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Abstract 

As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the 

higher architecture of chromatin in a fundamental way, thereby affecting almost all 

nuclear biology processes. Thanks to its rather simple protocol, ATAC-seq has been 

rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and 

single-cell level. However, to picture the arrangement of nucleosomes per se remains 

a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq 

analysis toolkit, named deNOPA, to predict nucleosome positions. Assessments 

showed that deNOPA not only outperformed state-of-the-art tools, but it is the only tool 

able to predict nucleosome position precisely with ultrasparse ATAC-seq data. The 

remarkable performance of deNOPA was fueled by the reads from short fragments, 

which compose nearly half of sequenced reads and are normally discarded from 

nucleosome position detection. However, we found that the short fragment reads 

enrich information on nucleosome positions and that the linker regions were predicted 

by reads from both short and long fragments using Gaussian smoothing. We applied 

deNOPA to a single-cell ATAC-seq dataset and deciphered the intrapopulation 

heterogeneity of the human erythroleukemic cell line (K562). Last, using deNOPA, we 

showed that the dynamics of nucleosome organization may not directly couple with 

chromatin accessibility in the cis-regulatory regions when human cells respond to heat 

shock stimulation. Our deNOPA provides a powerful tool with which to analyze the 

dynamics of chromatin at nucleosome position level in the single-cell ATAC-seq age. 
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Introduction 

Eukaryotic genomes are packaged into chromatin, which consists of repeating 

nucleosomes that consist of a histone octamer wrapped around 147 bp of DNA and 

serves as the fundamental building blocks for higher chromatin architecture. 

The in vivo nucleosome positions are highly dynamic, being influenced by, for example, 

chromatin remodelers (Rippe et al. 2007), the binding of transcription factors (Nie et al. 

2014) and transcription (Valouev et al. 2011).  Thus, the positioning and occupancy 

of nucleosomes contribute to the heterogeneity and flexibility of chromatin between 

cell types, as well as among cell populations. However, the positioning and occupancy 

of nucleosomes are not completely randomly distributed in the genome. In addition to 

DNA sequence preferences (Kaplan et al. 2009), well-defined patterns are found in 

cis-regulatory elements, e.g., the nucleosome free region (NFR), the well-phased 

flanking nucleosome arrays in promoters (Ozsolak et al. 2007; Mavrich et al. 2008a; 

Mavrich et al. 2008b), and the bimodal at some enhancers (He et al. 2010). Periodic 

arrangement patterns are also found at the binding loci of transcription factors, e.g., 

CTCF (Fu et al. 2008), characterizing the protein and chromatin context (Zhang et al. 

2017). On the other hand, the nucleosomes may also modulate transcription factor (TF) 

binding and transcription machinery by their positioning (Lickwar et al. 2012). 

Therefore, nucleosome arrangement is tightly linked with gene regulation (Schones et 

al. 2008) and the response to various endogenous or exogenous stimulation, e.g., heat 

shock (Shivaswamy and Iyer 2008).  
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Experimental technologies have been developed to generate genome-wide 

nucleosome positions using high-throughput sequencing. For example, the chemical 

mapping approach captures nucleosome positions by sequencing DNAs that bind to 

genetically modified histone H4 (Brogaard et al. 2012). Since only DNA sequences 

binding to histone octamers were specifically read out (Brogaard et al. 2012), 

chemically mapped nucleosome position has been regarded as the gold standard 

(Brogaard et al. 2012; Voong et al. 2016). Micrococcal nuclease digestion with deep 

sequencing (MNase-seq) is another widely used technology, which utilizes 

micrococcal nuclease to cut the linker DNA between two neighboring nucleosomes 

(Pajoro et al. 2018). Assay for Transposase-Accessible Chromatin using sequencing 

(ATAC-seq), which utilizes Tn5 transposase to digest accessible genomic DNA, has 

now become widely adopted for chromatin accessibility detection and nucleosome 

positioning (Buenrostro et al. 2013). ATAC-seq has continued to attract attention in 

recent years by the simplicity of its operation and its high-quality data (Buenrostro et 

al. 2013; Corces et al. 2017). Most recently, the development of single-cell ATAC-seq 

technology has advanced and has become commercially available (Cusanovich et al. 

2015), opening a window to understand the dynamics of chromatin at the single-cell 

level, e.g., the dynamics of chromatin during embryonic development (Cusanovich et 

al. 2018) and the evolution of hematopoiesis and leukemia (Corces et al. 2016). 

A long list of computational tools for nucleosome positions or chromatin accessibility 

analysis using data from these experiments is available in the literature. These tools 
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can largely be divided into two categories. The first category, including such tools as 

nucleoATAC (Schep et al. 2015), TemplateFilter (Weiner et al. 2010), NucleoFinder 

(Becker et al. 2013) and NucID (Zhong et al. 2016), capture the consensus signal 

profile from a series of predefined positive nucleosome sites (template). This template 

is then used to scan the genome to find sites with signal matches. It is worth noting 

that nucleoATAC is the only ATAC-seq data-based tool designed and trained in a high-

quality dataset in yeast (Schep et al. 2015). The second category, including such tools 

as NPS (Zhang et al. 2008), iNPS (Chen et al. 2014), DANPOS (Chen et al. 2013), 

nucleR (Flores and Orozco 2011) and many more (Teif 2016), is template-free and 

detects nucleosomes by capturing the local geometry characteristics of MNase-seq 

data. With the growing interest in gene regulation studies using ATAC-seq assay 

(Duren et al. 2017; Miraldi et al. 2019), the demands for nucleosome position detection 

from such data have exploded. However, it remains challenging to demand 

nucleosome position with low-resolution ATAC-seq data. 

To address this problem, we herein presented a scheme for decoding nucleosome 

organization profile based on ATAC-seq data (deNOPA). We showed evidence that 

deNOPA can detect nucleosome positions with ultralow resolution ATAC-seq data. This 

extraordinary sensitivity was achieved by making full use of all sequencing reads, while 

most state-of-the-art tools utilize only part of the reads from relatively long fragments 

(Buenrostro et al. 2013; Rowley et al. 2017). We showed that reads from short 

fragments also carry rich information for nucleosome position prediction. The deNOPA 
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was assessed by both gold standard chemical mapping data and high-resolution 

MNase-seq data. Further, we showed that the ultra-sensitivity of deNOPA can help to 

decipher the intra-population heterogeneity of cancer cells with single-cell ATAC-seq 

data. Finally, we applied deNOPA to a classical model system of gene regulation, i.e., 

the heat shock response of human cells, and found that heat shock strongly influences 

nucleosome organization, but leaves nucleosome free regions and their accessibility 

largely intact. These results imply that profiling nucleosome positions with deNOPA 

could be a powerful approach to decipher dynamics of chromatin under ultralow 

resolution ATAC-seq conditions. 

Results 

A novel ATAC-seq-based nucleosome positioning prediction 

algorithm termed deNOPA. 

We developed deNOPA to predict nucleosome positions using ultralow coverage 

ATAC-seq data. In addition to long-fragment ATAC-seq reads, deNOPA also utilizes 

short- fragment reads (e.g., ∼ 100bp) for prediction. Although short-fragment reads 

normally consist of 40% to 50% of total reads in ATAC-seq libraries, they have been 

discarded in most state-of-the-art nucleosome positioning studies (Buenrostro et al. 

2013; Schep et al. 2015), as only long-fragment reads were considered as having 

originated from cutting events at the nucleosome linkers (Buenrostro et al. 2013). 

However, we found that the Tn5 cutting sites, as defined by short and long ATAC-seq 
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fragments, are highly correlated. The distribution of Tn5 cutting sites, i.e., the 5’ ends 

of reads along the genomes, was found to be highly correlated between short and long 

fragments in yeast (Schep et al. 2015) and human (Buenrostro et al. 2013) (R=0.7408 

and 0.7202, both with P 10 , respectively, Supplemental Information (SI) and Fig. 

S1). Further, the cutting sites of both long and short fragments were found to be highly 

enriched around the chemically mapped nucleosome linkers (Brogaard et al. 2012) (SI 

and Fig. S1). Therefore, we reasoned that the retrieval of these short-fragment reads 

could substantially increase the effective total reads coverage without the requirement 

of additional sequencing. 

Briefly, deNOPA workflow consists of four distinct steps (Fig. 1). First, deNOPA 

summarizes input data into the distribution of reads coverage and Tn5 cutting events. 

Second, the ATAC-seq reads enriched regions (denoted as ARER) were called. Third, 

the candidate nucleosome positions were determined as loci with two flanking linkers 

having genomic distance between 101 to 215bp. The distance threshold we used here 

was the two-side 99% confidence interval (CI) of nucleosome-occupied DNA length by 

MNase-seq data (Cole et al. 2011a; Hu et al. 2014). Last, deNOPA filters candidates 

for final high-confidence nucleosome positions by a DBSCAN-based outlier detection 

algorithm (Anant et al. 2010).  
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Fig. 1 The workflow of deNOPA. Four major steps were summarized in the oval 

boxes, and the product of each step was indicated by the associated square 

boxes.  

 

Moreover, deNOPA only predicts nucleosome positions on the so-called ARERs 

because in most ATAC-seq libraries, about 50%-90% of reads were those mapped in 

ARERs (Table S1), and the ARERs covered more than about 70% of annotated genes 

(Table S1), which have most of the predictable nucleosome positions. Details of 

deNOPA can be found in Methods. 

To assess the performance of deNOPA, we compared it with four leading nucleosome 
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positioning detectors, nucleoATAC (Schep et al. 2015), DANPOS (Chen et al. 2013), 

nucleR (Flores and Orozco 2011) and iNPS (Chen et al. 2014). It is worth noting that 

nucleoATAC was designed for ATAC-seq in yeast, but it can also take pair-end MNase-

seq data as input, while DANPOS, nucleR and iNPS were originally designed for 

MNase-seq data. Following a published definition (Schep et al. 2015), we took the 

reads with insertion lengths from 101bp to 215bp as the input for these four detectors. 

We assessed deNOPA with the bulk ATAC-seq data from yeast (Schep et al. 2015), 

human (Buenrostro et al. 2013) and single-cell ATAC-seq (scATAC-seq) data from 

mouse (Chen et al. 2018). 

The deNOPA can sensitively and accurately predict nucleosome 

positions in yeast with ultralow data coverage 

We compared the sensitivity, precision and F   scores between deNOPA and other 

predictors using high-quality, deeply sequenced ATAC-seq data in yeast (Schep et al. 

2015). The assessment was based on the gold standard chemical mapping data 

(Brogaard et al. 2012). To assess sensitivity of the predictors, we composed a series 

of datasets by down-sampling of the raw ATAC-seq reads, which had about 60M read 

pairs from both long and short fragments, with the sampling rates at 1%, 2.5%, 5%, 

7.5%, 10%, 25%, 50% and 75% (Schep et al. 2015).  

The sensitivity of deNOPA was consistently high at all sampling rates (Fig. 2A). When 

the sampling rate was above 50%, i.e., about 30M read pairs, deNOPA, DANPOS, 
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nucleoATAC and iNPS could predict about 60% of chemically mapped nucleosomes, 

while nucleoATAC quickly became unproductive when the sampling rate decreased. 

Although DANPOS achieved about 5% higher sensitivity than deNOPA when the 

sample rates were larger than 1%, deNOPA still outperformed DANPOS at the 

sparsest condition. At the sparsest condition, the average sensitivity of deNOPA was 

90.74% of that with the full dataset, while it was about 70.43% for DANPOS (Fig. 2A). 

This result implies that the sensitivity of deNOPA is less reliable on reads coverage 

than DANPOS. We noticed that the nucleosomes specifically mapped by deNOPA 

were covered by fewer long-fragment reads, implying that short-fragment reads made 

a considerable contribution towards the greater predictive power of deNOPA at the 

sparsest condition (Fig. S2A). 

 

Fig. 2 The prediction of deNOPA in yeast was highly accurate.  
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The sensitivity (A), precision (B) and F value (C) at different sampling rates with data 

from yeast (Schep et al. 2015). (D) The prediction accuracies of the NFRs of deNOPA 

(blue) and nucleoATAC (orange). The prediction accuracy was defined as the 

proportion of predicted NFRs that overlapped with the reference at least one base pair. 

The error bars were 2 times standard divisions calculated from 10 independent down 

samples. 

 

The precision of deNOPA was consistently high (Fig. 2B). The precision of a prediction 

was defined as the relative distance between the predicted and the gold standard 

nucleosome- occupied region (see SI). We found that the precision of deNOPA and 

nucleoATAC was consistently higher than the other three MNase-seq tools at all 

sampling rates (Fig. 2B). It may not be surprising that nucleoATAC had the highest 

precision, given that it was designed and trained in this dataset (Schep et al. 2015). 

However, the precision of deNOPA was nearly identical to that of nucleoATAC when 

the sampling rates were larger than 0.25, and it remained comparable at the lower 

sampling rates (Fig. 2B). We further assessed precision with MNase-seq data (Cole et 

al. 2011a) (see SI). Except for nucleoATAC, deNOPA predicted more nucleosome 

enriched regions with MNase-seq reads compared to all other methods at the lowest 

sampling rate (Fig. S2B). Using the “nucleosome-to-free ratio” of MNase-seq signals 

to quantify the enrichment of MNase-seq reads (see SI), we found that it was 

consistently higher in deNOPA’s prediction than the other tools, even better than that 
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of nucleoATAC (Fig. S2C). Altogether, deNOPA and nucleoATAC demonstrated the 

highest precision in predicting nucleosome positions in yeast. 

As a predictor of nucleosome position, deNOPA was able to balance sensitivity and 

precision. We assessed this balance using the F1 value (see SI). The F1 values of 

deNOPA were highest when the sampling rate was less than 0.75 (Fig. 2C). The F1 

values of nucleoATAC were substantially lower when sampling rates decreased (Fig. 

2C).  

The deNOPA predicted NFR in the promoter regions better than nucleoATAC at all 

sampling rates for the yeast ATAC-seq data. Since NFR prediction is highly reliant on 

accurate nucleosome position prediction, better NFR prediction indicates better 

nucleosome position prediction. Using a public NMase-seq-derived NFR annotation as 

the reference (Ocampo et al. 2016), we compared the predictions of NFRs between 

deNOPA and nucleoATAC. We found that the relative accuracy of deNOPA was 

consistently higher than that of nucleoATAC when the sampling rate was less than one 

(Fig. 2D). The accuracy of prediction was further evidenced by the enrichment of the 

DNase-seq signals for deNOPA (Zhong et al. 2016) (Fig. S2D). These results show 

that deNOPA is a sensitive and accurate nucleosome position predictor with sparse 

data coverage in yeast. 
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The deNOPA predicts nucleosome positions well in the human 

genome  

Here, we compared the performance of the predictors with a public ATAC-seq dataset 

on GM12878 cells (Buenrostro et al. 2013). A total of 153,008 ARERs were detected, 

utilizing about 57.04% of all sequenced fragments (about 90 million valid read pairs in 

total) and occupying 32.48% of the human genome. Within those fragments, 47.58% 

and 52.42% were short and long fragments, respectively. To the best of our knowledge, 

this was the highest data coverage in the literature at the time of writing this paper. 

However, it remains an ultrasparse dataset of about 3 10  fragments per base pair, 

which is equivalent to 0.6% of data coverage in the yeast data (5 fragments per base 

pair) (Schep et al. 2015). Even after limiting our analysis to ARERs, in terms of 

nucleosome position prediction, the data coverage remained ultrasparse (about 0.9% 

compared with that in yeast). Thus, we directly assessed the nucleosome callers in 

ARERs with the full dataset.  

The deNOPA was able to predict millions of nucleosomes in human (Fig. 3A). The 

number of predicted nucleosomes varied substantially from caller to caller. DANPOS, 

iNPS and deNOPA were the most sensitive tools that predicted 3.01, 3.53, and 1.48 

million nucleosomes and covered about 54.95%, 35.24%, and 22.59% of total ARERs 

in lengths, respectively (Fig. 3A). NucleoATAC and nucleR predicted nucleosomes that 

covered only 5% and 0.14% of total ARERs in lengths, respectively. Therefore, nucleR 

was excluded from our further comparison given its insensitivity.  
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Fig. 3 deNOPA predicted nucleosome positions well in human genome.  

(A) The sensitivity of predictors in human GM12878 cells. The x-axis represents the 

percentage of genome lengths in ARERs predicted as nucleosomes, and the number 

of predicted nucleosomes is marked by each bar. (B) The distributions of predicted 

nucleosomes around CTCF binding sites. The dashed line represents MNase-seq 

signals. (C) The distributions of MNase-seq signals around predicted nucleosomes. (D) 

The fold enrichment of accurately predicted NFRs. MNase-seq-determined NFRs were 

taken as standard, and overlapping with at least one nucleotide with the standards was 

considered a correct prediction. The controls were regions that randomly selected with 

equal length in the same promoters. (E) The distributions of log-transformed DNase-

seq signals at deNOPA- and nucleoATAC-predicted NFRs. The orange dashed line 
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marks zero. P-values, *: 10 p 10 , **: 10 p 10 , ***: p 10 .  

 

Evidence of prediction accuracy in human was stronger for deNOPA than that of the 

other predictors (Fig. 3B and C). To the best of our knowledge, no chemical mapping 

data were available for nucleosome positioning in human; therefore, we assessed the 

precision of the predictions indirectly. First, deNOPA was the only predictor that 

showed a correct pattern of phased nucleosomes flanking the binding of CTCF and 

ZNF143 (Fig. 3B and S3A). The prevalence of periodically positioned nucleosomes 

flanking the binding sites of TFs, e.g., CTCF and ZNF143, is well known (Nie et al. 

2014) and has been used to predict chromatin-chromatin interactions (Chepelev et al. 

2012). The well-phased nucleosome pattern is commonly seen as flanking TF binding 

sites in more refined nucleosome position predictions. Based on deNOPA’s prediction, 

a clear periodic phased nucleosome pattern can be seen flanking the ChIP-seq peak 

summits of CTCF and ZNF143 in ENCODE (Fig. 3B). However, for DANPOS and iNPS, 

a nucleosome peak was unexpectedly found at the summit loci of CTCF and ZNF143, 

(Fig. 3B and Fig. S3A).  

Second, compared to deNOPA’s prediction, nucleoATAC’s prediction is biased toward 

the most well-phased nucleosomes, showing only limited predictive power for the 

flanking nucleosomes around them. This was first illustrated by its bias toward the two 

immediate flanking (+1/-1) nucleosomes of the CTCF binding peaks (Fig. 3B). The two 

nucleosomes flanking CTCF binding peaks consist of 18.50% and 6.74% of the 
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prediction by nucleoATAC and deNOPA, respectively. This was also true for ZNF143, 

given that 14.92% and 7.51% of predictions flanked the peaks by nucleoATAC and 

deNOPA, respectively (Fig. S3A). This bias was further evidenced by MNase-seq data 

(Fig. 3C) (Kundaje et al. 2012). Compared to deNOPA, the contraction of MNase-seq 

signals in predicted nucleosomes against their neighbors was much higher in 

nucleoATAC (Pope et al. 2014) (t statistics are 28.39 and 48.18, comparing the MNase-

seq of predicted nucleosomes and that of their neighbors, respectively, Fig. 3C and 

S3B). This bias can also be observed in the transcription start site (TSS) regions 

(Radman-Livaja and Rando 2010), i.e., about 3.41% and 0.99% of predicted 

nucleosomes were +1/-1 nucleosomes around TSSs with nuceloATAC and deNOPA, 

respectively.  

Third, deNOPA predicted nucleosome-occupied regions enriched for active histone 

modification marks. Histone modifications are chemical groups in the core protein of 

nucleosomes, while Tn5 preferentially cuts the open and active genome region. 

Therefore, the active histone modification marks are expected to be enriched in the 

nucleosome- occupied region (Zhang et al. 2008). Comparing the proportion of 

predicted nucleosomes that enrich H3K27ac, H3K4me1 and H3K4me3 ChIP-seq 

signals between the callers (Consortium 2012), we found that the predictions of 

deNOPA and nucleoATAC had significantly higher enrichment for those histone marks 

than the other tools and that deNOPA’s prediction was more enriched in H3K27ac and 

H3K4me1 (Fig. S3C).  
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Last, deNOPA could accurately predict the NFR in human. Existence of the NFR is a 

characteristic feature of active promoters, and it can be accurately identified by the 

pattern of nucleosome positioning (Ocampo et al. 2016). Using MNase-seq data 

(Kundaje et al. 2012; Ocampo et al. 2016), we defined the NFR in GM12878 cells 

following the same protocol as that in yeast (see SI). Taking these MNase-seq-defined 

NFRs as a standard, we found more NFRs to be enriched in deNOPA’s prediction than 

those of nucleoATAC when compared with randomly selected, equal length control 

regions in the same ARERs (Fig. 3D). The accuracy of NFR prediction was further 

evidenced by the enrichment of DNase-seq data (Pope et al. 2014) since the NFR 

enrichment in deNOPA’s prediction was higher than that predicted by nucleoATAC (p

1.04 10-  , Mann Whitney U test, Fig. 3E). Furthermore, when comparing the 

promoters of highly expressed genes (top 20%) with transcriptionally silent (bottom 

20%) genes, TSSs showed more overlapping in the deNOPA-predicted NFRs than that 

of nucleoATAC (the t statistics were 3.91, p 9.14 10   and  2.41, p 0.02  for 

deNOPA and nucleoATAC, respectively, Fig. S3D). Taken together, deNOPA well-

balanced the precision and sensitivity in nucleosome position prediction with sparse 

human ATAC-seq data. 

deNOPA can predict nucleosome positions well at the single-cell 

level. 

We assessed the performance of deNOPA at the single-cell level (Chen et al. 2018). 
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As only deNOPA and nucleoATAC showed notable sensitivity and accuracy at ultralow 

data coverage, we only compared these two tools in this assessment. The testing data 

were downloaded from the recent work of Chen and colleagues (Chen et al. 2018), 

which consisted of single-cell ATAC-seq data on five mouse cell types (CD4+ T cell, 

cardiomyocyte, fibroblast, splenocyte and mESC). To make the data in all cell types 

comparable, we randomly picked 384 single cells from CD4+ T cell, cardiomyocyte, 

and splenocyte, respectively, to match the cell number of fibroblast and mESC. To the 

best of our knowledge, the chemically mapped nucleosomes were only available for 

mESC (Voong et al. 2016).  

The single-cell ATAC-seq data were too sparse to define stable nucleosome positions 

in individual cells. For a given diploid cell, two copies of DNA, at most, are expected 

for any loci. About 10.6 million (M) nucleosomes are predicted in the bulk chemical 

mapping data of mESC cells (Cole et al. 2011a). Thus, at least 20M open linker DNA 

regions exist in a cell. However, even in a cell with the most abundant reads, only about 

0.5M valid read pairs exist per cell (less than 5% of total genome linkers, Fig. S4A). 

Given the dynamics of nucleosomes, such extremely sparse data provide little help in 

distinguishing the stable nucleosome positions from the cell-specific transient ones. 

Therefore, instead of seeking every nucleosome in single cells, we set about assessing 

how many relatively stable nucleosomes the callers could predict in a pool with a small 

number of cells, e.g., 384 single cells.  

The deNOPA was much more sensitive than nucleoATAC with such pooled single-cell 
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ATAC-seq data in all five cell types. The number of deNOPA-predicted nucleosomes 

was consistently one or two magnitudes higher than that of nucleoATAC (Fig. 4A). For 

example, in the smallest dataset, CD4+ T cells, which only contained 9M valid read 

pairs, deNOPA predicted 145,777 nucleosomes, about three times that predicted by 

nucleoATAC (45,949). Importantly, the ultrasensitivity of deNOPA was complemented 

with comparable precision of nucleoATAC, i.e., the precision for nucleoATAC and 

deNOPA was 0.58 and 0.52, respectively, in mESC, according to the chemical mapping 

data (Voong et al. 2016) (see SI). The precision and sensitivity of the two algorithms 

were further assessed by the nucleosome position score (NCP), which indicates the 

probability that a nucleotide is occupied by nucleosomes (Voong et al. 2016). For 

algorithms with both high precision and sensitivity, the NCP score should peak at the 

predicted center position with a periodic pattern for the existence of nucleosome series.  

Indeed, the NCP peak summits matched well with the predicted nucleosomes by both 

algorithms, indicating the fine precision for both. However, the periodic pattern of NCP 

peaks flanking deNOPA’s prediction was much clearer than that flanking nucleoATAC’s 

prediction, implying the higher sensitivity of deNOPA over that of nucleoATAC in those 

regions (Fig. 4B).  
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Fig. 4 deNOPA-predicted nucleosome positions wellat single-cell level.  

(A) Number of predicted nucleosomes of deNOPA and nucleoATAC in five cell types. 

(B) The distributions of nucleosome center position score (NCP) signals in mESC 

around the predicted nucleosomes. (C) The enrichment of nucleosome-associated 4-

mers. The enrichment was indexed by the χ  statistics of comparing the bias of the 

frequencies of 4-mers at the predicted nucleosome regions and control. The control 

region was taken from the same ARERs with same lengths of predictions. The 

differences of the 𝜒   statistic between nucleosome-related and -unrelated 4-mers 

were tested by Whitney U test. (D) The distributions of deNOPA-predicted nucleosome 

flanking CTCF binding sites. (E) The tSNE plot of cell clustering by SCALE based on 

occupancies of deNOPA-predicted nucleosomes. The misclassified cells were marked 
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as black. P-values, *: 10 p 10 , **: 10 p 10 , ***: p 10 . 

 

For the other four cell types, we assessed the performance of the predictors indirectly. 

First, deNOPA’s prediction enriched known characteristic sequence features for 

nucleosome positioning. For example, higher GC contents were identified from 

deNOPA’s prediction compared to random controls (Cohanim and Haran 2009; Kaplan 

et al. 2009) (Fig. S4B). Second, short DNA 4-mers previously reported to bias 

nucleosome-occupied loci were found to be enriched in deNOPA’s predictions (Tillo 

and Hughes 2009) (Fig. 4C). This fact implies that deNOPA captures the characteristic 

sequence of the nucleosome container (Tillo and Hughes 2009). Third, deNOPA-

predicted nucleosome positions were periodically arranged flanking the CTCF binding 

sites. The periodically phased +/-2 and +/-3 nucleosomes could be observed by the 

stacking of predicted nucleosome positions centered at the CTCF binding sites (Fig. 

4D, Fig. S4C and D). The CTCF binding sites were defined by ChIP-seq data and the 

sequence motif in NFRs for cell types with or without publicly available CTCF ChIP-

seq data (Shen et al. 2012), respectively (Fig. 4D and Fig. S4C and S4D). However, 

only +/-1 nucleosomes flanking the CTCF binding sites were predicted by nucleoATAC 

(Fig. 4D, S4C and S4D). This indirect evidence supported both the accuracy and 

sensitivity of deNOPA in nucleosome position prediction. 

Collectively, both direct and indirect evidence supported that deNOPA is sufficiently 

sensitive to predict up to hundreds of thousands of nucleosomes precisely with only a 
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small pool of scATAC-seq data. 

Nucleosome positioning pattern encodes cell identity 

It has been shown that accessibility of single cells leads to cell classification (Preissl 

et al. 2018). Therefore, we asked if deNOPA-predicted nucleosome positioning 

patterns could also perform this task (see SI). To do this, we took the clusters called 

from the peaks of MACS2 as reference (Feng et al. 2012) and compared them with 

the clusters called from the predictions of deNOPA and nucleoATAC. A total of 839137, 

363383, and 110964 peaks were predicted in the merged scATAC-seq data of all five 

cell types by deNOPA, nucleoATAC and MACS2, respectively. By applying SCALE 

(Xiong et al. 2019), a cell clustering algorithm, to those peaks, we found that deNOPA’s 

prediction had the highest classification accuracy (Fig. 4E, S4E and F). That is, 84.94% 

of cells were correctly classified by deNOPA, while 51.94% (p=1.12×10-96, one-sided t 

test) and 80.05% (p=2×10-4) of cells were correctly classified by MACS2 and 

nucleoATAC, respectively. We noticed that the classification accuracy of nucleoATAC’s 

prediction was comparable to that of deNOPA. Given that both deNOPA and 

nucleoATAC can predict nucleosome positions, our data suggested that nucleosome 

positions characterize cell identity more clearly than the mixture of nucleosome 

positions and chromatin accessibilities, as represented by the peaks of MACS2.  

Finally, we found that the nucleosome position pattern could be used to identify 

subcellular lineages from a heterogenous cell population, e.g., tumors. We applied 
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deNOPA and nucleoATAC to a scATAC-seq dataset of human leukemic cell line K562 

(Buenrostro et al. 2015) and predicted 1032014 and 68709 nucleosome positions from 

the 25M uniquely mapped read pairs in 863 cells, respectively. We found that both 

callers were able to cluster the cells into two groups (Fig. S4G and H). Interestingly, 

the two groups showed small, but significant, differences between accessibilities, as 

partially indicated by short fragment reads, on binding sites of key hematopoietic 

factors, such as GATA1 ( 𝑝 3.63 10   and 1.89 10   for deNOPA and 

nucleoATAC, respectively, t test) and GATA2 (𝑝 2.03 10  and 6.55 10   for 

deNOPA and nucleoATAC, respectively, SI, Fig. S4I and S4J). This observation was 

coincident with two recently reported subtypes of K562 cells characterized as having 

different accessibilities at the binding sites of those key hematopoietic factors 

(Litzenburger et al. 2017).  

Although the capacity of distinguishing cell subtypes was also observed for 

nucleoATAC (Fig. S4H), the power was substantially weaker than that of deNOPA (Fig. 

S4G). Using the inter- to intracluster variance ratio (CH) to index the capacity of 

clustering, we found that the CHs were 1.06 and 0.58 for deNOPA and nucleoATAC, 

respectively (Fig. S4G and H), implying a substantially stronger power of clustering for 

deNOPA. This difference in clustering may stem from the different sensitivities in 

nucleosome position prediction between the two callers, as 2906 and 38879 

nucleosome positions were utilized for clustering in nucleoATAC and deNOPA (see SI), 

respectively. This example implies that deNOPA may be able to reveal cell population 
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heterogeneity in tumor. 

Application to ultralow coverage of bulk ATAC-seq data of human 

cells in response to HS.  

Next, we asked how nucleosome positioning might respond to thermal stress in the 

context of deNOPA prediction. Using K562 cells as a model system, we performed 

ATAC-seq experiments under normal (NM, 37℃ ) and heat (HS, 42℃, 30 minutes) 

conditions, and we obtained two high-quality replicate libraries for each condition (SI 

(Li et al. 2019)). With these data, deNOPA predicted 2,310,244 and 1,280,489 

nucleosomes and 114,351 and 90,275 NFRs for NM and HS, respectively, in the 

ARERs. The accuracy of this prediction was evidenced by the clearly periodic phase 

pattern of nucleosomes flanking CTCF binding (Fig. S6A and SI). Similar to Drosophila 

(Rowley et al. 2017), the overall accessibilities of NFRs were largely stable after heat 

shock (Fig. S5 and SI). Thus, we focused on the dynamics of the positions and strength 

of nucleosomes in response to thermal stress. 

First, the position changes of +/-1 nucleosomes flanking the NFR were found to be 

irrelevant to transcription changes after HS stress. Since +/-1 nucleosomes have been 

shown to be strongly associated with gene expression regulation (Shivaswamy et al. 

2008; Shivaswamy and Iyer 2008; Schep et al. 2015), we might expect changes on 

either position or strength of those nucleosomes in the promoter of differentially 

expressed genes (DEGs) after HS. However, little difference in position changes of +/-
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1 nucleosomes was found between induced and reduced promoters, not only for their 

orientation (p 0.65 and 0.17, for -1 and +1 nucleosome, respectively, t test, Fig 5A, 

Fig. S6C), but also for the distances (p=0.76 and 0.42 for -1 and +1 nucleosome, 

respectively, KS test). Last, little association was seen between the changes in 

occupancy of these nucleosomes and changes in the level of expression (p 0.34 

and 0.49  for -1 and +1 nucleosomes, respectively, χ   test, Fig. S6D; see the 

definition of nucleosome occupancy changes in SI).  

Second, nucleosome occupancy loss was more tightly associated with gene 

expression changes than nucleosome occupancy gain. Guided by deNOPA-derived 

nucleosome positions, we detected 68,356 (30.78Mb in total) and 38,751 (15.20Mb) 

regions that had gain and loss of nucleosome occupancy strength, respectively (see 

SI). The regions with nucleosome occupancy loss were prone to overlap with intragenic 

regions or putative enhancers, which were defined by ChIP-seq peaks of H3K27ac 

located in the intergenic regions (SI). In percentage, 71.15% and 59.31% showed 

nucleosome occupancy loss and gain in regions that overlapped with the intragenic 

regions (TSS-2Kb to TTS+3Kb), respectively (p 10 , t test, Fig. 5B). Within the 

intragenic regions, the regions of occupancy loss were also those most likely to locate 

at promoters or exons (Fig. 5B). In percentage, 2.56% and 0.56% of nucleosome 

occupancy was lost and gained in regions that overlapped with the intergenic putative 

enhancers (Gao and Qian 2019), respectively (p 10 , t test, Fig. 5B). Moreover, 

the genes with regions of nucleosome occupancy loss solely in promoters (without any 
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region of nucleosome occupancy gained at the same loci) were more likely to be 

significantly altered after heat shock than those with only regions of nucleosome 

occupancy gained (Fig. 5C and, Fig. S6E).  

 

Fig. 5 Nucleosome reorganization after K562’s heat shock response.  

(A) The distributions of predicted shifting distance of the +1 and -1 nucleosomes of 

highly induced repressed genes by deNOPA (KS tests). (B) The proportions of 

nucleosome occupancy of differential regions in regulatory elements. The proportions 

of nucleosome occupancy to the total number of regions were shown in the outer circle. 

The proportions of nucleosome occupancy to the number of regions in the intragenic 

regions were shown in the inner circle. (C) The distribution of altered directions of gene 

expression. The bars gained and lost mark the genes with nucleosome occupancy only 

gained and lost in promoters, respectively. The genes were grouped according to their 

change of expression pattern where Repressed, UnExp, Stable, and Induced mark 
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genes with significantly repressed, not expressed, not significantly altered and 

significantly induced expression level, respectively (t-tests). (D) The numbers of TF 

motifs found in the promoter with gained and lost nucleosome occupancy (t-tests). *** : 

p 10 , ** : 10 𝑝 10 , * : 10 𝑝 10 . 

 

Finally, regions with loss of nucleosome occupancy were also those more enriched in 

transcription factor binding sites than regions with gain of nucleosome occupancy. At 

the threshold of FDR 0.05 , 127 significantly enriched transcription factor binding 

motifs occupied regions of loss by HOMER (Heinz et al. 2010), much larger than the 

18 in gained regions (p 10 , t test, Fig. 5E and Table S3). Importantly, these factors 

contained not only key hematopoietic factors, such as GATA1/2 (Lentjes et al. 2016), 

but also many factors shown to respond to heat shock, such as AP1 and ELF1 (Vilaboa 

et al. 2017). Such strong biases imply a putative function of nucleosome occupancy 

loss in response to thermal stress. 

When taken together, our data showed that human cells respond to HS with changes 

in nucleosome occupancy strength. 

Discussion 

We developed a sensitive and precise nucleosome prediction algorithm based on 

ATAC-seq data called deNOPA. Our assessment showed that deNOPA could 

accurately predict nucleosome positions, even with ultrasparse data that approximated 
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the zone of single-cell ATAC-seq. With hundreds of scATAC-seq data pooled, deNOPA 

successfully predicted one or two magnitudes more nucleosome positions than 

existing algorithms. The capacity to predict nucleosome positions with ultrasparse data 

makes it possible for ordinary laboratories not equipped with sophisticated instruments 

or reagents to study the dynamics of nucleosomes at the single-cell level. More 

importantly, with the fast-developing scATAC-seq technologies (Lai et al. 2018; 

Satpathy et al. 2019), the capacity to predict nucleosome positions with ultrasparse 

data will also make it possible to study cell-to-cell variations of nucleosome 

arrangements in the foreseeable future.  

The ultrasensitivity of deNOPA mainly stemmed from the additional reads rescued from 

ATAC-seq short fragments normally discarded in nucleosome-related studies. We 

found that the cutting sites of short and long fragments are highly correlated, 

suggesting the rich information carried by short fragments for nucleosome detection. 

In addition, for the bulk of data utilized by deNOPA, only scantling accuracy is lost to 

achieve ultrasensitive nucleosome position prediction. It is well known that template 

searching- based strategies, e.g., nucleoATAC, have high accuracy in pattern 

recognition (Teif 2016), while model-based methods are generally more sensitive and 

computationally efficient (Chen et al. 2013; Chen et al. 2014). Although the accuracy 

of deNOPA was found to be less than that of nucleoATAC in many cases, it is, in fact, 

comparable to, and much better than, all other competitors we assessed (Fig 2 and 3). 

Thus, deNOPA can successfully balance sensitivity and accuracy. 
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It is worth to noting that the current version of deNOPA worked well only with the index-

pool-index-based scATAC-seq data, as we showed in this work. However, the 

distribution of microfluidics-based, e.g., the chromium from 10x Genomics, scATAC 

data was found to be substantially different from that of index-pool-index-based data 

in the genome. As clarified in demo data by 10x Genomics, more than 70% of 

fragments locate at the DHS (Preissl et al. 2018), which is nucleosome-depleted; 

consequently, few nucleosome positions could be predicted by deNOPA (data not 

shown).  

Finally, we demonstrated the usefulness of deNOPA by applying it on the heat shock 

response regulation problem of human cells with ordinary ATAC-seq sequencing depth. 

It has been reported that both chromatin accessibility and nucleosome positions may 

respond to temperature stress (Shivaswamy et al. 2008; Zeng et al. 2019) . However, 

most of these studies were performed in poikilotherm, in which the temperature in the 

experiments was relatively lower compared to the mammalian system. One possible 

reason for the shortage of such research in mammals might involve the temperature 

sensitivity of micrococcal nuclease (Huang and Garrard 1986). This made deNOPA a 

good choice to study chromatin and nucleosome dynamics in response to temperature 

changes in mammals. To the best of our knowledge, the present work is the first such 

study in the mammalian system on the dynamics of chromatin accessibility and 

nucleosome positioning in response to heat shock in human cells. The pattern we 

observed in human cells was similar to that previously reported in fly (Rowley et al. 
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2017), but different from that of yeast (Lee et al. 2004; Shivaswamy et al. 2008; 

Shivaswamy and Iyer 2008). A more detailed assay may need to be performed in the 

future to reveal species-specific regulation of chromatin and nucleosome in response 

to temperature changes, which trigger more complicated physiological consequences 

in homothermal animals compared to flies. In summary, deNOPA could be a powerful 

tool to address broad questions on dynamics of chromatin with ultralow resolution 

ATAC-seq data.  
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Methods 

Cell culture and ATAC-seq protocols can be found in SI. 

The deNOPA algorithm. The deNOPA algorithm was mainly divided into four steps: 

data preprocessing; enriched region detection; candidate nucleosome detection and 

nucleosome assessment (Fig. 1). 

Data preprocessing 

We defined the ATAC-seq coverage of any given genomic locus x as the number of 

duplicates removed from ATAC-seq fragments covering x, denoted as c(x). The Tn5 

cutting events were defined in the +/- 10bp region flanking the 5’ ends of ATAC-seq 

fragments, and the frequency of cutting events at any given locus x was therefore 

defined and denoted as s(x). The cutting sites where the raw reads were mapped were 

shifted towards the center of a fragment by 4-5bp to define the Tn5 recognition 

sites(Palstra et al. 2003).  

The c(x) and s(x) were smoothed by the Gaussian kernel as 

𝜙 𝑥
1

√2𝜋𝜎
exp

1
2𝜎

𝑥 . 

For any given function 𝑦 𝑥  , the smoothed function 𝑦 𝑥   and its derivatives were 

defined as 
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, 

where 𝜎 72 was taken for 𝑐 𝑥 , making the smoothing window three times the size 

of nucleosome to avoid the influence of nucleosome dynamics in the detection of the 

enriched region, and σ 24 was taken for s x , making the smoothing window half 

the size of the nucleosome to retain enough details of the signal for nucleosome 

detection.  

The distribution of fragment lengths 𝑙 was modeled by a mixture distribution: 

𝐹 𝑙

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜋 𝜙 𝑙 𝑙 ,𝛼 , 𝜇 ∑ 𝜋 𝜙 𝑙 𝑙 𝜇
∑ 𝜋 1

𝜙 𝑙,𝛼 , 𝜇 exp 𝑙

𝜙 𝜙
𝛼 𝜇 𝜇 𝜇 ⋯⋯ 𝜇
𝑙 min 𝑙

, 

where the fragment length distribution 𝐹 𝑙  was composed of the combination of a 

Gamma distribution 𝜙  and a series of Gaussian distributions 𝜙 ,𝜙 ,⋯𝜙 , where 𝜙  

represented the fragments derived from nucleosome free, accessible regions, and 

𝜙 , 𝑖 1,2,⋯, represented fragment lengths from Tn5 cuts covering 𝑖 nucleosomes.  

The parameters were estimated by the EM algorithm. The super parameter 𝑁 was 

determined by maximizing the AIC score. The accessibilities, denoted as r x , were 

then calculated in a manner similar to that of c x , except the fragments were weighted 
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by π 𝜙 / ∑ 𝜋 𝜙  , the estimated probability of the fragments generated from the 

nucleosome free, accessible regions. The r x  was smoothed with 𝜎 72.  

In smoothed �̂� x  and �̂� x , the summits were defined as the genome loci with local 

maximum. The summits were then modeled by a Gamma distribution, and the 

parameters were determined by minimizing the mean square error between the 

modeled 25% , 50%  and 75%  quantiles and the observations. The significance p-

values for summits were assigned according to the modeled distribution. Similarly, the 

valleys of smoothed �̂� x  and �̂� x , i.e., the local minima, were also modeled by the 

gamma distributions and assigned p-values accordingly.  

Detection of ATAC-seq reads enriched regions  

We only considered the ATAC-seq reads enriched regions (ARERs) in deNOPA, taking 

the rest of the genome as the background. To detect ARERs, the following steps were 

applied sequentially: 

1. Candidate ARER detection. The ARERs were genome regions with sufficient read 

coverages in ATAC-seq libraries. To define such regions, small regions with peak read 

coverages were first determined as candidates. To do this, the summits and their 

flanking regions with significantly large values of �̂� x  (𝑝 0.1 by default) were termed 

as the region summits. Genome regions between neighboring region summits without 

any local minima with small enough value (𝑝 0.5) were then extracted, and those 

with overlapped bases were merged. Those merged regions were defined as the 
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candidate ARERs.  

2. Candidate ARER extension. Each candidate ARER was extended to the nearest 

local minima in �̂� 𝑥  with significantly small value (p 0.1), both up- and downstream. 

Neighbor regions were merged if they were near with each other (genome distance 

1kb by default). The final merged regions yielded the ARERs.  

Candidate nucleosome detection 

Candidate nucleosomes were detected by detecting the local maximum points in �̂� x .   

1. Candidate linker detection: The candidate linkers were roughly defined as those 

local maximum points of �̂� x   with top 25% of values in the ARERs. The rough 

candidate linkers were further filtered by the shape of �̂� x  around them.  

We calculated the genome distance between each rough candidate to its nearest 

inflection point of �̂� x   in both directions. The inflection points were defined as 

�̂�′′ 𝑥 0 and |�̂�′′′ x | 0 . The distances from the local maximum point to the 

upstream and downstream nearest inflection points were denoted as d   and d  , 

respectively. We show that these distances are between 24-25bp and 15-50bp in the 

theoretically ideal scenario and 99% empirical CIs from the yeast MNase-seq data, 

respectively (see SI). Rough linkers with either 𝑑  or 𝑑  in the interval between 15 

to 50bp were kept.  

2. Candidate nucleosome detection: Neighboring rough candidate linkers were 

grouped to candidate nucleosomes based on the following criteria.  
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a) The distance between them was similar to the size of nucleosomes. Here 

101~215bp was taken as default, which is the 99% CI of the fragment lengths of the 

yeast MNase-seq data (Cole et al. 2011a; Cole et al. 2011b). 

b) The candidate linker upstream should satisfy 15 d 50. At the same time, the 

candidate linker downstream should satisfy 15 d 50 . We define the region 

between the downstream neighboring inflection point to the upstream linker and the 

upstream neighboring inflection point to the downstream linker as the inner part of the 

nucleosome.  

3. Determining NFR regions: Regions in ARERs that satisfy the following three criteria 

were collected as candidate NFRs: 

a) Longer than 75bp.  

b) No candidate nucleosome overlapped.  

c) Overlapped with at least one local maximum point in the smoothed, nucleosome 

free, accessibility �̂� x . The smallest p-value of the maximum value in these points 

was taken as the p-value of the NFR (see SI), and the p-values of all NFRs are fed into 

Benjamini-Hochberg multiple testing adjustment (Benjamini and Hochberg 1995). The 

NFRs with small adjusted p-value ( 0.1 by default) are reported.  

Nucleosome occupancy assessment:  

We assess nucleosome occupancy with the following considerations. A stable 

nucleosome occupancy should cover a length close to 147bp, should be covered by a 
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significantly large number of ATAC-seq fragments, and should have a minimum 

number of Tn5 cutting events.  

The number of ATAC-seq fragments covering the nucleosome was assessed as 

follows: For a given candidate nucleosome in a specific ARER, the probability of an 

ATAC-seq fragment covering its whole region, given the condition that the two 

overlapped, was written as 𝑝 ∑ 𝑝  , where 𝑝   denoted the proportion of 

fragments with length 𝑙 in all fragments overlapping the ARER, and 𝜆 denoted the 

length of candidate nucleosome. The distribution of the number of fragments, denoted 

as 𝜃 , covering the candidate nucleosome was then assumed to follow a binomial 

distribution B 𝑁,𝑝  , where N denotes total number of fragments overlapping the 

nucleosome. 

The distribution of the number of cutting events located in the inner candidate 

nucleosome, denoted as 𝜂, was assumed to follow the Poisson distribution Pois μτ , 

where τ  denoted the inner length of the nucleosome, and μ  denoted the average 

number of cutting events per base pair in the ARER.  

We assessed each ARER separately as a consequence of the large coverage 

variability of ATAC-Seq data in different ARERs.  

Although nucleosome assessment could be conducted based on the p-values 

calculated from the assumed distributions of segment coverage and the number of 

cutting events, the assessment could fail under the ultrasparse condition. Alternatively, 

therefore, we employed an outlier detection-based assessment for ultrasparse data as 
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follows:  

The length of candidate nucleosome 𝜆 was transformed as 

𝜆∗ log
| |

1 , 

and the number of fragments covering nucleosome θ and the number of Tn5 cutting 

events in its inner η  were transformed by the variance stabilization method 

(Anscombe 1948; Yu 2009): 

𝜃′ 𝑓 𝜃 𝐸𝑓 𝜃

𝑓 𝜃 √𝑛 0.5 arcsin
2𝜃 𝑁
𝑁 0.75

 

and 

𝜂′ 𝑓 𝜂 𝐸𝑓 𝜂

𝑓 𝜂 2 𝜂 0.375
 

where 𝐸𝑓 𝜃   and 𝐸𝑓 𝜂   were the approximated expectations of 𝑓 𝜃   and 𝑓 𝜂  

calculated by the delta method (Doob 1935). After transformations, 𝜃′ and 𝜂′ are all 

distributed with zero means and unit standard deviations, approximately. The larger 

the transformed value of 𝜃′ and 𝜂′, the more probable it is that the nucleosome will 

be true. 

Stable nucleosomes should have large 𝜃′  and 𝜂′ ; therefore, to avoid selecting 

candidate nucleosomes with large 𝜃′  or 𝜂′  as outliers, they were then further 

transformed into 𝜃∗ and 𝜂∗ using 

𝑇 𝑥
2𝜙 0 𝑥 𝑥 0
2 Ψ 𝑥 0.5 𝑥 0, 

where ϕ and Ψ denoted the probability density function and cumulative distribution 

function of standard normal distribution. Transformation shrank the distribution at 

positive half axis towards uniformity, while keeping the shape in the negative side. 
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A DBSCAN-based outlier detection scheme was then applied among all transformed 

data  (λ∗, 𝜃∗ and 𝜂∗) using Mahalanobis distances (Anant et al. 2010). The largest 

cluster was regarded as the predicted nucleosomes. 

Two super-parameters are found in the DBSCAN process, the distance specifying the 

neighborhood, termed eps, and the minimum number of observations in a 

neighborhood, termed as minpts. Since the distributions of the features differ between 

different ATAC-seq libraries, these parameters should be calculated specifically for 

each library. Given two parameters q , 𝑞 ∈ 0,1  , we calculated eps as the q  

quantile of the distribution of minimum distances from each observation to the other 

ones. Then the number of observations lying in the ball centered at each observation 

and with radius eps was calculated. The minpts was then calculated as the maximum 

of these numbers multiplied by q  . The default values q   and q   were selected 

based on the yeast data by optimizing the nucleosome-to-free ratio on the MNase-seq 

signal profile (see the definition in SI) by grid search. The optimal values 𝑞 0.9 and 

𝑞 0.1 were adopted as defaults (Fig. S7).  

The outlier detection scheme works because a large part of the candidate 

nucleosomes consists of true positives. As discussed before, Confidential 

nucleosomes should have lengths close to the consensus value of 147bp, with a large 

number of sequenced fragments covered and a few Tn5 cutting events in their inner 

regions simultaneously, making them naturally closely located to each other in the 

transformed space and grouped into a large cluster. For those false positives, at least 
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one of the three criteria was overturned, keeping them away from the true positives 

and acting as outliers to the large cluster composed of true positives.  

Downloaded data sets 

For yeast, the ATAC-seq data were download from (Schep et al. 2015) with the GEO 

accession number GSE63525. Chemical mapped nucleosome positions were 

downloaded from Table S2 in (Brogaard et al. 2012). The MNase-seq data were 

downloaded from (Cole et al. 2011a) with GEO accession number GSE26493. The 

DNase-seq data were downloaded from (Zhong et al. 2016) with GEO accession 

number GSE69651. For GM12878, the ATAC-seq data were downloaded from 

(Buenrostro et al. 2013) with GEO accession number GSE47753. Binding positions of 

CTCF, ZNF143 together with the peaks of H3K27ac, H3K4me1, H3K4me3, the 

MNase-seq data and the gene expression profile were all downloaded from ENCODE 

with accession numbers ENCSR000AKB, ENCSR936XTK, ENCSR000AKC, 

ENCSR000AKF, ENCSR057BWO, ENCSR000CXP and ENCSR000COQ. The 

DNase-seq data wee downloaded with GEO accession number GSE51334. The 

mouse single cell ATAC-seq data were downloaded from (Chen et al. 2018) with ENA 

accession number ERP108537. The chemical mapped nucleosome positions of mESC 

were downloaded from (Voong et al. 2016) with GEO accession number GSE82127. 

CTCF binding peaks were downloaded from (Shen et al. 2012) with GEO accession 

number GSE29184. The single cell K562 data were downloaded from (Buenrostro et 
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al. 2015) with GEO accession number GSE65360. The binding sites of GATA1/2 were 

downloaded from ENCODE with accession numbers ENCSR000EWM and 

ENCSR000EWG. Gene expression profiles of K562 cells before and after heat shock 

were downloaded from (Vihervaara et al. 2017) with GEO accession number 

GSE89230. Detailed information of these datasets could be found in (Table S1).  

Data access 

The ChIP-seq and ATAC-seq data generated in this study have been submitted to the 

Genome Sequence Archive in the China National Center for Bioinformation 

(https://bigd.big.ac.cn/gsa/) (Wang et al. 2017) under accession numbers CRA001890 

and CRA001891 respectively. The source code for deNOPA can be found at 

https://gitee.com/bxxu/denopa. 
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