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Abstract 

Clustering is a key step in revealing heterogeneities in single-cell data. Cell heterogeneity can be explored 

at different resolutions and the resulted varying cell states are inherently nested. However, most existing 

single-cell clustering methods output a fixed number of clusters without the hierarchical information. 

Classical hierarchical clustering provides dendrogram of cells, but cannot scale to large datasets due to 

the high computational complexity. We present HGC, a fast Hierarchical Graph-based Clustering method 

to address both problems. It combines the advantages of graph-based clustering and hierarchical 

clustering. On the shared nearest neighbor graph of cells, HGC constructs the hierarchical tree with linear 

time complexity. Experiments showed that HGC enables multiresolution exploration of the biological 

hierarchy underlying the data, achieves state-of-the-art accuracy on benchmark data, and can scale to 

large datasets. HGC is freely available for academic use at 

https://www.github.com/XuegongLab/HGC.  

Contact: zhangxg@tsinghua.edu.cn , stevenhuakui@gmail.com   

 

Introduction  

Recent developments of single-cell RNA sequencing (scRNA-seq) technologies and bioinformatic tools 

have accelerated our understanding of cell heterogeneity [1,2]. A fundamental task in scRNA-seq data 

analysis is to cluster cells into different groups as candidate cell types or cell states. This task is difficult 

due to the challenging characteristics of scRNA-seq data and the complex nature of cell heterogeneity 

underlying the data [3]. One of the common structures of cell heterogeneity is the hierarchical structure, 

which can be explored at different resolutions and results in varying and nested cell types or cell states. 

Current practice for studying such multi-level heterogeneity is to first produce a fixed number of clusters 

and then adjust the clustering resolutions in an ad hoc manner [3,4]. This workflow loses the underlying 

hierarchical information and requires multi-rounds of re-clustering to find a suitable resolution. As an 

alternative, hierarchical clustering enables direct multi-resolution exploration of the hierarchical cell 

heterogeneity. However, classic hierarchical clustering algorithms are only suitable for small datasets 

due to the high computational complexity.  

We propose a fast Hierarchical Graph Clustering method HGC for large-scale single-cell data. The key 

idea of HGC is to construct a dendrogram of cells on their shared nearest neighbor (SNN) graph. This 

combines the advantages of graph-based clustering methods and hierarchical clustering. We applied HGC 

on both synthetic and real scRNA-seq datasets. Results showed that HGC can recover the biological 
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hierarchy underlying the data, can achieve high clustering accuracy at fixed resolution, and can scale 

well to large datasets. 

Methods 

The workflow of HGC contains two major steps: graph construction and dendrogram construction. For 

the graph construction step, HGC adopts the standard procedure of building the SNN graph, which is to 

first conduct Principal Component Analysis (PCA) on the expression data and build the k nearest 

neighbor (KNN) graph and the SNN graph in the PC space (Fig. 1) [5]. The construction of dendrogram 

on the graph is a recursive procedure of finding the nearest neighbor pair and updating graph by merging 

node pairs (Fig. 1). 

The key to find the nearest neighbor pair on a graph is the distance measure. HGC utilizes the node 

pair sampling distance introduced in [6]. For a weighted, undirected graph 𝐺 = (𝑉, 𝐸), let 𝐴 be the 

weighted adjacent matrix. If we sample node pairs or edges at random in proportion to their weights, the 

probability that node pair or edge (𝑖, 𝑗) being sampled is:  

𝑝(𝑖, 𝑗) =  
𝐴𝑖𝑗

∑ 𝐴𝑖𝑗𝑖,𝑗
                                  (1) 

Similarly, sampling nodes in proportion to their weighted degrees results in the probability of node 𝑖 

being sampled:   

𝑝(𝑖) =  
∑ 𝐴𝑖𝑗𝑗

∑ 𝐴𝑖𝑗𝑖,𝑗
= ∑ 𝑝(𝑖, 𝑗)𝑗                             (2) 

The node pair sampling distance is then defined as the ratio between individual sampling probability 

and the pair sampling probability:  

𝑑(𝑖, 𝑗) =  
𝑝(𝑖)𝑝(𝑗)

𝑝(𝑖,𝑗)
                                 (3) 

Fig. 1. The workflow of HGC. HGC contains two main steps, the construction of SNN graph in the PC 

space, and a recursive procedure of finding the nearest-neighbor node pairs and updating the graph by 

merging the node pairs. HGC outputs a dendrogram like classical hierarchical clustering. 
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After finding two nearest neighbor nodes, the graph is updated by merging them into a new node (Fig. 

1). Such new nodes in the updated graph are communities of the original nodes. The weighted degree of 

the new nodes is the sum of the weighted degrees of all original nodes in the community. Weights of 

edges between new nodes are the sum of the weights of the edges between original nodes in the 

corresponding two communities.   

The node pair sampling distance has been proven to have the property of reducibility [6], which enables 

the whole hierarchical clustering procedure to be accelerated using the nearest neighbor chain algorithm. 

This algorithm searches the mutual nearest neighbors instead of the closest pairs, resulting in the same 

dendrogram as the standard searching procedure in a much shorter time.  

The graph construction step in HGC is flexible. Besides the SNN graph used in the default workflow, 

one can use other types of graphs, such as the KNN graph, or graphs built from other single-cell tools. 

The preprocessing in the graph construction can also be adjusted. In the benchmark experiments, we 

have included the results of using GLMPCA as the dimension reduction methods instead of PCA.  

HGC has been implemented in R, with the key function written in Rcpp. We provide Seurat-style 

function to guarantee seamlessly usage in this popular pipeline. It also includes tools to assist downstream 

analysis, such as the dynamicTreeCut package for cutting the dendrogram into specific clusters, and 

plotting functions for visualizing the hierarchical clustering results. 

 

 

Results 

HGC reveals hierarchical structure of cell heterogeneity 

We applied HGC on two datasets with known hierarchical structures: the Pollen dataset from [7] and the 

PBMC dataset from [8]. As the baseline, we experimented classical hierarchical clustering methods on 

these two datasets. The pairwise distance required in classical hierarchical clustering can be calculated 

in different feature spaces. We considered three feature spaces: the gene expression space and the feature 

spaces given by applying PCA or GLMPCA [9] on the gene expression data. The three corresponding 

methods are referred to as HC, PCA+HC and GLMPCA+HC, respectively. They are called HC-based 

methods when referred to together. 

 

Experiments on the Pollen dataset 

Cells in the Pollen dataset can be classified at two levels: the tissue level and the cell line level [7]. At 

the tissue level, they can be divided into 4 groups according their tissue source, including blood cells, 

dermal cells, human-induced stem cells, and nerve cells. Each of these groups can be further divided into 

subgroups. Blood cells include K562, HL60 and CRL-2339 cell lines. K562 cell line and HL60 cell line 

are from leukemia patients. CRL-2339 cell line is B lymphoblasts. Dermal cells include Kera cells, BJ 

cells and CRL-2338 cells. Kera cells are a type of skin cell line. The BJ cell line is a human fibroblast, 

and the CRL-2338 cell line is an epithelial cell derived from ductal carcinoma. Human-induced 

pluripotent cell (hiPSC) is considered a single tissue, which is derived from the BJ cell line. Neurons 

include Neural Progenitor Cells (NPC), GW16 cells, GW21 cells and GW21+3 cells. NPC is derived 

from human induced pluripotent stem cells. GW cells are cells in the human genital area from different 

embryonic developmental stages. 

For the Pollen dataset, HGC gave a reasonable clustering result. As shown in Fig. 2a, HGC detected  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2021. ; https://doi.org/10.1101/2021.02.07.430106doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430106
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

five main clusters. In the SNN graph, these five classes were not connected to each other, so HGC cannot 

further merge them. This clustering result is slightly different from the classification at the tissue level 

(ARI=0.61). Neurons and hiPSC were grouped into one cluster, which can be explained by their 

differentiation relationship. Dermal cells were assigned to BJ cells and non-BJ cells and blood cells were 

clustered as the K562 and non-K562 group. When a larger k is used to split the hierarchical clustering 

tree, these main tissue sources will be further divided into smaller clusters. When k = 11, almost all 11 

cell lines were identified by HGC (ARI = 0.94, Fig. 2c). The hierarchical relationship of these cell lines 

according to the dendrogram by HGC is shown in Fig. 2d, which agrees well with the prior knowledge. 

As the baseline, we ran the three HC-based methods on the Pollen dataset (Fig. S1). We cut the 

dendrogram into different numbers of clusters and calculated the ARI between the clusters and the two 

labels (Fig. S1). For both labels, the three HC-based did not give clustering results that agree well with 

the labels. Visualization of the dendrograms showed the reasons of the bad performance. The hierarchical 

trees given by the HC-based methods tended to form many small branches, leading to poor clustering 

results when cutting the tree into specific clusters. Taking the result of GLMPCA+HC as an example, it 

can be seen from the annotation result of the color barcode that the clustering result captures certain 

clustering information. However, dendrogram had many small branches. When cutting the tree into, say 

11 clusters, these small branches formed individual clusters, and 80% of the cells are classified into the 

same cluster, resulting in an ARI of only 0.02.  

Besides hierarchical clustering, current practice to reveal the multi-layer heterogeneity is to conduct 

multi-rounds of clustering with different resolutions. We experimented this strategy here using Seurat. In 

Pollen dataset, a resolution of 0.8 in Seurat gave similar results to that of HGC when k = 5. When the 

Fig. 2. The clustering trees by HGC capture the multi-layer structure in datasets. (a) The 

dendrogram given by HGC for Pollen dataset. The color bars below the dendrogram are the two-level 

labels. (b) The tSNE plot showing the clustering result when cutting the tree into 11 clusters. (c) The ARIs 

of the clustering results compared with two labels. The x-axis is the number of clusters and the triangles 

represent the maximal ARIs for the two labels. (d) The inferred hierarchical relationship of different cell 

lines the Pollen dataset given by HGC. (e-h) The corresponding results for PBMC dataset.  
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resolution ranged from 1 to 3, Seurat gradually gave finer clustering results. At a resolution of 3, Seurat 

recovered almost all 11 cell lines. When the resolution increases, Seurat tends to cut the existing clusters 

into finer ones, reflecting certain level of cell hierarchy. However, such partial hierarchical information 

is empirical and only available with the assistance of other visualization results such as tSNE or UMAP.  

 

Experiments on the PBMC dataset 

The PBMC dataset contains 9 different immune cell types obtained through FACS, including B cells, 

monocytes, NK cells and 6 subtypes of T cell (Table S1). The differentiation relationship of immune 

cells is relatively clear. For the cell types included in the PBMC dataset, monocytes are derived from 

myeloid progenitor cells, while T cells, B cells and NK cells are derived from lymphoid progenitors. T 

cells can be further divided into two major subtypes: CD4+ T cells and CD8+ T cells. 

HGC obtained a biologically meaningful multi-level structure in the PBMC dataset. When k=5, HGC 

captured four main cell types in the data (ARI=0.98). Among them, a small part of monocytes was 

grouped into a single class as a new branch, which is consistent with the results of tSNE plot (Fig. 2e,f). 

When k increased from 5 to 9, new clusters were generally generated inside T cells. HGC discovered 

four main branches of T cells: the naive cytotoxic T cells branch, cytotoxic T cells branch, a branch of 

the mixture of regulatory T cells and memory T cells, and a branch of the mixture of naive T cells and 

helper T cells. From the dendrogram given by HGC, we can roughly infer the hierarchical relationship 

of each cell type. The cell types deduced from roots to leaves are monocytes, B cells, NK cells, CD8+ T 

cells, and finally CD4+ T cells (Fig. 2h), which is consistent with biological knowledge. The four 

subtypes of CD4+ T cells are more difficult to be classified based on transcriptional data, which is also 

consistent with the current understanding of T cell subtypes [10]. 

As comparisons, we ran the HC-based methods on the PBMC dataset. The classical hierarchical 

clustering algorithm has a relatively high computational complexity. Since the purpose here is to examine 

the ability to capture the hierarchical structure rather than the efficiency, we used the "geometric 

sketching" algorithm to down-sample the data (Table S1) [11]. The results of the three HC-based 

methods are shown in Fig. S2. HC separated part of the NK cells, B cells, and monocytes, but clustered 

the remaining B cells, NK cells, monocytes and T cells together (Fig. S2a). In the task of distinguishing 

the main cell types, PCA+HC and GLMPCA+HC both performed better than HC. But like what we have 

discussed in the Pollen dataset, the HC-based methods generated many small branches, and most of the 

cells were clustered into one large branch. This made it hard to determine clusters based on the 

hierarchical clustering results.  

We also used Seurat to obtain a series of clustering results with different resolutions. At resolution of 

0.01, Seurat identified four main clusters, which correspond to T cells, NK cells, B cells and monocytes. 

With the increase of resolution, Seurat first separated cytotoxic T cells and naive cytotoxic T cells from 

the main cluster of T cells. Then it identified the cluster of the initial T cells and regulatory T cells. Finally 

Seurat split the cluster of B cells and monocytes to find finer subgroups when resolution is 1.0. 

 

Comparison with existing methods on benchmark datasets 

To further benchmark HGC’s performance on revealing cell heterogeneity at fixed level, we 

collected six scRNA-seq datasets with known labels and compared 15 existing clustering methods 

with adjusted rand index (ARI) and normalized mutual information (NMI) between clustering 

results and known labels. Detailed information about the evaluated methods, the two evaluation 
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indexes and the benchmark datasets are introduced as follows. 

 

Existing methods compared 

We collected the state-of-the-art clustering methods to compare with HGC, including Seurat, SC3, 

monocle3, TooManyCells, CIDR, SIMLR, RaceID3, CountClust and densitycut [3,5,12-18]. We also 

included the three HC-based methods, HC, PCA+HC and GLMPCA+HC, as the baseline. Seurat is one 

of the most popular scRNA-seq data processing pipelines. The default clustering method in Seurat is to 

conduct the Louvain algorithm on the SNN graph built in the PC space given by PCA [5]. We also 

evaluated building the SNN graph in the PC space given by GLMPCA before Louvian clustering, which 

we referred to as Seurat_GLMPCA. Similarly, HGC using PCA and GLMPCA as the dimension 

reduction method are noted as PCA+HGC and GLMPCA+HGC, separately. SC3 is a consensus 

clustering method, which first applies kmeans with different distance metrices and preprocessing 

methods, and then achieves a consensus clustering result using classical hierarchical clustering [3]. For 

large datasets, SC3 first achieves clustering results on a small subset of the datasets, and using the 

clustering results as labels to train an SVM to classify the remaining cells. Monocle3 is a state-of-the-art 

trajectory inference pipeline, which includes the Louvain algorithm the clustering algorithm and obtain 

the clusters on the cell graph built in the UMAP space [12]. TooManyCells is a divisive hierarchical 

clustering workflow to catch and visualize the cell clades. It partitions the cells into two groups with the 

spectral clustering algorithm in an iterative manner. TooManyCells does not give the full hierarchy and 

the stopping criterion is determined based on the Newman–Girvan modularity [13]. CIDR first conducts 

a dropout-aware dimension reduction on the expression data and then applies the classical ward 

hierarchical algorithm in the low-dimension space [14]. SIMLR first learns a proper cell-cell distance 

metric using multiple kernels, and then conducts downstream visualization and clustering based on the 

metric [15]. RaceID is a method specially designed for detecting rare cell types in scRNA-seq data. It 

treats this task as an outlier detection problem and solves it using k-means [16]. CountClust adopts the 

topic model in natural language processing as the clustering method where topics are treated as clusters 

[17]. Densitycut is a density-based clustering algorithm. It estimates the local densities for each data 

point and detects the density peaks in the dataset as clusters [18].  

For a fair comparison, all parameters in these methods were set as the default values except the 

parameter related to cluster number. For methods that need to specify the cluster number, the known 

cluster numbers in benchmark datasets were used. Methods that do not require a specific cluster number, 

such as densitycut, Seurat and monocle3, were run with default parameters. For SC3, we used it on all 

cells instead of training an SVM model. For TooManyCells, it does not need the cluster number and can 

decide when to stop splitting the clades. However, the divisive nature of TooManyCells makes it hard to 

set as specific cluster number. We chose the layer which gave the closest cluster numbers to the known 

ones. 

 

Evaluation indexes 

To evaluate the performance of clustering methods, we adopted the ARI and NMI to measure the 

agreement between the clustering result and the known label. 

Rand Index (RI) is a measure of the similarity between two clustering results on one dataset, and ARI 

is the corrected-for-chance version of RI. RI is calculated based on a pairwise comparison between two 

clustering results. The calculation of RI is to first enumerate all pairs of points in the datasets and record 
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if two clusterings give the same results on them. RI is then calculated as the fraction of all pairs that two 

clustering results agree with each other: 

RI =
a + b

(
𝑛
2

)
, 

where n is the number of points ((
𝑛
2

) is therefore all possible pairs of points), a is the number of pairs 

assigned to the same cluster in both clusterings, and b is the number of pairs assigned to different clusters 

in both clusterings. 

ARI is the corrected-for-chance version of RI. Such a correction for chance establishes a baseline by 

using the expected similarity of all pair-wise comparisons between clusterings specified by a random 

model. Briefly, the definition of ARI is 

ARI =
RI − Expected(RI)

Max(RI) − Expected(RI)
. 

There are different selections for the random model. We adopted the most widely used permutation model 

in our experiments. 

NMI measures the similarity using information theory. The mutual information describes the 

dependence between two variables, which here are two clustering results. The mutual information could 

be defined with the entropy. Denote the two clustering results as Y and C, the entropy of clustering Y is 

defined as 

H(Y) = − ∑ pi ln(pi)

i

. 

where the pi is the fraction of points assigned to cluster i in clustering Y. The mutual information is 

defined as 

I(Y; C) = H(Y) − H(Y|C). 

H(Y|C) is defined with the help of conditional distributions. And the NMI is 

NMI(Y, C) =
2 × I(Y; C)

H(Y) + H(C)
. 

Mutual information could take a wide range, while the NMI's value is limited in [-1,1]. Larger NMI 

value indicates high similarity. 

 

Benchmark datasets and results 

We collected six benchmark datasets, including two synthetic datasets and four real datasets. Detailed 

information and results on them are introduced as follows. Overall, HGC, Seurat and SC3 achieved 

comparable performance and outperformed other methods (Fig. 3). Other methods like monocle3 and 

RaceID3 also produced good performance on most of the datasets, but they were not as stable as the top 

three methods. 
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Synthetic datasets 

The synthetic datasets were generated using SymSim, a tool for simulating scRNA-seq data [19]. 

SymSim models the variation of the observed data as three parts: extrinsic variation, intrinsic variation 

and technical variation. Extrinsic variation refers to the variation caused by external variability factors 

(EVF). The model for EVFs could be discrete or continuous, with adjustable parameters for users. 

Intrinsic variation models the intrinsic dynamic progress of the transcription. Extrinsic variation and 

intrinsic variation jointly determine the true transcript counts of each cell. Technical variation adds 

another layer of variations in the observed transcription data caused by the differences in sample 

processing procedure, sequencing protocols and other technical reasons. 

We experimented two synthetic datasets generated by SymSim, which we referred to as Datad4 and 

Datad7, respectively. They were generated with the same parameters except the different variances of 

EVFs. They both contain five discrete clusters and each cluster includes 200 cells. 

In Datad4, PCA+HGC, GLMPCA+HGC and Seurat_GLMPCA achieved comparable accuracy which 

outperformed other methods. SC3, Seurat, monocle3 and CountClust also gave good clustering results. 

As the baseline, HC achieved an ARI of about zero, meaning that it almost totally lost the cluster 

information. PCA+HC and GLMPCA+HC provided better performance, suggesting the importance of 

dimension reduction in single-cell clustering tasks. 

In Datad7, the performance of all methods dropped due to increase of noise. Seurat_GLMPCA, 

PCA+HGC and GLMPCA+HGC were still the top 3 methods. Seurat, CountClust and TooManyCells 

also gave comparable accuracy to those of the top 3 methods. With the default parameters, monocle3 

assigned all cells to a single cluster which resulted in low ARI and NMI. HC-based methods again did 

not perform well. The rankings of the clustering methods are generally the same in the two datasets.  

Real scRNA-seq datasets  

We experimented four real scRNA-seq datasets whose sizes range from hundreds to thousands of cells 

[7,8,20,21]. These datasets come from different tissues and various sequencing protocols (Table S2). 

As introduced before, cells in the Pollen dataset can be classified at two levels [7]. We used the 11 cell 

Fig. 3.  Benchmarking of 15 clustering methods on six datasets. We used ARI and NMI to measure 

the agreement between clusters found with the methods and the known labels. HGC, Seurat and SC3 

achieved comparable clustering accuracy and significantly outperformed other methods 
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lines as labels in the benchmarking experiments. Results showed that SC3, PCA+HGC and 

GLMPCA+HGC achieved the top accuracies. Seurat and monocle3 also gave good performance. It was 

interesting to see that HC applied directly on the expression data got higher ARI than PCA+HC and 

GLMPCA+HC, although their performance were the worst among all methods. TooManyCells does not 

accept un-integer matrix as input, therefore we did not include it when benchmarking performance in 

Pollen dataset. 

The Zhengmix4eq dataset contains four immune cell types from [8]. The cell types are B cells, 

monocytes, naive cytotoxic T cells and regulatory T cells. Each cell type has the same number of cells. 

GLMPCA+HGC, SC3 and monocle3 well recovered the partition of the four cell types. The performance 

of PCA+HGC (ARI = 0.69) was not as good as GLMPCA+HGC, because when cutting the dendrogram 

into four clusters, it merged the two T cell types together and split the monocytes into two clusters. HC 

and PCA+HC got ARIs of about zeros. GLMPCA+HC got a meaningful clustering result with an ARI of 

0.68, which again suggested the importance of preprocessing. 

The Zeisel dataset contains cells from the mouse brain. In the original paper, the label of the cells was 

obtained through a biclustering clustering method called BackSPIN [20]. The nine cells types were 

determined by the marker genes. The clustering task for this dataset is hard because transcriptional 

difference among neurons and neuroglial cells is subtle. Monocle3 got the best result with ARI 0.84. 

PCA+HGC, GLMPCA+HGC and SC3 achieved comparable good accuracy with the ARIs ranging from 

0.77 to 0.71. The three HC-based methods produced bad results, with ARIs smaller than 0.5. 

The Baron dataset contains cells from human and mouse pancreas [21], and we utilized the human 

data in our experiments. In the original paper, cells are classified into fourteen cell types with an iterative 

hierarchical clustering framework. The classifications are validated by known molecular markers. ARIs 

and NMIs showed that monocle3, SC3 and PCA+HGC achieved the comparable accuracy that 

outperformed others. GLMPCA+HGC and RaceID also produced good clustering results with the ARIs 

around 0.7. GLMPCA+HC achieved an ARI of 0.51 and HC, PCA+HC produced bad clustering results.  

 

Scalability 

We tested the time efficiency of HGC in the Mouse Cell Atlas (MCA) dataset which contains about 

400,000 cells [22]. To reflect how the running time changes as the sample size increases, we sampled a 

series of datasets from MCA whose sizes range from 10,000 cells to 400,000 cells. As comparisons, we 

applied HC and Seurat on those datasets. For each of the three methods, we recorded the running time of 

preprocessing step and clustering step (Fig. 4). The preprocessing step refers to the calculation of 

pairwise distance in HC, and the construction of SNN graph in Seurat and HGC. Results showed that the 

construction of SNN graph is much faster than calculating the pair-wise distance, which validates the 

advantage of graph-based clustering in terms of efficiency. The running time of the dendrogram 

construction step in HGC grows almost linearly as the sample size increases, significantly outperforming 

both HC and Seurat clustering (Fig. 4).  
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Conclusion 

We developed an R package HGC for conducting fast hierarchical clustering of single-cell data dataset. 

HGC can recovery the hierarchical structure underlying the data that has been mostly ignored in current 

clustering methods. HGC achieves comparable clustering accuracy with the state-of-the-art clustering 

methods with a better scalability to large single-cell data. These properties make HGC a convenient tool 

for exploring the hierarchical heterogeneity in single-cell studies. 
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Table S1. Cell types in the PBMC dataset 

Cell type Cell number Molecular signature Cell number after sampling 

B cells 10085 CD19+ 353 

Monocytes 2612 CD14+ 474 

NK cells 8385 CD56+ 480 

Naive cytotoxic T cells 11953 CD8+/CD45RA+ 34 

Regulatory T cells 10263 CD4+/CD25+ 278 

Helper T cells 11213 CD4+ 92 

Memory T cells 10224 CD4+/CD45RO+ 120 

Naive T cells 10479 CD4+/CD45RA+/CD25-  65 

Cytotoxic T cells 10209 CD8+ 104 

 

 

Table S2. The benchmark datasets  

Dataset Species Tissue Protocol Cell 

number 

Gene 

number 

Clusters 

number 

Datad4 NA NA NA 1000 3000 5 

Datad7 NA NA NA 1000 3000 5 

Pollen human Multiple tissues SMARTer 301 23730 11 

Zhengmix4eq human blood 10x 4000 32738 4 

Zeisel mouse brain STRT-Seq 

UMI 

3005 19972 9 

Baron human pancreas inDrop 8569 20125 14 
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Fig. S1. The performance of three HC-based methods in the Pollen dataset. The three rows show 

the results of HC, PCA+HC and GLMPCA+HC, respectively. The first column is the dendrogram. The 

color bars show the given labels at the cell line level and the tissue level. The second column is the tSNE 

plot showing the clustering result when cutting the dendrogram into 11 clusters. The third column shows 

the ARIs of the clustering results compared with the two labels. The x-axis is the number of clusters. It is 

clear that HC-based methods didn’t produce good results in Pollen dataset. 
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Fig. S2. The performance of HC-based methods in the PBMC dataset. The three rows show the 

results of HC, PCA+HC and GLMPCA+HC, respectively. The first column is the dendrogram. The color 

bars show the given labels at cell line level and tissue level. The second column is the tSNE plot showing 

the clustering result when cutting the dendrogram into 9 clusters. The third column shows the ARIs of the 

clustering results compared with two labels. The x-axis is the number of clusters. 
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