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Abstract

Dynamic models of gene expression are urgently required. Different from trajec-
tory inference and RNA velocity, our method reveals gene dynamics by learning
a jump diffusion process for modeling the biological process directly. The algo-
rithm needs aggregate gene expression data as input and outputs the parameters
of the jump diffusion process. The learned jump diffusion process can predict
population distributions of gene expression at any developmental stage, achieve
long-time trajectories for individual cells, and offer a novel approach to com-
puting RNA velocity. Moreover, it studies biological systems from a stochastic
dynamics perspective. Gene expression data at a time point, which is a snap-
shot of a cellular process, is treated as an empirical marginal distribution of
a stochastic process. The Wasserstein distance between the empirical distri-
bution and predicted distribution by the jump diffusion process is minimized
to learn the dynamics. For the learned jump diffusion equation, its trajecto-
ries correspond to the development process of cells and stochasticity determines
the heterogeneity of cells. Its instantaneous rate of state change can be taken
as “RNA velocity”, and the changes in scales and orientations of clusters can
be noticed too. We demonstrate that our method can recover the underlying
nonlinear dynamics better compared to parametric models and diffusion pro-
cesses driven by Brownian motion for both synthetic and real world datasets.
Our method is also robust to perturbations of data because it only involves
population expectations.
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1. Introduction

Previously, bulk RNA-seq technologies provide insights into complex biolog-
ical systems at the population level, but they mask the heterogeneity of single
cells in one population. The rapid development of single cell omics technolo-
gies makes it possible for biologists to study gene expression at the single-cell
level in recent years. High-throughput and bioinformatics tools help discover
cell heterogeneity, subpopulations, regulatory relationships between genes, and
trajectories of distinct cell lineages. The observed heterogeneity in biological
systems is driven by continuous dynamic processes (Tanay and Regev, 2017),
while it remains a challenge to recover the underlying continuous time process
for modeling gene dynamics directly.

Most dynamic models focus on reconstructing pseudotime trajectories. Sae-
lens et al. (2019) compared 45 kinds of trajectory inference (TI) methods on 110
real and 229 synthetic datasets, but there is no consensus that what is the best
tool (Luecken and Theis, 2019). These algorithms that utilize the continuity of
single cell data to reconstruct trajectories may induce model bias. Meanwhile,
RNA velocity based methods (La Manno et al., 2018; Svensson and Pachter,
2018; Bergen et al., 2020; Li et al., 2020) are burgeoning in recent years. How-
ever, the assumptions in their models are not applicable in all systems. For
instance, hematopoietic stem cells (HSCs) retain more of the unspliced mRNAs
and get more spliced mRNAs under activation (Bowman et al., 2006). An-
other approach based on optimal transport analysis can also be used to recover
trajectories (Schiebinger et al., 2019).

Stochastic differential equations (SDEs) are feasible solutions to model the
stochastic dynamics of gene expression data. For biochemical systems, a series
of ordinary differential equations are often used to describe the evolution of
reactant concentrations following the law of mass action (Keener and Sneyd,
2009). However, for the lack of randomness, transitions among multiple attrac-
tors are infeasible to take place for multistable systems. The inherent stochas-
ticity observed in many important cellular processes, such as transcription and
translation, attracts scientists to interpret biological phenomena using stochastic
models. Niu et al. (2016) used reflected SDEs to model the biochemical reac-
tion systems. Jia et al. (2014) explained the underlying molecular mechanisms
of phenotype switching in bacteria by a nonlinear SDE. Forman and Sørensen
(2014) estimated the folding and unfolding rates of the small Trp-zipper protein
using multi-modal diffusions. Except for SDEs driven by Brownian motion with
continuous trajectories, more general Lévy-driven SDEs are introduced (Apple-
baum, 2009). Jia et al. (2017) deduced that the macroscopic limit of the protein
number is a switching Lévy-driven SDE, and interpreted the existence of protein
burst phenomena due to the imbalanced decay rates of mRNA and protein.
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In this contribution, we propose using a jump diffusion process rather than a
continuous diffusion process driven by Brownian motion to model the dynamic
evolution of gene expression in the single-cell resolution. Compared to diffu-
sion processes which are solutions to SDEs driven by Brownian motion with
Markovianity, our jump diffusion process contains both Brownian motion and
a compound Poisson process. There are three reasons for our choice. First,
large jumps caused by the compound Poisson process benefit transitions among
attractors. In a multistable system, the transition from one attractor to another
non-adjacent one can be accomplished by a compound Poisson process, while
Brownian motion can not induce this phenomenon. Second, jump diffusion pro-
cesses can fit biological systems with non-Gaussian distributions. For example,
the bursty and intermittent production of mRNA and proteins creates variation
in individual cells and causes heavy tailed distributions (Zheng et al., 2016).
Third, when the jump intensity is small or jump amplitude near to zero, our
model degenerates to a diffusion process. Thus, our model is a generalization
of diffusion processes driven by Brownian motion. Nowadays, SDEs with Lévy
noise are widely used in modeling gene expression (Xu et al., 2016; Jia et al.,
2019; Cai and othres, 2019; Chen and Jia, 2020) and the interpretation of burst
behavior from a mathematical perspective can be referred in Bokes et al. (2012)
and Jia (2017).

The reconstruction of complex nonlinear dynamic systems using SDEs driven
by Brownian motion is not new. For parametric models, the drift and diffusion
coefficients are assumed to have particular forms. For example, the Black-
Scholes model with linear coefficients is applied to price an option in finance.
SDEs with Gaussian mixture potentials are used to model the movement of an-
imals in ecology (Preisler et al., 2013; Gloaguen et al., 2018). For such models,
one only needs to determine finitely many parameters based on experimental
data, but suffers from their limited model capacity. Correspondingly, high ex-
pressive models parameterize the drift coefficient to be a neural network and
diffusion coefficient to be a constant (Hashimoto et al., 2016; Wang et al., 2018;
Ma et al., 2020). On the other hand, Tabar (2019) discussed data-based re-
construction procedures, but their estimator involves a conditional averaging
of a small time limit over Brownian trajectories, which can only be applied to
high-resolution time series data. While in practice, measuring the gene activ-
ity of individual cells involves destroying the cells so that their content can be
analyzed. Therefore, we are unable to acquire the information of each cell all
the time due to technical limitations. We refer to observations made in these
scenarios as aggregate data.

Our model aims to learn a jump diffusion process from aggregate gene ex-
pression data based on real time rather than pseudotime. The state variables
are the expression levels of genes in a single cell, and the coefficients for the
jump diffusion process are modeled as neural networks. Once the jump diffu-
sion process is achieved, its trajectories can be taken as the evolution of cells.
The stochasticity brought by Brownian motion and compound Poisson pro-
cesses determines the heterogeneity of cells. Given the current state of a cell, its
subsequent states are also stochastic. The average instantaneous rate of state
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change reveals the next step evolution, thus can be taken as “RNA velocity”.
As can be seen from our experimental results, our method can model the cell
dynamics more accurately and is robust to perturbations of data. Also, from
the proposed method we derive and interpret three vital biological concepts, i.e.
cluster, velocity, and trajectory.

2. Material and methods

2.1. Dataset

Assuming that we have observed totally D time points during the whole
time interval [0, T ], where 0 = T0, T1, · · · , TD−1 = T and the time partition
may not be equal. At each of these time points, there are Ni independent
and identically distributed (i.i.d.) samples {Xj

Ti
}Ni
j=1(i = 0, 1, · · · , D − 1) that

we term aggregate observations. The individuals {Xj
Ti
}Ni
j=1 observed at time

Ti are often not identical to those {Xj
Ti−1
}Ni−1

j=1 observed at the previous time
Ti−1. Since the full trajectory of each individual is not available, the only useful
information at time Ti is its distribution, written as P (x, i). While, in practice,
we can just achieve the empirical distribution P̂ (x, i) at time Ti from {Xj

Ti
}Ni
j=1

as an alternative.
For example, Klein et al. (2015) studied the differentiation of mouse embry-

onic stem cells. The expression levels of 24,175 genes for 933, 303, 683, and 798
cells at Day 0, Day 2, Day 4, and Day 7 are quantified respectively. In this case,
we have D = 4, T0 = 0, T1 = 2, T2 = 4, T3 = 7 and N0 = 933, N1 = 303, N2 =
683, N3 = 798.

2.2. Wasserstein distance

Aggregate gene expression data, which are snapshots of a continuous time
cellular process, can be regarded as D empirical distributions. The discrep-
ancy between empirical distributions and predicted distributions by our jump
diffusion process is measured by Wasserstein distance for its smoothness (Ar-
jovsky et al., 2017). Wasserstein distance is also used in parameter estimation
of biochemical reaction networks (Öcal et al., 2019). Wasserstein-1 distance,
also called Earth-Mover distance, is defined by

W (P1, P2) = inf
γ∈Π(P1,P2)

E(X,Y )∼γ‖X − Y ‖, (1)

where Π(P1, P2) denotes the set of every joint distribution γ whose marginals
are P1, P2 respectively. In practice, Formula (1) is hard to use, so Villani (2008)
gave its duality

W (P1, P2) = sup
‖f‖L≤1

(EX∼P1
f(X)− EY∼P2

f(Y )). (2)

Here, ‖f‖L ≤ 1 denotes that f is 1-Lipschitz continuous.
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2.3. Algorithm

2.3.1. The jump diffusion model

Aggregate single-cell gene expression data are modeled as outputs of a dis-
continuous jump diffusion process. Namely, the evolution of individual cells
satisfies

dXt = b(Xt−)dt+ σ(Xt−)dWt + c(Xt−)dJt, (3)

for t ∈ [0, T ]. The process is defined on a filtered probability space (Ω, {Ft}t≥0,F , P ).
Xt is a d-dimensional state variable representing the expression levels of d genes
in a cell. Wt = (W 1

t ,W
2
t , · · · ,Wm

t )T denotes a standard m-dimensional Wiener

process. Jt =
∑Λ(t)
i=1 ξi is a compound Poisson process where Λ = {Λ(t) : t ≥ 0}

is a Poisson process with intensity λ, {ξn : n ≥ 1} are i.i.d. random variables in-
dependent of the Poisson process Λ, and ξn denotes the nth jump amplitude with
density function g : Rd → R. The two processes Wt and Jt are mutually inde-
pendent. We also assume b(x) : Rd → Rd, σ(x) : Rd → Rd×m, c(x) : Rd → Rd×d.
Coefficients b(x), σ(x) and c(x) are set to be state dependent only. The unde-
termined parameters are denoted by µ , (b, σ, c, g).

2.3.2. Predicted distributions by the jump diffusion process

Here, we take the first two time points T0 and T1 as an example to show
how we predict the distribution at T1 given the empirical distribution at T0.
The time interval between T0 and T1 is far from being sufficiently small, so
we construct an equidistant time discretization with T0 = t0, t1, · · · , tn1

= T1.
The most widely used Euler-Maruyama (EM) discretization scheme that solves
Equation (3) numerically is given by

Xtk+1
= Xtk + b(Xtk)δ + σ(Xtk)∆Wk + c(Xtk)∆Jk, (4)

where δ = (T1 − T0)/n1,∆Wk = Wtk+1
−Wtk and ∆Jk = Jtk+1

− Jtk . That
is to say, N0 samples evolve n1 steps from T0 to T1 following Equation (4),
and the generated samples at tj(j = 1, 2, · · · , n1) are denoted as {xk1,j}

N0

k=1(j =

1, 2, · · · , n1). In this way, we achieve predicted distribution {xk1,n1
}N0

k=1 at T1,

written as P̃ (x, 1). Similarly, we can achieve P̃ (x, i)(i = 2, 3, · · · , D − 1)

2.3.3. Cost function

The dynamics can be learned by minimizing the Wasserstein distance be-
tween the empirical distribution P̂ (x, i) and the predicted distribution P̃ (x, i).

Our cost function can be chosen to be
∑D−1
i=1 W (P̂ (x, i), P̃ (x, i)). Therefore, the

task is to solve the following min-max problem

min
µ

D−1∑
i=1

max
‖fi‖L≤1

(EX∼P̂ (x,i)fi(X)− EY∼P̃ (x,i)fi(Y )), (5)

which is similar to Wasserstein generative adversative nets (WGAN). The dif-
ference is that we have totally D− 1 critics fi(i = 1, · · · , D− 1). The overview
of our algorithm is shown in Figure 1.
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Figure 1: The overview of our algorithm for learning stochastic dynamics from aggregate
data. The left side has three observed distributions (blue points), and the right side has two
predicted distributions (red points) by Equation (4). At time T1 or T2, the critic function takes
the input of an observed and a predicted distribution and outputs a scalar as the Wasserstein
distance whose summations at all time points will be our cost.
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In Formula (5), there are two expectations to compute. The first one is easy,
and the formula is

EX∼P̂ (x,i)f(X) =
1

Ni

Ni∑
j=1

f(Xj
Ti

).

For the second one, after achieving predicted samples by Equation (4) at Ti, we
have

EX∼P̃ (x,i)f(X) =
1

Ni−1

Ni−1∑
k=1

f(xki,ni
). (6)

Recall that 1
N0

∑N0

k=1 f(xk1,n1
) is an estimator of EX∼P (x,1)f(X) for real distri-

bution P (x, 1) at T1 and Lipschitz continuous observables f . Its mean squared
error (MSE) has the following result.

Theorem 1. For the test function f satisfying ‖f‖L ≤ 1, the MSE of 1
N0

∑N0

k=1 f(xk1,n1
)

is asymptotically O(1/N0) +O(δ).

2.3.4. Training framework

In a cellular process, genes that are not informative will be filtered out. For
such a gene, the distribution at final time point TD−1 will have small difference
with the one at the starting time point T0. Therefore, we sort genes by the
Wassserstein distance between TD−1 and T0, and genes with higher Wasserstein
distance will be selected (Hashimoto et al., 2016).

b(x), σ(x), c(x) and fi(i = 1, 2, · · · , D− 1) are unknown functions, so multi-
layer perceptrons are used to model these functions. g(x), as a probability
density function, can be chosen to be Gaussian, see section 3.1. WGAN frame-
work is used to solve the min-max problem 5. The evolution formula (4) takes
the role of generator G with parameter µ. WGAN-div (Wu et al., 2018) is used
to implement the 1-Lipschitz constraint of critic functions fi. Let Pu be the
mixed distribution of P̂ and P̃ , and k, p are hyperparameters used in Wu et al.
(2018) with recommended values k = 2, p = 6. We give the pseudo code of our
algorithm in the following.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430082
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 1 Reconstruction of nonlinear dynamics (3) from aggregate obser-
vations.

Input: aggregate data {Xj
Ti
}Ni
j=1(i = 0, 1, · · · , D − 1) at D time points;

Output: functions b(x), σ(x), c(x), g(x);
for training iterations do

for critics iterations do
for each time point Ti(i = 1, 2, · · · , D − 1)

generate samples {xki,ni
}Ni−1

k=1 at Ti

observed samples {Xj
Ti
}Ni
j=1 at Ti

compute Mi , − 1
Ni

∑Ni

j=1 fi(X
j
Ti

)+
1

Ni−1

∑Ni−1

k=1 fi(X
k
i,ni

)

+kEx̂∼Pu
(‖ 5 fi(x̂)‖)p

update parameters wfi of critic fi by 5wfi
Mi

end for
update parameters µ of generator G by

5wG
(−
∑D−1
i=1

1
Ni−1

∑Ni−1

k=1 fi(x
k
i,ni

))

end for

3. Results

We compare the performance of our jump diffusion process (3) with OU
process and diffusion processes driven by Brownian motion. The OU process is
the solution to dXt = θ(µ −Xt)dt + σdWt, and is a stationary Gauss–Markov
process. As an example of parametric models, it has a wide range of applications
in financial mathematics and physics. Diffusion processes driven by Brownian
motion dXt = b(Xt)dt+σdWt can model nonlinear dynamics and have a higher
model capacity than OU process.

3.1. A synthetic dataset

We first evaluate our algorithm on a synthetic dataset generated by the
following diffusion process{

dXt = G(Xt−)dt+ dWt + dJt
X|t=0 = X0

, (7)

where G(x) has the following form

G(x) =

[
1
σ1

N1

N1+N2
(x1 − µ11) + 1

σ2

N2

N1+N2
(x1 − µ21)

1
σ1

N1

N1+N2
(x2 − µ12) + 1

σ2

N2

N1+N2
(x1 − µ22)

]
,

N1 =
1√

2πσ1

exp

(
− (x1 − µ11)

2

2σ2
1

− (x1 − µ12)
2

2σ2
1

)
,

N2 =
1√

2πσ2

exp

(
− (x2 − µ21)

2

2σ2
2

− (x2 − µ22)
2

2σ2
2

)
.
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Figure 2: Wasserstein loss v.s. iterations for the synthetic dataset at two observed time points
3δ and 6δ. SDEexpJump and SDEgauJump perform better because their Wasserstein distance
is close to 0.

Parameters are set to be µ1 = (16, 12), µ2 = (−18,−10), (σ1, σ2) = (1, 0.95), λ =
40 and jump size ξ = (ξ1, ξ2), where ξ1, ξ2 are independent exponential random
variables with means 0.1 and 1, respectively. The initial distribution for X0

is a standard Gaussian with mean (0,0) and covariance I2. Starting from X0,
Equation (7) evolves following EM scheme (4) with δ = 0.02. We utilize 1,200
simulated samples at time 0δ, 3δ and 6δ as training sets and predict distributions
at 2δ, 4δ and 10δ.

We compare the performance of the OU process, diffusion processes driven by
Brownian motion (denoted as SDEnoJump), and our jump diffusion model. Our
model with exponential jump size is written as SDEexpJump and Gaussian jump
as SDEgauJump. As can be seen in Figure 2, the training process for OU does
not converge within 40,000 epochs, and the Wasserstein loss at time 3δ keeps
increasing. SDEnoJump works better. Its Wasserstein loss is lower than OU
but still can not compete with our jump models. For the underlying jump size
follows a 2-dimensional exponential distribution, SDEexpJump converges much
faster and more stably than the other three methods. Although SDEgauJump
converges slower than SDEexpJump, it can achieve good results too.

The predicted distributions by the four methods at 2δ, 4δ, 10δ are shown in
Figure 3. The Sinkhorn distances, which are approximations of Wasserstein
distance and easy to compute, are displayed in Table 1. OU performs the worst
due to its small capacity. SDEnoJump can learn the dynamics, but Figures 3(e)
and 3(f) show that the upper right and bottom left regions are worse predicted.
SDEexpJump and SDEgauJump both can generate good results, so we will use
SDEgauJump in the following experiments for the need of vectorization. Also,
from the experiments, we conclude that diffusion processes driven by Brownian
motion can not recover the dynamics from the data generated by a jump diffu-
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sion process while jump diffusion processes can recover the dynamics from the
data generated by diffusion processes driven by Brownian motion.

Table 1: The Sinkhorn distances between true distributions and predicted distributions of
different models on the synthetic dataset.

Model OU SDEnoJump SDEexpJump SDEgauJump
2δ 1.7411 0.1717 0.0122 0.0325
4δ 6.4121 0.1777 0.0429 0.0002
10δ 36.4112 0.2168 0.0445 0.0873

3.2. Stem cell differentiation dataset

In this part, we use the jump diffusion process to model the development of
embryonic stem cells (Klein et al., 2015). These cells differentiate from embry-
onic stem cells to functional cells after the removal of LIF (leukemia inhibitory
factor) at day 0 (D0). The expression levels of 24,175 genes for 933, 303, 683,
and 798 cells at D0, D2, D4, and D7 are quantified respectively. We select
the top ten variables determined by the Wasserstein distance between D0 and
D7 distributions, and they are Krt8, Krt18, Tdh, Tagln, Mt1, Dppa5a, Mt2,
Gsn, Lgals1, and Pou5f1. The preprocessing procedures, i.e. normalization and
imputing missing expression levels, are the same as that in Hashimoto et al.
(2016).

3.2.1. Prediction

We evaluate our algorithm using two prediction tasks corresponding to mid-
dle states and terminal states of a dynamic process. The first task is to predict
the cell distribution at D4 given aggregate observations at D0, D2, and D7, and
the second is to predict D7 based on D0, D2, and D4. Wang et al. (2018) com-
pared the performance of their LEGEND with OU and NN (Hashimoto et al.,
2016) in predicting Krt8 and Krt18 at D4. As reported in their paper, none
of the above three methods can predict the bimodal distribution of Krt8 in the
ground truth at D4. Therefore, it is necessary to consider a more complex jump
diffusion process with high capacity to model these biological dynamics.

We first show in Table 2 that compared to OU and SDEnoJump (Hashimoto
et al., 2016; Wang et al., 2018; Ma et al., 2020) our jump diffusion model achieves
the lowest Sinkhorn distances in both two predicting tasks. In predicting Krt8
at D4, our model is the only one that successfully learns the bimodal behavior.
Figures 4 and 5 also show that our predicted distributions are much closer to
the underlying true distributions, implying that our model can actually recover
the dynamic behavior from aggregate gene expression data.

3.2.2. Evolution

Once the jump diffusion process is achieved, the learned model can be uti-
lized to calculate or predict some meaningful quantities in a biological process.
Therefore, we use complete gene expression data at D0, D2, D4, and D7 to learn
the underlying dynamics. The predicted distributions by our learned model

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430082
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) 2δ (b) 4δ (c) 10δ

(d) 2δ (e) 4δ (f) 10δ

(g) 2δ (h) 4δ (i) 10δ

(j) 2δ (k) 4δ (l) 10δ

Figure 3: The real are observed distributions and the fake are predicted distributions in a
2-dimensional space. The performance of four models, i.e. OU((a) to (c)), SDEnoJump((d)
to (f)), SDEexpJump((g) to (i)) and SDEgauJump((j) to (l)) at three time points 2δ, 4δ, 10δ
is compared.
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Table 2: The Sinkhorn distances between empirical distributions and predicted distributions
of different models on the stem cell differentiation dataset.

Model OU SDEnoJump SDEgauJump
D4 10.0763 5.8835 3.5898
D7 15.7564 16.2900 7.3074

Figure 4: Lines are probability density functions estimated by kernel density estimation. The
red dotted lines are achieved by the observed data of Krt8 and Dppa5a at D4 and the solid
lines by the predicted samples of Krt8 and Dppa5a at D4.

Figure 5: The red dotted lines are achieved by the observed data of Krt8 and Dppa5a at D7
and the solid lines by the predicted samples of Krt8 and Dppa5a at D7.
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match the observed empirical distributions perfectly at D2, D4, and D7 (Sup-
plementary Figures 1, 2, and 3). PCA (Principal Component Analysis) and
tSNE with two components are applied to visualize the learning results. The
predicted and true distributions match quite well, and the indistinguishable im-
ages enable us to believe that gene expression data actually evolve following
our estimated jump diffusion dynamics no matter which dimension reduction
method is used. Points on the right side of Figure 6 are denser than those on
the left because we generate 933 trajectories from D0. In contrast, we should be
careful about results reported by Monocle (Figure 7) and other pseudotime tra-
jectory inference methods. We model gene dynamics using real observed time
not pseudotime.

3.2.3. Subpopulation trajectory heterogeneity

For Equation (3), its solution will be a stochastic process Xt(t ≥ 0). If we
fix ω ∈ Ω, Xt(ω) is a function of t which corresponds to the gene expression
changing with t. Therefore, the development of a cell can be seen as a realization
of the jump diffusion process. For there are 933 cells at D0, we have totally 933
trajectories with different trends. However, to get more robust results, we focus
on subpopulations rather than a single trajectory.

To understand the biological process better, we analyze the lineage-specific
gene dynamics during the development process. Dppa5a, an important gene
involved in the maintenance of embryonic stem cell pluripotency, shows differ-
ent dynamics in trophectoderm, primitive endoderm, and epiblast (Petropoulos
et al., 2016). In Figure 8, three subpopulation trajectories with different be-
havior are picked out by K-means for time series data. The predicted trend of
Dppa5a is coincident with the results in Petropoulos et al. (2016). The aver-
age expression level of Krt8 also agrees with the outcome in the original paper
(Klein et al., 2015). These suggest our method could model the lineage-bias of
individual cells.

3.2.4. RNA velocity

The next step evolution of cells differs not only in direction, but also in
speed. RNA velocity is just a quantity that measures the instantaneous speed
and direction of motion. Based on the current state, RNA velocity describes
the direction and speed of state transition. It is uncorrelated to the previous
time, so the Markovian property of our jump diffusion (3) can be utilized to
compute RNA velocity. Given the current state Xtk at time tk, the expected
state at tk+1 is given by

E(Xtk+1
|Ftk , Xtk) = Xtk + b(Xtk)δ + λuδ,

where u is the mean of jump size ξ. Thus, the expected velocity at tk is given
by

v ≈
E(Xtk+1

|Ftk , Xtk)−Xtk

tk+1 − tk
= b(Xtk) + λu (8)
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Figure 6: PCA and tSNE are applied to visualize our learning results. The left side shows
the true distributions at four time points and the right shows the corresponding predicted
distributions.
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Figure 7: Trajectory inferred by Monocle with DDRTree method.

Figure 8: (a) Three clusters with different trend patterns of the expression levels of Dppa5a
are picked out. The red points represent the average expression level at four observed time
points. (b) Predicted and observed average expression levels of Krt8.
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Table 3: Average size of v at four days.

Time D0 D2 D4 D7
v 21.7149 12.1285 26.7343 14.6009

Figure 9: The next step evolution for some cells visualized by the UMAP dimension reduction
method with two components. The points at four days are real data.

In Table 3, we compute the average size of RNA velocity at four time points.
Cells at D4 evolve much faster than those at D2 and D7 because lineage-specific
genes increase in variability and proliferation rate (Petropoulos et al., 2016;
Waisman et al., 2019). The next step evolution of individual cells in Figure 9
offers the evidence for short-time cell developmental trajectories. These results
demonstrate that our method could model the long-time and short-time dynam-
ics of single cells simultaneously.

3.2.5. Clusters

Clusters change in scales and orientations in the cell differentiation process.
Without losing generality, we select Krt8 as an example to show that. It can
be observed from the experimental data that one cluster moves flatly from D0
to D2. Two clusters appear at D4 and merge to one at D7 finally. We use our
jump diffusion model to supplement the intermediate development information
(Supplementary Figure 4). The situations at two time points D4.5 and D5,
which could be transition states, are predicted by our method (Figure 10). Two
clusters have nearly the same size at D4.5, and the right cluster is in the leading
position at D5.

3.3. Cell cycle dataset

We show our method can reveal non-equilibrium biological processes. 280
mouse ESCs in Buettner et al. (2015) are studied, and three stages G1, S, and
G2M of the cell cycle have 96, 88, 96 cells respectively. PHATE (Moon et al.,
2019) is used to reduce the data into a 2-dimensional space. We use the OU
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Figure 10: Lines are plotted by kernel density estimation. The Krt8 expression changes with
time from (a) to (f). In (a), there is only one observed distribution because D0 is the starting
time point. (d) and (e) are predicted by our method.

process, SDEnoJump and SDEgauJump to model the cell cycle dynamics. The
OU process drives cells to go to the center as expected because the central
region can be taken approximately as an average of the three stages so as to
achieve lower Wasserstein distance, see Figure 11. Figure 12 shows SDEnoJump
can model nonlinear dynamics, while Brownian motion is far from satisfying
compared to Lévy processes when modeling biological systems as discussed in
the introduction part. The periodic evolution procedureG1→ S → G2M → G1
is successfully recovered in Figure 13 by our jump diffusion model.

3.4. Robustness analysis

We extensively test the robustness of our algorithm on hyperparameter se-
lection including the choices of jump intensity λ, step size δ, evolution steps
between two observation time points, and some neural network parameters. We
also test the performance of our algorithm when data are perturbed. The robust-
ness of our algorithm is confirmed in both parameter choices and perturbations
of data as shown in Supplementary Note 1.

4. Discussion

In this paper, we propose using jump diffusion processes to reconstruct non-
linear dynamics from aggregate biological gene expression data. State variables
satisfy an SDE driven by Brownian motion and a compound Poisson process,
whose coefficients are set to be neural networks. The training framework for
WGAN is used with D−1 critics, and WGAN-div (Wu et al., 2018) is applied to
implement the 1-Lipschitz constraint. The learned jump diffusion process can
predict population distributions of gene expression at any developmental stage,
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Figure 11: The OU process is used to model the cell cycle dataset. (a) The trajectory of a
cell in two periods. (b) RNA velocity computed by the OU process for each cell.

Figure 12: The diffusion process driven by Brownian motion is used to model the cell cycle
dataset. (a) The trajectory of a cell in two periods. (b) RNA velocity computed by the
diffusion process for each cell.
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Figure 13: The jump diffusion process is used to model the cell cycle dataset. (a) The
trajectory of a cell in two periods. (b) RNA velocity computed by the jump diffusion process
for each cell.

achieve long-time trajectories for individual cells, and offer another approach to
computing RNA velocity. Moreover, it gives a novel perspective to study gene
expression data.

Jump diffusion processes have great advantages over the OU process and
diffusion processes driven by Brownian motion in reconstructing nonlinear dy-
namics from aggregate data. Jumps may shorten the mean time of escaping
from an attraction basin, and benefit the transitions among attractors (Zheng
et al., 2016). Also, as a generalization of SDEs without jumps, our model can
learn dynamics driven by Brownian motion. Experimental results show that
our jump diffusion model achieves the lower Sinkhorn distances in predicting
new data and succeeds in predicting the bimodal behavior of Krt8 at D4. Also,
our jump diffusion process succeeds in recovering the cell cycle dynamics. This
shows our model is more suitable for biological systems.

Dimensions do not need to be too high for several top variable genes are
sufficient to model the dynamic process that we are concerned with. In the
stem cell differentiation dataset, 10 genes, i.e. Krt8, Krt18, Tdh, Tagln, Mt1,
Dppa5a, Mt2, Gsn, Lgals1, and Pou5f1, are selected to learn the underlying
jump dynamics. Another set of genes, i.e. Nanog, Zfp42, Dppa5a, Sox2, Esrrb,
Col4a1, Col4a2, Lama1, Lamb1, Sox17, Sparc, Krt8, Krt18, Dnmt3b, are also
used to learn a jump diffusion equation. The two learned processes predict the
same trend for their commonly used genes Dppa5a (Supplementary Figure 5).
Genes that are not included in the state variables are all treated to be noises.
When dimensions are too high with small sample sizes, the learned dynamics
could become quite limited.

Researchers can feed their gene expression data into our algorithm, and a
jump diffusion process is achieved that best matches the observed empirical dis-
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tributions. Each trajectory of the jump diffusion process represents the time
evolution of a cell, and the stochasticity of trajectories determines the hetero-
geneity of cells. The development process of a cell is a time series, which can
be clustered to describe branching dynamics. The average instantaneous rate
of state change reveals the next step evolution, thus can be taken as “RNA
velocity”. Moreover, in the theory of stochastic processes, a minimization of
the Onsager-Machlup function using the Euler-Lagrange equation will yield the
most probable path (Machlup and Onsager, 1953; Dürr and Bach, 1978; Taka-
hashi and Watanabe, 1981; Fujita and Kotani, 1982). In the future, computing
quantities like attractors, critical points, and most probable paths (Chao and
Duan, 2019; Wang et al., 2020; Li et al., 2021) will be the priority of next
challenges.
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Appendix

Proof of Theorem 1. The MSE for the estimator 1
N0

∑N0

k=1 f(xk1,n1
) is com-

puted by

E(
1

N0

N0∑
k=1

f(xk1,n1
)− EX∼P (x,1)f(X))2

= E(
1

N0

N0∑
k=1

f(xk1,n1
)− 1

N0

N0∑
k=1

Ef(xk1,n1
) +

1

N0

N0∑
k=1

Ef(xk1,n1
)− Ef(XT1

))2

= E(
1

N0

N0∑
k=1

f(xk1,n1
)− 1

N0

N0∑
k=1

Ef(xk1,n1
))2 + (

1

N0

N0∑
k=1

Ef(xk1,n1
)− Ef(XT1

))2

=
V (f(xk1,n1

))

N0
+ (Ef(xk1,n1

)− Ef(XT1
))2,

where V (·) denotes variance. For the second term, we have

(Ef(xk1,n1
)− Ef(XT1

))2 ≤ E(f(xk1,n1
)− f(XT1

))2, (9)

according to Jensen’s inequality. f is Lipschitz continuous with constant 1, so
we have

E(f(xk1,n1
)− f(XT1

))2 ≤ E(xk1,n1
−XT1

)2.

The Euler-Maruyama scheme for (3) has a strong order of convergence 1
2 , see

Bruti-Liberati and Platen (2007). Therefore, we get the desired convergence
rate.
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