples,
stratified by variant type, AF bins, and novel/known variants (absent from/present in dbSNP
build 151). AF was estimated based on the 2,504 unrelated samples only. Singleton counts are
reported as a separate bin and were excluded from the ≤1% AF bin. (C) Total number of small
variant loci per genome, stratified by population. Counts are restricted to variants that passed
VQSR. See also Figure S1A-C. (D) Predicted functional SNVs and INDELs. Top row:
cohort-level counts (purple bar plot) overlaid with distributions of per-genome counts (box plots)
across the 2,504 unrelated samples. Middle row: fraction of rare (MAF ≤ 1%) SNVs and INDELs
among the predicted functional sites. Bottom row: fraction of novel (defined above) SNVs and
INDELs among the predicted functional sites. See also Figure S1G, S1H. (E) Precision vs. recall
of SNVs and INDELs computed relative to the GIAB NA12878 truth set v3.3.2, stratified by easy
and difficult regions of the genome. See also Figure S1D. Super-population ancestry labels:
European (EUR), African (AFR), East Asian (EAS), South Asian (SAS), American (AMR). For
descriptions of population labels please refer to Table S1.
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Figure 2. SV discovery in the high coverage WGS data across the 3,202 1kGP samples.
(A) The count, (B) size distribution, and (C) allele frequency distribution of each SV for each SV
class is shown. The mean per sample count of SVs by variant class (D) and ancestral
population (E) is also provided, as well as (F) inheritance rates of all SVs. In (F) paternal and
maternal inheritance rates (IR) refer to the proportions of SVs in children’s genome that are
paternally and maternally inherited, and parental transmission rate (TR) refers to the proportion
of SVs in parents’ genomes that are transmitted. DNR: De Novo Rate. SV types: DEL: deletion,
DUP: duplication, mCNV: multiallelic copy number variant, INS: insertion, INV: inversion, CPX:
complex SV, CTX: inter-chromosomal translocation. Super-population ancestry labels:
European (EUR), African (AFR), East Asian (EAS), South Asian (SAS), American (AMR). For
descriptions of population labels please refer to Table S1. See also Figure S3.
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Figure 3. Comparison of small variant calls to the phase 3 call set. Number of autosomal
SNVs (A) and INDELs (B) across the 2,504 samples in phase 3 and high coverage datasets,
stratified by AF bins. Counts of variants with AC=1 (singletons) are reported as a separate bin
and were excluded from the ≤1% AF bin. Multiallelic loci were split into separate lines and
INDEL representation was normalized prior to counting. Secondary y axis: % of autosomal
phase 3 variants recalled in the high coverage call set across SNVs (A) and INDELs (B) in easy
and difficult regions of the genome. See also Figure S4C. Comparison of FDR across SNVs (C)
and INDELs (D) between the high coverage and phase 3 call sets, stratified by regions of the
genome. See also Figure S4B. Genome-level SNV (E) and INDEL (F) counts in the phase 3 vs.
high coverage call sets, stratified by 1kGP super-population ancestry (EUR: European, AFR:
African, EAS: East Asian, SAS: South Asian, AMR: American). Reported counts are at a locus
level. Comparison of predicted functional SNV (G) and INDEL (H) counts in the high coverage
vs. phase 3 call set. Log2(ratio) denotes log2(ratio of variant counts in the high coverage vs.
phase 3 call set). Top row: cohort-level comparison. Middle row: genome-level comparison.
Bottom row: comparison of FDR. Red asterisks on top of the FDR plot denote categories with
fewer than 100 sites in sample NA12878 (i.e. categories where FDR estimation is less reliable).
See also Figure S4D,E. FDR in panels C, D, G, and H was estimated based on comparison of
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calls in sample NA12878 to the GIAB NA12878 truth set v3.3.2.

Figure 4. Comparison of the ensemble SV calls to the phase 3 call set. (A) Count of SV
sites in the current ensemble SV call set and low coverage phase 3 SV call set, and their
overlap. Numbers next to each bar represent the counts of SV sites in each dataset. (B) The
distribution of SV counts per sample in both call sets and their average overlap, displayed in the
Venn diagram. (C) Count of genes altered by SVs in both datasets. pLoF: probable loss of
function, CG: complete copy gain, IED: intragenic exon duplication. (D) Count of genes altered
by SVs across ancestral populations. See also Figure S5.
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Figure 5. Small variant phasing and imputation performance. (A) Counts of small variants
passing specified filtering criteria. Multiallelic variants were split into separate rows prior to
counting. PASS: sites that passed VQSR; Miss.: genotype-level missingness; HWE: HWE exact
test p-value > 1e-10 in at least one of the five 1kGP super-populations; ME: mendelian error
rate across complete trios; MAC: minor allele count. See also Table S6. (B) Haplotype phasing
accuracy of the high coverage (hc) and the phase 3 (ph3) 1kGP panel. SER: switch error rate in
sample NA12878 relative to the Platinum Genome truth set (autosomes only). Conditions: (1)
3,202-sample (duohmm): hc panel phased using statistical phasing with pedigree-based
correction; (2) 3,202-samples: hc panel phased using statistical phasing without the
pedigree-based correction; (3) 2,504-samples: hc panel phased using statistical phasing alone
(unrelated samples only). (4) 2,504-samples (fam-scaffold): ph3 panel phased using statistical
phasing with family-based scaffold (unrelated samples only). The two hc panels represented
with dashed lines were created for evaluation purposes only. See also Figure S6A,B. (C)
Imputation accuracy of SNV and INDEL genotypes imputed using the high coverage panel,
stratified by genomic regions. Mean r2: squared Pearson correlation coefficient between imputed
allelic dosages and dosages from WGS data, averaged over 110 Simons Genome Diversity
Project samples. See also Figure S6C, S6D. (D) Comparison of the imputation accuracy
between the high coverage and phase 3 panels for SNVs and INDELs, stratified by
super-population ancestry (EUR: European, AFR: African, EAS: East Asian, SAS: South Asian,
AMR: American). This comparison was restricted to sites that are shared between the two
panels.
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TABLES

Table 1. Summary of variant counts in the high coverage 1kGP call set at the cohort and
sample level. Super-population ancestry labels: European (EUR), African (AFR), East Asian
(EAS), South Asian (SAS), American (AMR). SV types: DEL: deletion, DUP: duplication, mCNV:
multiallelic copy number variant, INS: insertion, INV: inversion, CPX: complex SV, CTX:
inter-chromosomal translocation.

Variant
type

# variants
across
3,202

samples

Average # variants per sample

Total All AFR EUR SAS EAS AMR

Total small
variants 125,484,020 4,952,915 5,623,313 4,645,189 4,736,023 4,651,279 4,754,817

SNV 111,048,944 4,080,992 4,653,521 3,818,951 3,896,324 3,822,328 3,911,413
INDEL-DEL 8,010,854 451,277 503,995 426,940 433,635 428,078 435,976
INDEL-INS 6,424,222 420,646 465,797 399,298 406,064 400,873 407,428

Total SVs 173,366 9,679 10,742 9,176 9,304 9,251 9,363
DEL 90,259 4,232 4,715 4,001 4,066 4,035 4,089
DUP 28,242 1,207 1,322 1,153 1,168 1,155 1,178

mCNV 673 425 433 422 419 425 419
INS 49,693 3,534 3,971 3,329 3,378 3,361 3,403
INV 920 68 71 66 67 67 66
CPX 3,568 213 230 205 206 208 208
CTX 11 0 0 0 0 0 0
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METHODS

RESOURCE AVAILABILITY

Lead contact.
Requests for further information and resources should be directed to and will be fulfilled by the
lead contact, Michael Zody (mczody@nygenome.org).

Materials availability.
This study did not generate new unique reagents.

Data and code availability.
● FastQ files, CRAM alignment files, GVCFs, SNV/INDEL VCFs, SV VCF,

haplotype-resolved SNV/INDEL VCFs, and sample metadata file listing pedigree and sex
information for the 3,202 sequenced samples have been deposited in several public data
repositories as described in
https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. The
GRCh38 lifted-over version of the phase 3 1kGP SNV/INDEL call set, generated as part
of this paper to facilitate comparative analysis, has been deposited on EBI FTP and is
publicly available here:
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/
working/phase3_liftover_nygc_dir/

● This paper does not report original code.
● Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

1000 Genomes Project cohort. As part of this publication, we sequenced 3,202
lymphoblastoid cell line (LCL) samples from the 1kGP collection, including 1,598 males and
1,604 females. All cell lines were acquired from Coriell Institute for Medical Research. The 3,202
samples were drawn from 26 populations (listed in Table S1) across the following 5 continental
ancestry groups: African (AFR, n=893), European (EUR, n=633), East Asian (EAS, n=601),
South Asian (SAS, n=585), and American (AMR, n=490) (Figure 1A, Table S1). Among the
3,202 samples, there are 602 father-mother-child trios (including 2 trios that are part of a
multi-generational family, and 10 trios that were split from 5 quads for the purpose of
pedigree-based correction applied after haplotype phasing) and 6 parent-child duos. All reported
relationships were confirmed in IBD analysis using KING v2.2.3 (Manichaikul et al., 2010).

METHOD DETAILS
WGS library preparation and sequencing. DNA extracted from LCLs was ordered from the
Coriell Institute for Medical Research for each of the 3,202 1kGP samples. Whole genome
sequencing (WGS) libraries were prepared using the TruSeq DNA PCR-Free High Throughput
Library Prep Kit in accordance with the manufacturer’s instructions. Briefly, 1ug of DNA was
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sheared using a Covaris LE220 sonicator (adaptive focused acoustics). DNA fragments
underwent bead-based size selection and were subsequently end-repaired, adenylated, and
ligated to Illumina sequencing adapters. Final libraries were evaluated using fluorescent-based
assays including qPCR with the Universal KAPA Library Quantification Kit and Fragment
Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an
Illumina NovaSeq 6000 system using 2 x 150bp cycles.

Quality control of sequence data. We ran a number of quality control (QC) tools to look for
quality issues, sample swaps, and contamination issues. We ran FastQC (Andrews, 2019)
v0.11.3 on the raw sequence data to assess yield and raw base qualities. We ran Picard (Broad
Institute, 2019) v2.4.1 CollectMultipleMetrics and CollectWGSMetrics on the aligned BAM to
collect alignment and insert size metrics. Picard CollectGcBiasMetrics was run to compute
normalized coverage across multiple GC bins. Reads duplication metrics were quantified by
running Picard MarkDuplicates on the BAM.
All the samples had at least 27X mean coverage across the genome (average per sample
coverage: 34X, range: 27X-71X) and at least 91% of the bases at base quality score 30 or
higher. The mean duplicate rate across the samples was 9% but there were 5 samples
(HG00619, HG00982, HG02151, HG02573 and HG04039) that had a duplicate rate greater
than 20. The median insert size per sample was 433 bp. Higher duplication rate is a known
issue with Illumina’s patterned flow cell that uses exclusion amplification clustering method to
increase data output, but this chemistry is very sensitive to library loading concentrations.
Higher loading concentrations can lead to low throughput because of polyclonal clusters being
formed in the nanowells of the patterned flow cell, whereas low concentration can lead to pad
hopping which increases the duplication rate. VerifyBamID (Jun et al., 2012) was run in
chip-free mode to estimate the likelihood of sample contamination. We use a cutoff of 2% to flag
any sample for contamination and none of the samples reached the cutoff.
To make sure there were no sample mix-ups we ran genotype concordance against genotyping
chip data. For that, we used the chip data that was released with phase 3. We did not find chip
data for 15 samples in phase 3 so for those we ran Infinium CoreExome-24 v1.3 chip and
performed genotype concordance. All the samples had > 97% genotype concordance.

SNV/INDEL discovery using GATK. Read alignment to the human reference genome GRCh38
using BWA-MEM v0.7.15 (Li, 2013), duplicate marking using Picard MarkDuplicates v2.4.1
(Broad Institute, 2019), and Base Quality Score Recalibration (BQSR) using GATK (McKenna
et al., 2010) v3.5 BaseRecalibrator were performed according to the functional equivalence
pipeline standard developed for the Centers for Common Disease Genomics project (Regier et
al., 2018). SAM to BAM and BAM to CRAM file conversions were performed using Samtools
v1.3.1 (Li et al., 2009). SNV and INDEL calling was performed using GATK (McKenna et al.,
2010; Van der Auwera and O’Connor, 2020) v3.5, as described below. For variant discovery we
used HaplotypeCaller in GVCF mode (Poplin et al., 2017) with sex-dependent ploidy settings on
chromosome X and Y. Specifically, variant discovery on chromosome X was performed using
diploid settings in females, diploid settings in PAR regions in males, and haploid settings in
non-PAR regions in males. Variant discovery on chromosome Y was performed with haploid
settings in males and was skipped entirely in females. We combined GVCFs in batches of ~200
samples using GATK CombineGVCFs and jointly-genotyped all 3,202 samples with
GenotypeGVCFs. We then used VariantRecalibrator to train the Variant Quality Score
Recalibration (VQSR) model using “maxGaussians 8” and “maxGaussians 4” parameters for
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SNVs and INDELs, respectively. We applied the VQSR model to the joint call set using
ApplyRecalibration with truth sensitivity levels of 99.8% for SNVs and 99.0% for INDELs.

Evaluation of small variant calls. BCFtools v1.9 (Li, 2011) was used to split multiallelic
variants into multiple rows and left-normalize INDELs before counting variants at the
cohort-level. Per sample variant metrics were collected using the GATK VariantEval tool (Van
der Auwera and O’Connor, 2020). Mixed and complex variants and multi-nucleotide
polymorphisms (MNPs) were not included in the breakdown of genome-level small variants. As
part of QC, we estimated SNV density using the SNVDensity tool from VCFtools v0.1.12
(Danecek et al., 2011) in bins of 1000 bp across the callable genome, defined here as the
GRCh38 reference excluding gaps (“N”s in the GRCh38 reference sequence). The mean SNV
density across the callable genome (see Methods) is 39.46 per 1 kb of sequence. Chromosome
19 (43.21 SNVs per 1 kb) has the highest density overall across all chromosomes, whereas
Chromosome X (30.16 SNVs per 1 kb) displays the lowest density across all chromosomes,
followed by chromosome 1 (36.46 SNVs per 1 kb) among the autosomes which is in agreement
with previous reports based on WGS data (Telenti et al., 2016).
We evaluated small variant calls separately in easy- and difficult-to-sequence regions of the
genome, using stratification intervals defined by the GIAB (Krusche et al., 2019) and obtained
from
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/.
Difficult regions include (i) tandem repeats and homopolymers longer than 6 bp (~40% of
difficult regions), (ii) segmental duplications (~26% of difficult regions), (iii) low (< 25%) and high
(> 65 %) GC content regions and "bad promoters" (~39% of difficult regions), and (iv) regions
with low mappability (~39% of difficult regions) with some overlap between categories
(https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/v2.
0-GRCh38-Union-README.txt). Any region in the GRCh38 reference that did not fall into a
difficult region was classified as easy. The easy and difficult regions make up 80% and 20% of
the reference genome, respectively.
FDR was estimated both genome-wide and in easy vs. difficult regions of the genome by
comparing variant calls in sample NA12878 from the 3,202-sample high coverage call set to the
GIAB NA12878 SNV/INDEL truth set v3.3.2 (Zook et al., 2019). The VCF files were compared
using hap.py (v0.3.12; https://github.com/Illumina/hap.py) with the rtg-tools (v3.8.2) (Cleary et
al., 2015) vcfeval comparison engine. All FDR calculations were restricted to the high
confidence regions of the genome, as defined by the GIAB.
In addition to estimating FDR across all small variants and small variants in easy vs. difficult
regions of the genome, we also estimated it among just the singletons. Due to the mixed nature
of the expanded 1kGP cohort, which now includes both related and unrelated samples, the
number of singletons (sites with AC=1 across the 3,202 samples) per sample varies depending
on the sample's relatedness status. This is because the sample's relatedness status in the
cohort (child, parent, unrelated) determines what the allele count of variants private to its family
is across the sequenced cohort of samples (i.e. whether or not they are singletons in the
cohort). In the high coverage call set, each child in a trio carries on average 19,795 inherited
autosomal heterozygous variants that are shared only with one or both parents across all
samples in the cohort. These variants can be further broken down into sites with AC=2
(mean=19,658), AC=3 (mean=135), and AC=4 (mean=1.75) within a trio. The mean number of
variants private to a family per child in a trio closely matches the difference between the mean
per-genome singleton count in children vs. unrelated samples, in agreement with the
expectation (Figure S1E). Approximately half of these ~20,000 sites are shared between the
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child and the mother and the other half between the child and the father, hence the mean
singleton count in parents is halfway in between the mean singleton count in children and
unrelated samples. Since sample NA12878 is a child in the expanded 1kGP cohort, we
evaluated both its DNMs and variants private to the NA12878 trio to estimate FDR across
singletons in the 3,202-sample jointly-genotyped high coverage call set. As additional validation,
we estimated FDR among singletons in sample NA12878 from the independent
jointly-genotyped high coverage call set of just the original 2,504 unrelated samples. Both of the
FDR singleton analyses were restricted to the high confidence regions of the genome, as
defined by either the GIAB v3.3.2 (Zook et al., 2019) or GIAB v4.2.1 (Wagner et al., 2021) truth
sets.
Counts of assessed singletons in both of the FDR analysis:

Source of the
evaluated NA12878

variant calls

Total count
# of evaluated sites
w/in the GIAB v3.3.2

high confidence
regions

# of evaluated sites
w/in the GIAB v4.2.1

high confidence
regions

High coverage
3,202-sample
joint GT-ing

2,404 DNMs +
15,131 private

variants

1,348 DNMs +
12,737 private

variants

967 DNMs +
13,696 private

variants

High coverage
2,504-sample
joint GT-ing

16,837 singletons 13,876 singletons 14,354 singletons

Functional consequence of small variants. We annotated small variant calls with predicted
functional consequence using the Ensembl Variant Effect Predictor (VEP) v104 tool (McLaren et
al., 2016). For each site, we chose one functional consequence per allele-gene combination
(using “--pick_allele_gene” parameter) with default ordering of selection criteria. To avoid bias
coming from families and to facilitate comparison to the phase 3 call set, cohort- and
genome-level counts per predicted functional categories were reported based on the
2,504-sample jointly-genotyped high coverage call set which includes unrelated samples only
(see Methods subsection below). Only variants that passed VQSR were considered in summary
counts. No other filtering criteria were applied unless specifically noted.

Comparison of SNV/INDELs to the phase 3 set. To enable comparison of the high coverage
against the phase 3 call set, we lifted-over the SNV/INDEL calls in the phase 3 call set from the
GRCh37 to GRCh38 reference build using CrossMap v0.5.3 (Zhao et al., 2014). As input to the
lift-over, we used the phase 3 VCFs available on the 1000 Genomes FTP,
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. Prior to the lift-over, we split
multiallelic sites into separate rows. A small fraction of phase 3 loci (0.1%) failed the lift-over
step due to the following reasons: 1) no hit found (unmapped GRCh37 variants); 2) loci mapping
to multiple locations in the GRCh38 (multiple hits); 3) the reference allele matches the alternate
allele after the lift-over (REF=ALT allele in the GRCh38). Additionally, we excluded variants that
were lifted-over to a chromosome that was different from the original chromosome in GRCh37
(chromosome mismatch) or if the reference allele contained non-canonical nucleotide bases
(non-canonical REF). Using this approach we were able to successfully lift-over 99.9% of phase
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3 small variant loci (see table below). The resulting GRCh38 phase 3 call set that was used for
the comparison was restricted to autosomes and contained 78,324,761 SNVs and 3,244,241
INDELs.

Table summarizing lift-over failures in the small variant phase 3 call set, consisting of
81,646,103 SNV/INDELs total:

Failure reason Count

REF=ALT allele in the GRCh38 27,889

Unmapped GRCh37 variants 15,856

Multiple hits 420

Chromosome mismatch 32,919

Non-canonical REF 17

Total lift-over failures 77,101 (0.1%)

We restricted the comparison of the high coverage vs. phase 3 calls to the 2,504 samples in
common to the two cohorts. For that purpose, we generated an independent jointly-genotyped
high coverage call set, including only the 2,504 original samples. Difference in FDR estimation
between the 2,504- vs. 3,202-sample high coverage call set (0.1% vs. 0.3% for SNVs,
respectively) is due to between-run variability caused by the non-deterministic nature of the
VQSR step of the GATK SNV/INDEL calling pipeline (number of false positive SNVs across
VQSR PASS sites: 4,098 vs. 9,227; number of false positive SNVs across all called sites:
22,807 vs. 22,994, in the 2,504- vs. 3,202-sample joint genotyping, respectively). The
comparison of high coverage vs. phase 3 small variant call set was restricted to autosomes only.
AF correlation across SNV and INDEL sites that are shared between the high coverage and the
phase 3 call set was calculated using Pearson correlation coefficient obtained using the cor()
function in R.
To compare the counts of small variants per functional consequence category between the high
coverage and phase 3 call set, we annotated the GRCh38 lifted-over version of the phase 3 call
set with the Ensembl VEP (the same way as described for the high coverage call set above),
and computed ratios of cohort- and genome-level counts in the high coverage call set vs. phase
3 call set. To assess FDR across SNVs and INDELs in each functional category, we compared
predicted functional SNVs and INDELs in the high coverage and phase 3 call sets to the GIAB
NA12878 truth set v3.3.2 (Zook et al., 2019). The FDR calculation was restricted to the high
confidence regions of the genome, as defined by the GIAB.

SV discovery using GATK-SV. GATK-SV involved an ensemble SV discovery and refinement
pipeline for WGS data. The technical details of the method were previously described in Collins
et al (Collins et al., 2020) for application to the genome aggregation database (gnomAD) for SV
discovery, and further described in analyses from the HGSVC (Ebert et al., 2021). In this study,
the same methods were applied to all 3,202 samples for SV discovery. In brief, SVs discovered
by Manta, Wham, MELT, cn.MOPS and GATK-gCNV from Ebert et al. were integrated,
genotyped across all samples, resolved for complex SVs, and annotated for variant class and
functional impact. The FDR was previously assessed from analyses in quartet families, which
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yielded a 97% molecular validation rate for de novo SV predictions (Werling et al., 2018), as well
as a 94% validation rate compared to long-read sequencing (Collins et al., 2020).

SV discovery using svtools. The svtools (Larson et al., 2019) method was previously
described in (Abel et al., 2020) and applied for SV discovery across 17,795 genomes from the
Centers for Common Disease Genomics (CCDG) program (Abel et al., 2020). The workflow
combines per-sample variant discovery with lumpy (Layer et al., 2014) and manta (Chen et al.,
2016) with resolution-aware cross-sample merging. The set of merged variants is then
genotyped with svtyper (Chiang et al., 2015), followed by copy-number annotation with
CNVnator (Abyzov et al., 2011) and reclassification of variants based on concordance of
read-depth with breakpoint orientation. All parameter settings and versions are as implemented
in the wdl-based workflow (https://github.com/hall-lab/sv-pipeline).

Large insertion discovery using Absinthe. On a per-sample basis, insertions with a minimum
length of 100bp were discovered through de novo assembly of unmapped and discordant read
pairs using Absinthe (Corvelo et al., 2021), and then genotyped using Paragraph (Chen et al.,
2019), respecting sex-specific ploidies. Insertion calls from all 3,202 samples that were
positively genotyped with a PASS filter flag were then clustered by genomic location and aligned
using MAFFT (Katoh and Standley, 2013). For each locus, the most consensual allele was
selected. Variants from the resulting merged call set were then re-genotyped on all 3,202
individuals. To produce the final call set only variants with 1) genotyping PASS filter rate ≥ 80%;
2) Mendelian Error Rate ≤ 5% for complete trio calls; and 3) HWE Chi-square test p-value >
1e-6 in at least one of the 5 super-populations were kept.

Integration of SV call sets. We conducted a series of analyses to benchmark SVs from each of
the three methods described above, including their FDR as indicated by inheritance rates and
support from orthogonal technologies, as well as their breakpoint precision estimated by the
deviation of their SV breakpoints from long read assemblies in three genomes from analyses in
the HGSVC (Chaisson et al., 2019). We also compared the three call sets to decide on the
optimal integration strategy to maximize sensitivity and minimize FDR in the final ensemble call
set (Figure S3, Table S5). Details of the comparison and integration strategies are described
separately for insertions and all other variant classes below.

Integration of insertions. We compared the de novo rate of variant calls from each pipeline for
insertions, yielding results of 4.1% for GATK-SV, 25.8% for svtools, and 2.4% for Absinthe.
Given these results we restricted integration of insertions to GATK-SV and Absinthe. Each
insertion pair was considered concordant if the insertion points were within 100 bp. The FDR of
each insertion call set was estimated from three measurements: 1) de novo rate of SVs
observed in the 602 trios; 2) proportion of SVs that were not validated by VaPoR (Zhao et al.,
2017), an algorithm that evaluates SV quality by directly comparing raw PacBio reads against
the reference genome, and 3) proportion of SVs that were not overlapped by SVs from PacBio
assemblies in the same genome (Figure S3D-G). Precision of an insertion call was estimated by
the distance of the insertion point to the closest PacBio insertion and the difference between the
length of inserted sequence versus the length of the closest PacBio insertion calculated as an
odds ratio. Both insertion call sets display less than 5% FDR based on inheritance and PacBio
support, and the call sets were thus merged for all subsequent analyses (Figure S3D). Notably,
as Absinthe showed higher precision than GATK-SV, as measured from both the coordinates of
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the insertion point and the length of inserted sequences (Figure S3H, I), we retained the
Absinthe record for insertions that were shared by both methods.

Integration of SVs other than insertions. To consider a pair of SVs of the same variant class
other than insertions as concordant, 50% reciprocal overlap was required for SVs larger than 5
kb and 10% reciprocal overlap was required for variants under 5 kb respectively. The FDR
across variant calls was evaluated using the same measurements as described above. For
deletions, duplications, and inversions, we observed low FDR (< 5%) among variants that were
shared by GATK-SV and svtools, but significantly higher FDR in the subset that were uniquely
discovered by either algorithm (Figure S3E-G). To restrict the final call set to high-quality
variants, a machine learning model (lightGBM (Ke et al., 2017)) was trained on each SV class.
Three samples that were previously analyzed in the HGSVC studies (HG00514, HG00733,
NA19240) (Chaisson et al., 2019; Ebert et al., 2021) were selected to train the model. The truth
data was defined by SVs that were uni-parentally inherited, shared by GATK-SV and svtools,
supported by VaPoR, and overlapped by PacBio call sets. The false training subset was
selected as SVs that appeared as de novo in offspring genomes, specifically discovered by
either GATK-SV or svtools, not supported by VaPoR, and not overlapped by PacBio call sets.
Multiple features were included in the model, including the sequencing depth of each SV, the
depth of the 1 kb region around each SV, the count of aberrant pair ends (PE) within 150 bp of
each SV, the count of split reads (SR) within 100 bp of each breakpoints, the size, allele fraction
and genomic location (split into short repeats, segmental duplications, all remaining repeat
masked regions, and the remaining unique sequences) of each SV, and the fraction of offspring
harboring a de novo variant among trios in which the SV is observed. Each SV per genome was
assigned a ‘boost score’ by the lightGBM model, and SVs with > 0.448 boost score were labeled
as ‘PASS’ in the model (Figure S9M, N). This threshold was specifically selected to retain an
estimated FDR < 5%. Call set specific SVs that failed the lightGBM model in less than 48% of all
examined samples were included in the final integrated call set (Figure S3N).
To design strategies to merge SVs shared by GATK-SV and svtools, the precision of SV calls
was evaluated by examining the distance between breakpoint coordinates of SVs to matched
calls in the PacBio call set. Comparable breakpoint precision was observed for GATK-SV and
svtools (Figure S3J-L). Thus, for SVs in each sample, the variant with the greatest number of
split reads for each breakpoint was selected, or if equivalent then the variant with the higher
boost score was retained, then for each locus the SV observed in the greatest number of
samples was retained as final.

Inclusion of SVs exclusively from GATK-SV. Other minority SVs types, including mCNVs,
CPX and CTX, were specifically detected by GATK-SV, so we performed in-depth manual
inspection to ensure their quality before including them in the final integration call set. The depth
profile across all 3,202 samples around each mCNV was plotted for manual review, and mCNVs
that did not show clear stratification among samples were labeled as ‘Manual_LQ’ in the filter
column even if they showed clear deviation from the normal copy number of 2. For CTX, the
aberrantly aligned read-pairs across each breakpoint were manually examined, and variants
that lacked sufficient support were labeled as ‘Manual_LQ’ in the final call set.

Comparison of SVs to the phase 3 call set. We compared the quality of SVs from the
high-coverage WGS to the 1kGP phase 3 SV call set reported by Sudmant et al., 2015. Phase 3
SVs aligned against GRCh38 were obtained from the 1kGP ftp site:
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positi

27

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.02.06.430068doi: bioRxiv preprint 

https://paperpile.com/c/JYJqLb/RndDm
https://paperpile.com/c/JYJqLb/jn9Xd+ebKHK
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positions/
https://doi.org/10.1101/2021.02.06.430068
http://creativecommons.org/licenses/by-nd/4.0/


ons/. It should be noted that 121 SVs failed liftover and were removed from the GRCh38 VCF,
so a total of 68,697 SV sites were included in this comparison instead of 68,818 which was
reported in Sudmant et al., 2015. When comparing SVs, we required 10% or higher reciprocal
overlap for CNVs and INVs under 5 kb to be considered concordant, and 50% or higher
reciprocal overlap for CNVs and INVs that are over 5 kb. We consider insertion pairs with
insertion point within 100bp as concordant.

Haplotype phasing of small variants. To filter the SNV/INDEL call set for haplotype phasing,
we first annotated the call set with HWE exact test p-values (Wigginton et al., 2005), stratified by
super-population, using the BCFtools fill-tags plugin (Li, 2011). Next, we split multiallelic sites
into separate rows and left-normalized representation of INDELs using BCFtools norm tool (Li,
2011). To ensure unique start position of all variant loci, required for phasing, we shifted
positions of multiallelic sites by a minimum possible number of bp using an in-house script. The
positions were shifted back to the original ones after phasing. Selection of SNVs and INDELs
that passed VQSR, had GT missingness rate < 5%, passed HWE (i.e. had HWE exact test
p-value > 1e-10 in at least one super-population), and had MAC ≥ 2 was done using BCFtools
(Li, 2011). Selection of variants with ME ≤ 5% was done using plink v1.90 (Purcell et al., 2007)
after VCF to plink conversion (required to run phasing). For VCF to plink conversion we used
plink v2.0 (Purcell et al., 2007). For haplotype phasing we used statistical phasing with
pedigree-based correction, as implemented in SHAPEIT-duohmm v2.r904 (Delaneau et al.,
2011; O’Connell et al., 2014). Phasing with SHAPEIT-duohmm was performed per chromosome
using default settings, except for the window size parameter "-W'' which was increased from
2Mb (default) to 5Mb to account for increased amounts of shared IBD due to pedigrees being
present in the dataset (as recommended in the SHAPEIT manual). SHAPEIT-duohmm supports
phasing of autosomal variants only. Therefore, to phase variants on chromosome X, we used
statistical phasing as implemented in the Eagle v2.4.1 software (Loh et al., 2016). Phasing with
Eagle was performed using default parameters. No shifting of positions for multiallelic sites was
needed as Eagle supports phasing of variants with the same start site. Phasing accuracy
evaluation was performed using the WhatsHap tool v0.18 (Martin et al., 2016). As a measure of
phasing accuracy we used switch error rate (SER), which is defined as:

SER = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑤𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐻𝐸𝑇 𝑝𝑎𝑖𝑟𝑠

In all of the phasing evaluations, SER was computed across pairs of consecutive heterozygous
sites in sample NA12878 (child in a trio in the expanded 3,202-sample cohort) relative to the
Platinum Genome NA12878 gold standard truth set (Eberle et al., 2017).

Imputation performance evaluation. We performed imputation on 279 samples from 130
diverse populations using WGS data from the Simons Genome Diversity Project (SGDP)
(Mallick et al., 2016). To create a pseudo-GWAS dataset, we extracted the genotypes at all sites
included on the Illumina Infinium Omni2.5-8 v1.4 array. We performed quality control (QC) of the
dataset using standard pre-imputation filters, removing sites which did not meet the following
criteria: genotype call rate of ≥ 95%, MAF > 1%, and HWE p-value ≥ 1e-4. We used plink v1.9
(Purcell et al., 2007) for all QC steps, and analysis was restricted to the autosomes. We imputed
the data passing quality control with the phase 3 and the high coverage reference panels,
separately. The lifted-over GRCh38 phase 3 call set (described above) was used for the
evaluations. We used SHAPEIT v2.r904 (Delaneau et al., 2011) to perform a strand check of
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the dataset and remove any problematic sites as determined by aligning with the respective
panel. Pre-phasing was also performed using SHAPEIT and an input reference panel. We
imputed the pre-phased data using IMPUTE v2.3.2 (Howie et al., 2009) software with default
parameters. Following imputation, we concatenated the imputed intervals to create an
autosome-wide imputed dataset. We evaluated imputation using 110 total samples with 22
samples from each of the five super-population ancestry groups (EUR, AFR, SAS, EAS, and
AMR), the maximum number of samples available across all populations, and compared the
imputed dosages with the WGS dosages stratified by MAF. For this evaluation, we converted
the posterior genotype probabilities produced by IMPUTE v2.3.2 to dosages using QCTOOL
v2.0.2 (https://www.well.ox.ac.uk/~gav/qctool_v2/), and the WGS genotypes to dosages using
BCFtools v1.9 (Li, 2011). We then computed the correlation between the imputed dosages and
those from the WGS data for all non-missing sites using squared Pearson correlation coefficient
(r2; squared output of the cor() function in R). In the evaluation of the high coverage panel
stratified by variant type and genomic regions (Figure 5C), the following numbers of variants
were assessed: 45,140,382 SNVs and 2,229,248 INDELs (easy regions); 13,370,367 SNVs and
3,815,956 INDELs (difficult regions). To compare imputation accuracy between the phase 3 and
the high coverage panels, we restricted the evaluations to sites that are shared between the two
panels (49,758,888 SNVs and 2,298,294 INDELs; Figure 5D).

QUANTIFICATION AND STATISTICAL ANALYSIS
Details of exact analyses, statistical tests, and tools can be found in the main text and Methods.
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SUPPLEMENTARY FIGURES
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Figure S1. Evaluation of small variant calls, related to Figure 1. Genome-level counts of
SNVs (A) and INDELs (B), stratified by super-population. (C) Genome-level Het/Hom ratios
across small variants, stratified by super-population. (D) Counts of true positive (TP), false
positive (FP), and false negative (FN) SNV and INDEL calls in easy and difficult regions of the
genome (GIAB v3.3.2 high confidence regions only). (E) Genome-level singleton (sites with
AC=1 across 3,202 samples) counts across the 3,202 1kGP samples, stratified by relatedness
status. (F) Counts of true positive (TP) and false positive (FP) singletons in NA12878 relative to
either the GIAB v3.3.2 or GIAB v4.2.1 truth set (GIAB high confidence regions only). Due to the
presence of NA12878’s parental samples in the expanded cohort, the analysis using the
3,202-sample 1kGP call set is based on both de novos and inherited variants private to the
NA12878 trio. (G) Genome-level counts of predicted functional small variants, stratified by
super-population. Reported counts are across the 2,504 unrelated samples only. (H)
Distributions of log2(ratios) of genome-level counts from (G) normalized by the mean count
across the 2,504 unrelated samples. Super-population ancestry labels: European (EUR),
African (AFR), East Asian (EAS), South Asian (SAS), American (AMR). For descriptions of
population labels please refer to Table S1.
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Figure S2. Ploidy of each chromosome across the 3,202 samples, related to Figure 1. (A)
Ploidy of allosomes. (B) Copy number (CN) of each chromosome. Each dot represents a copy
number of the 1Mbp bin in a sample. Blue dots are samples with copy gain and red dots
represent copy loss.
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Figure S3. Benchmark of GATK-SV, svtools, and Absinthe, related to Figure 2. (A) Overlap
of insertion sites between GATK-SV and Absinthe call sets. (B) Overlap of SV other than
insertions between the GATK-SV and svtools call set. (C) Overlap of each SV type between
GATK-SV, svtools, and Absinthe. (D) Overlap of insertions in each genome between GATK-SV
and Absinthe. (E-G) Overlap of deletions (E), duplications (F), inversion and complex SVs (G) in
each genome between GATK-SV and svtools. The integers in (D-G) represent count of SVs per
sample, followed by proportion of SVs validated by VaPoR / proportion of SVs assessable by
VaPoR in the second row, proportion of SVs supported by PacBio SVs in Ebert et al. 2021 /
proportion of SVs supported by PacBio SVs in Chaisson et al. 2019 in the third row, and
transmission rate /rate of bi-parentally inherited SVs in the fourth row. (H-I) Precision of the

33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.02.06.430068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430068
http://creativecommons.org/licenses/by-nd/4.0/


insertion breakpoint (H) and length (I) assessed against PacBio assemblies. (J-K) Precision of
the SV breakpoints in GATK-SV (J) and svtools (K) call sets assessed against PacBio
assemblies. (L) Breakpoint distance of SVs shared by GATK-SV and svtools. (M-N) de novo
rate of SVs in GATK-SV (M) and svtools (N) call set when filtered at different boost score
cutoffs. (O) False positives and false negatives in the GATK-SV and svtools call sets when
filtered at different boost score cutoffs.
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Figure S4. Comparison of small variant calls to the phase 3 call set, related to Figure 3.
(A) Length of autosomal INDELs in the high coverage as compared to the phase 3 call sets. (B)
Number of true positive (TP), false positive (FP), and false negative (FN) SNVs and INDELs in
the high coverage vs. phase 3 call set, stratified by easy and difficult regions of the genome
(GIAB v3.3.2 high confidence regions only). (C) Comparison of allele frequencies in the high
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coverage vs. the phase 3 call set across shared loci, stratified by variant type and easy vs.
difficult regions of the genome. r: Pearson correlation coefficient. Number of false positive (FP),
true positive (TP), and unassessed (NA; sites outside of the GIAB v3.3.2 high confidence
regions of the genome) predicted functional SNVs (D) and INDELs (E) in sample NA12878,
defined based on the comparison against the GIAB NA12878 truth set v3.3.2. See also Figure
3G, 3H (bottom row).

Figure S5. Comparison of gene interruptive SVs in the high-coverage ensemble versus
low-coverage phase 3 1kGP call sets, related to Figure 4. (A) Count of genes interrupted as
probable loss of function (pLoF), (B) intragenic exon duplications (IED), and (C) complete copy
gain (CG) by SVs in the high-coverage ensemble call set and 1kGP phase 3 SV call set.
Super-population ancestry labels: European (EUR), African (AFR), East Asian (EAS), South
Asian (SAS), American (AMR).

36

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.02.06.430068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430068
http://creativecommons.org/licenses/by-nd/4.0/


Figure S6. Evaluation of phasing and imputation performance of the high coverage 1kGP
panel, related to Figure 5. SER: switch error rate stratified by (A) chromosome and (B) variant
type. Chromosome X is shown separately in (B) as it was phased using a different strategy than
autosomes (statistical phasing vs. statistical phasing with pedigree-based correction,
respectively). Imputation accuracy of the high coverage panel stratified by super-population for
SNVs (C) and INDELs (D) in easy and difficult regions of the genome. Imputation accuracy was
estimated as described in Figure 5C.
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SUPPLEMENTARY TABLES

Table S1. Sample counts in the expanded (3,202-sample) and original (2,504-sample)
1kGP cohort stratified by population, sex, and pedigree status, related to Figure 1.
Thirteen samples are part of 2 trios (hence only 1,793 unique samples contribute to the 602
trios; not 1,806), either because they are part of a multi-generational family, i.e. are a child in
one trio and a parent in another trio (HG00702, NA19685, NA19675), and/or because they are a
part of a quad (5 quads were included in total) that was broken down into 2 trios when
pedigree-based correction was applied following haplotype phasing (HG00656, HG00657,
HG03642, HG03679, HG03943, HG03944, NA19660, NA19661, NA19678, NA19679).
Super-population ancestry groups: European (EUR), African (AFR), East Asian (EAS), South
Asian (SAS), American (AMR). Populations: African Caribbean in Barbados (ACB), People with
African Ancestry in Southwest USA (ASW), Esan in Nigeria (ESN), Gambian in Western
Division, Mandinka (GWD), Luhya in Webuye, Kenya (LWK), Mende in Sierra Leone (MSL),
Yoruba in Ibadan, Nigeria (YRI), Colombians in Medellin, Colombia (CLM), People with Mexican
Ancestry in Los Angeles, CA, USA (MXL), Peruvians in Lima, Peru (PEL), Puerto Ricans in
Puerto Rico (PUR), Chinese Dai in Xishuangbanna, China (CDX), Han Chinese in Beijing,
China (CHB), Han Chinese South, China (CHS), Japanese in Tokyo, Japan (JPT), Kinh in Ho
Chi Minh City, Vietnam (KHV), Utah residents (CEPH) with Northern and Western European
ancestry (CEU), Finnish in Finland (FIN), British from England and Scotland, UK (GBR), Iberian
Populations in Spain (IBS), Toscani in Italia (TSI), Bengali in Bangladesh (BEB), Gujarati
Indians in Houston, TX, USA (GIH), Indian Telugu in the UK (ITU), Punjabi in Lahore, Pakistan
(PJL), Sri Lankan Tamil in the UK (STU).

Population Super-
population

Sex
(1=male,

2=female)

# across
3,202

samples

# across
2,504

samples
# in trios No. of trios

ACB AFR
1 57 47 30

20
2 59 49 30

ASW AFR
1 33 26 20

13
2 41 35 19

ESN AFR
1 84 53 71

43
2 65 46 58

GWD AFR
1 93 55 91

58
2 85 58 83

LWK AFR
1 44 44 0

0
2 55 55 0

MSL AFR
1 50 42 16

11
2 49 43 17

YRI AFR
1 97 52 92

56
2 81 56 76
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CLM AMR
1 58 43 48

35
2 74 51 57

MXL AMR
1 43 32 40

32
2 54 32 50

PEL AMR
1 54 41 47

35
2 68 44 58

PUR AMR
1 70 54 51

35
2 69 50 54

CDX EAS
1 44 44 0

0
2 49 49 0

CHB EAS
1 46 46 0

0
2 57 57 0

CHS EAS
1 86 52 80

51
2 77 53 70

JPT EAS
1 56 56 0

0
2 48 48 0

KHV EAS
1 60 46 34

21
2 62 53 29

CEU EUR
1 87 49 84

57
2 92 50 87

FIN EUR
1 38 38 0

0
2 61 61 0

GBR EUR
1 46 46 0

0
2 45 45 0

IBS EUR
1 81 54 77

50
2 76 53 73

TSI EUR
1 53 53 0

0
2 54 54 0

BEB SAS
1 60 42 41

30
2 71 44 49

GIH SAS
1 56 56 0

0
2 47 47 0

ITU SAS
1 61 59 4

3
2 46 43 5
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PJL SAS
1 77 48 65

42
2 69 48 61

STU SAS
1 65 55 16

10
2 49 47 10

Total: 3,202 2,504 1,793 602
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Table S2. Mean SNV density per 1 kb of sequence in the 3,202-sample high coverage call
set, related to Figure 1. Phased: SNV density in the phased high quality subset of SNV/INDEL
calls; Genotyped: SNV density in the complete variant callset (based on VQSR PASS variants
only).

Chromosome SNV Density per 1kb region

Phased Genotyped

chr1 21.88 36.46

chr2 23.89 40.16

chr3 23.89 40.11

chr4 24.39 41.3

chr5 23.76 39.91

chr6 23.99 39.88

chr7 24.61 41.1

chr8 25.5 42.84

chr9 21.76 36.66

chr10 24.77 41.15

chr11 24.11 40.61

chr12 23.65 39.82

chr13 24.22 41.04

chr14 23.93 40.06

chr15 23.52 39.21

chr16 24.78 41.43

chr17 23.39 39.02

chr18 23.25 39.6

chr19 26.62 43.21

chr20 24.23 40.34

chr21 22.84 37.77

chr22 25.03 41.41

chrX 17.04 30.16

41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.02.06.430068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430068
http://creativecommons.org/licenses/by-nd/4.0/


Table S3. Average sample-level count of small variants per functional consequence
category stratified by super-population, related to Figure 1. Super-population ancestry
labels: European (EUR), African (AFR), East Asian (EAS), South Asian (SAS), American (AMR).

Filtering
condition

Super-
population

Functional consequence category

stop-gain
splice

donor &
acceptor

frameshift missense synonymous

No filtering

All 76 314 195 10,625 11,956

AFR 83 365 215 12,071 13,795

EUR 73 287 188 9,974 11,154

EAS 73 302 186 10,042 11,171

SAS 74 296 190 10,232 11,454

AMR 76 297 190 10,213 11,461

MAF ≤ 1%

All 11 18 14 754 569

AFR 15 30 22 1,215 1,044

EUR 9 12 10 540 353

EAS 10 14 12 594 398

SAS 10 14 12 648 453

AMR 10 13 11 567 387
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Table S4. Count of SV sites at the cohort and sample level, related to Figure 2. SV types:
DEL: deletion, DUP: duplication, mCNV: multiallelic copy number variant, INS: insertion, INV:
inversion, BND: breakends, CPX: complex SV, CTX: inter-chromosomal translocation.

SV TYPE
# SV sites across 3,202 samples # SVs / sample

GATK-SV svtools Absinthe GATK-SV svtools Absinthe

INS 48,333 75,283 7,183 3,019 1,761 2,270

DEL 89,445 65,184 - 3,783 3,417 -

DUP 26,353 10,594 - 990 459 -

INV 381 1,447 - 12 127 -

BND 82,218 26,152 - - 2,188 -

CPX 3,624 - - 216 - -

CTX 16 - - 1 - -

mCNV 674 - - 385 - -

ALL 251,044 178,660 7,183 8,406 7,952 2,270
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Table S5. Quality of SVs evaluated by PacBio support and inheritance, related to Figure 2.
SV types: INS: insertion, DEL: deletion, DUP: duplication, INV: inversion.

SV
TYPE

All SVs Call set specific
SVs

SVs shared with
other call set

GATK-SV Absinthe/
svtools GATK-SV Absinthe/

svtools GATK-SV Absinthe/
svtools

Proportion of
VaPoR

Supported
SVs

INS 92.90% 97.60% 89.80% 96.30% 98.40% 99.00%

DEL 88.00% 92.80% 71.40% 76.20% 92.60% 95.30%

DUP 89.60% 88.10% 87.20% 62.70% 94.90% 95.40%

INV 97.10% 47.60% 75.00% 44.80% 100% 55.70%

Overlap with
PacBio call

sets

INS 93.20% 97.70% 90.00% 96.60% 99.20% 99.00%

DEL 90.50% 94.10% 72.10% 79.40% 96.90% 97.10%

DUP 3.30% 4.50% 3.90% 8.10% 1.70% 2.50%

INV 20.30% 18.10% 18.50% 13.70% 30.40% 32.50%

de novo Rate

INS 2.90% 1.90% 4.00% 1.70% 0.90% 2.10%

DEL 4.70% 1.30% 10.60% 5.30% 2.60% 0.50%

DUP 11.90% 0.50% 13.80% 1.30% 6.90% 0.00%

INV 2.80% 11.30% 2.90% 13.70% 2.00% 3.60%
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Table S6. Counts of small variants passing specified filtering criteria, related to Figure 5.
Miss.: genotype-level missingness; HWE PASS: HWE exact test p-value > 1e-10 in at least one
of the five 1kGP super-populations; ME: mendelian error rate across complete trios; MAC: minor
allele count. MNP: multi-nucleotide polymorphism.

Filter SNV INDEL-DEL INDEL-INS MNP

VQSR PASS 109,740,223 8,002,860 6,418,264 1,165,062

Miss. < 5% 108,637,798 9,588,168 7,044,553 1,132,357

HWE PASS 117,206,250 10,707,106 8,042,413 1,429,707

ME ≤ 5% 116,457,618 10,602,713 7,849,293 1,330,679

MAC ≥ 2 71,444,181 7,671,955 6,302,585 1,188,242

All 61,411,215 5,400,097 4,554,384 699,618
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