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Abstract 22 

Bioethanol is a viable alternative for fossil fuels, and its use has lowered CO2 emissions by over 23 

500 million tonnes in Brazil alone by replacing more than 40% of the national gasoline 24 

consumption. However, contaminant bacteria reduce yields during fermentation. Our 25 

understanding of these contaminants is limited to targeted studies, and the interplay of the 26 

microbial community and its impact on fermentation efficiency remains poorly understood. 27 

Comprehensive surveying and longitudinal analysis using shotgun metagenomics of two major 28 

biorefineries over a production season revealed similar patterns in microbial community 29 

structure and dynamics throughout the entire fermentation system. Strain resolution 30 

metagenomics identified specific Lactobacillus fermentum strains as strongly associated with 31 

poor industrial performance and laboratory-scale fermentations revealed yield reductions of up to 32 

4.63±1.35% depending on the specific contaminating strains. Selective removal of these strains 33 

could reduce emissions from the bioethanol industry by more than 2x106 tonnes per year. Using 34 

the large-scale Brazilian ethanol fermentations as a model system for studying microbiome-35 

phenotype relationships this study further demonstrates how high-resolution metagenomics can 36 

identify culprits of large scale industrial biomanufacturing. 37 

38 
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Introduction 39 

The Brazilian sugarcane ethanol production process generates more than 30 billion liters of 40 

ethanol per year. This corresponds to more than 40% of all the energy consumed by light 41 

vehicles in Brazil replacing the demand for almost 550 million barrels of oil per year1. The use of 42 

this biofuel, either as a sole fuel or blended in the gasoline, results in reductions of more than 43 

60% in total greenhouse gases emissions1,2. The sugarcane ethanol production process deploys 44 

specific Saccharomyces cerevisiae strains, in very high cell density fed-batch fermentations 45 

operated with cell recycling3,4. Usually the production season lasts for 250 consecutive days per 46 

year, with an average mill performing up to 3 cycles of fermentation per day4. In total yeast cell 47 

populations in a single fermentation exceed 108 cells x ml-1 4. Still, contamination of this non-48 

sterile process remains a major problem leading to overall yield reductions of 3%, corresponding 49 

to over 960 million liters of ethanol 5.  50 

 51 

Contamination is mainly caused by lactic acid bacteria already present on the raw material which 52 

tolerate ethanol, low pH and high temperature6. To control the bacterial contamination, yeast 53 

cells are acid washed after every fermentation cycle before re-innoculation4. In spite of such 54 

measures contamination continues to compromise the industrial process4,5,7. To further address 55 

this issue, antibiotics and other antimicrobial compounds are used for contamination control. 56 

However, antibiotic use raises serious concerns with regards to the global antibiotic resistance 57 

crisis and also negatively impacts process economics. Given the continuous problems with 58 

contamination there is an increasing need to understand the contaminating microbial community 59 

in these bioprocesses as well as its effect on yeast fermentations3–5,8. 60 

 61 
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Microbial communities are integral parts of most natural processes, from biogeochemical cycles 62 

to the human health 9,10, and the interactions among populations within these communities often 63 

shape their functionalities and the surrounding environment11. To date, industrial fermentation 64 

microbiomes have been studied with limited resolution applying either culture based methods12–65 

16 or culture independent methods, like metabarcoding, focusing mainly in a specific process 66 

steps17,18. These studies have either tried mainly to understand the overall composition of the 67 

microbial community13,17,18, or to understand the impact of specific contaminant species in 68 

ethanol fermentations at controlled laboratory environments6,19,20. Yet, new studies are needed to 69 

correlate the composition of a complex community to actual industrial process performance, and 70 

to discern the potential impact of strain-level variations in the functionalities of such 71 

contaminating microbiomes21. Shotgun metagenomic sequencing could be a valuable tool for 72 

pinpointing the contaminants that most significantly affect the performance of currently 73 

established bioprocesses22.  74 

 75 

In the present work, we have sampled all the unitary steps of the ethanol production process of 76 

two mills in Brazil, during an entire fermentation season. We use shotgun metagenomics and 77 

cultivation-based approaches to analyze the microbial community composition and pinpoint 78 

specific detrimental strains configurations negatively impacting overall process performance, as 79 

well as the mechanisms governing the community dynamics. This set of new information reveals 80 

that higher-resolution metagenomics analysis are critical for understanding the dynamics of 81 

microbial communities, and that strain level modifications are responsible for perturbing a 82 

stablished microbiome. 83 

 84 

85 
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Results 86 

Independent sugarcane biorefineries share similar microbiome dynamics 87 

We selected two independently operated sugarcane ethanol mills in Brazil, hereafter referred to 88 

as Mill A and Mill B, located over 300 km from each other but situated in similar climate regions 89 

(Methods). The mills are also similar in overall production capacity and deploy the Melle-90 

Boinot fermentation process (Figure 1A)4
 . In this process ethanol is produced via fast, high cell-91 

density, fed-batch fermentations. After the fermentation is finished yeast biomass is recovered 92 

via centrifugation. This yeast cream is transferred to a separate vat, diluted with water and acid 93 

washed to kill the contaminant bacteria. After this treatment, the yeast cream is pumped back to 94 

the fermenters, and the process starts over for as many as 750 fermentation batches per year4. 95 

The fermentation process is comprised of unidirectional steps providing defined sampling points 96 

for our analysis (Figure 1A). To reduce potential bias introduced by seasonal variation, we 97 

sampled each mill at three distinct timepoints throughout the production season (Supplementary 98 

Table 1). We also collected fermentation metrics relevant to evaluate the ethanol production 99 

process performance (Supplementary Table 1). In total, shotgun metagenomic sequencing was 100 

applied to 56 samples yielding more than 2.8x105 Gbp high quality data (Supplementary Table 101 

2, Methods). 102 

 103 

Focusing on the prokaryotic component of the metagenomes (29.16±25.19%), we found 104 

Firmicutes to be the most prevalent phylum, owing mostly to a high abundance of 105 

Lactobacillaceae species (Figure 1B, Supplementary Table 3, Supplementary Table 106 

4)6,13,18,19. Microbial communities from fermentation broth were found to be the most diverse and 107 

least similar to those in the rest of the fermentation process (Supplementary Figure 1). This 108 
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difference is mainly driven by the overall dominance of lactobacilli during the fermentation 109 

process, since these organisms are best fit to handle the low oxygen and pH, and high 110 

temperature and ethanol concentrations, found in industrial fermentations19. In addition, we 111 

observed that the composition of the contaminant microbiomes across all industrial process steps 112 

were highly similar by the end of the production season (final sampling timepoint). Inspection of 113 

the collected data revealed that both mills were operating below maximum capacity due to lack 114 

of raw material, which resulted in microbial biomass being left idle for longer periods in the 115 

fermentation vessels. Irrespective of this the microbial communities of both mills were not found 116 

to differ significantly when comparing across process steps and timepoints (p=0.293, 117 

PERMANOVA; Supplementary Figure 2).  118 

 119 

The majority of the microbial communities, throughout the entire fermentation process, were 120 

found to be dominated by either L. fermentum or L. amylovorus (Figure 1B). These two species 121 

have independently been described as contaminants in other ethanol fermentation processes6,23,24. 122 

We find that these two species constitute more than 50% of the relative abundance of these 123 

contaminating communities, demonstrating how uneven such communities are. Interestingly, 124 

when comparing relative abundances, we detected an inverse relationship between the two 125 

species during the fermentation stages, which suggests competition between L. fermentum and L. 126 

amylovorus during the ethanol production process (Spearman’s correlation ρ = -0.908; FDR < 127 

4.3 x 10-14, Figure 1C). For both mills, a similar pattern was observed, where L. amylovorus 128 

dominates at the beginning of the fermentation followed by a decline in its relative abundance in 129 

the community throughout the fermentation process.  130 

 131 
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In contrast L. fermentum expands its relative abundance in the community from the beginning to 132 

the end of the fermentation. The tolerance of L. fermentum towards high ethanol titres13 might 133 

partly explain its higher relative abundance in the community during the final stages of 134 

fermentation. The heterofermentative metabolism of L. fermentum might also be better suited to 135 

compete with yeast for nutrients in this fermentation setup, compared to the homofermentative 136 

metabolism of L. amylovorus6. 137 

R
el

at
iv

e 
ab

un
d

an
ce

 (
%

) 

A 
  [1] Broth  

B 
Mill A Mill B 

 
 
 

[2] Beginning 
 

[3] Middle 

[4] End 

 
 
 
 
 
 
 

 [6] Acid wash  

 
 
 
 
 
 

Species 
L. amylovorus 
L. fermentum 
L. helveticus 
P. claussenii 
L. buchneri 
Z. mobilis 
L. plantarum 
L. mucosae 
A. pasteurianus 
B. cereus 

C Mill A Mill B 
80 

Others 

 

60 
 

40 

 
20 

 

0 

Beginning    Middle End Beginning    Middle End 

 

1st 2nd 3rd 

 

1st 2nd 3rd 

Fermentation Stage Sampling Timepoint 

 
[1] 
 
 
 

[2] 
 
 
 
[3] 
 
 
 
[4] 
 
 
 

[5] 
 
 

 
[6] 

[5] Centrifuge 

Fe
rm

e
nt

at
io

n 

P
ro

ce
ss

 S
te

p
 

138 
 139 

Figure 1: Sampling strategy and competition between L. amylovorus and L. fermentum in 140 

the bioethanol fermentation process. A: Schematic of the fermentation process, indicating 141 

sampled steps: 1. Broth: Feeding line with fresh fermentation media; 2. Fermentation beginning: 142 

the beginning until middle of vessel feeding time (e.g. time 0 to 1.5h of feeding); 3. Middle: the 143 

middle until the end of feeding (e.g. time 1.5 to 3h of feeding); 4: End: the final hours of 144 

fermentation, after feeding ceased; 5. Centrifuge: the yeast cream, resulting from the separation 145 
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of the wine sent to distillation; 6. Acid wash: samples collected by the end of this treatment. 146 

Vector images were obtained from Flaticon (www.flaticon.com). B: Species-level microbial 147 

community showing the 10 most prevalent contaminants across sampling timepoints (x-axis) and 148 

process steps (y-axis) in Mills A (left) and B (right), expressed as relative abundances. Beige 149 

color indicates all remaining species of the community. C: Relative abundances of L. 150 

amylovorus (blue) and L. fermentum (red) across the fermentation steps, as shown in A. 151 

Spearman’s correlation analysis of their relative abundances suggests competition among these 152 

two species (r = -0.908; FDR < 4.3 x 10-14). Due to low biomass, DNA extraction was not 153 

possible for sample [1] for the 3rd sampling timepoint from Mill A. During the 3rd sampling 154 

timepoint, Mill B was operating below its maximum capacity. Biomass was left idle for longer 155 

periods in the vessels. This might explain why all the process steps are similar in community 156 

composition. 157 

  158 

Microbial community composition affects industrial process performance  159 

To establish if the dynamics observed within the contaminant microbial community were 160 

associated with environmental factors or overall fermentation yield, we incorporated 161 

fermentation data and industrial performance indicators into our analyses (Figure 2A, 162 

Supplementary Table 1). Throughout the bioethanol production season, increased ethanol yield 163 

was found to strongly associate with lower acidity titres in the fermentation (Spearman’s 164 

correlation ρ = -0.84, FDR = 2.09 x 10-5), while increases in bacteria negatively impacted the 165 

yeast viability (ρ = -0.72, FDR = 2 x 10-3).  166 

 167 
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Based on these findings, we then sought to identify contaminant species that were associated168 

with fermentation performance (Methods). We did not expect to find strong associations169 

between the species abundance and ethanol yield, due to well-documented caveats of ethanol170 

quantification methods25. Yet, L. fermentum was found to be strongly associated with increased171 

acidity titres, which hamper ethanol yield (Figure 2A and 2B, Spearman’s correlation ρ =172 

0.72, FDR < 1.50 × 10-6). We also identified a number of bacterial species that were not173 

previously associated with impacts over industrial ethanol production, like Geobacillus174 

stearothermophillus. This species is a thermophile capable of producing a vast array of175 

cellulolytic enzymes26. Its presence in the fermentation suggests that this industrial environment176 

is a potential untapped source for novel industrially relevant enzymes. 177 

178 

Figure 2: Microbial species and other factors that influence industrial fermentation179 

performance. A: Fermentation parameters that showed strong associations throughout the180 

production season. Positive correlations are depicted as purple, whereas negative correlations are181 

depicted as orange. Size of each point denotes the strength of correlation. Increased acidity is182 

linked with lower ethanol yield, and increased number of bacterial cells reduces yeast viability.183 

B: Microbial species associated with fermentation performance. Increased L. fermentum during184 

fermentation in strongly linked to higher acidity titres. Species are ordered by decreasing relative185 

abundance. C: Correlation between relative abundance of L. fermentum and acidity (ρ=0.64;186 
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FDR = 1.5 x 10-5). D: Correlation between relative abundance of L. fermentum and bacterial cell 187 

count (ρ= 0.63; FDR = 9.5 x 10-6). 188 

  189 

The fate of fermentations is defined by the interplay of different L. fermentum strains 190 

during the acid wash 191 

Given its strong association with increased acidity, which creates detrimental fermentation 192 

conditions19, we sought to establish if the negative effect conferred by L. fermentum was 193 

mediated by strain variants of this bacteria. SNV profiling of core L. fermentum genes revealed 194 

the presence of 3 distinct strain families within the species (Methods, Supplementary Figure 3, 195 

Supplementary Table 5). Applying these profiles to our samples enabled insights into the strain 196 

population structure and dynamics during industrial fermentation and its impact on performance. 197 

 198 

To more accurately evaluate and compare the performance amongst different fermentation 199 

batches25, we devised a composite parameter that incorporated ethanol yield measurements, as 200 

well as parameters related to the biological catalyst quality (yeast viability) and potential hazards 201 

due to microbial contamination (bacterial cell counts, fermented broth acidity). We termed this 202 

metric the Industrial Performance (Methods). 203 

 204 

The correlation of strain clusters with different components of industrial performance (i.e. acidity 205 

and yeast viability) suggests that specific phenotypes are more detrimental to the industrial 206 

process. Organic acids are the main metabolites produced by L. fermentum, and is involved in the 207 

reduction of yeast viability and metabolic capacity due to intracellular acidification and anion 208 

accumulation27. Acidity is, therefore, an indirect measurement of its metabolism, and its negative 209 
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impact on ethanol yield and industrial performance demonstrates that the metabolism and growth 210 

of bacteria is critical for this industry.  211 

 212 

For both mills, a similar trend was observed in which poorer industrial performances are 213 

observed when strain clusters 1 and 3 are dominant in the L. fermentum population (>50% in 214 

relative abundance). In contrast, dominance of L. fermentum strain cluster 2 is linked with 215 

improved industrial performance (p < 0.02 in both mills; Wilcoxon rank-sum test, Figure 3A). 216 

This new evidence suggests that, contrary to what is currently considered in the literature, the 217 

impact of L. fermentum in the fermentations is driven by its population’s strain composition, 218 

rather than its abundance in the process19,28–32. It also suggests that current contamination control 219 

practices need to take into account the strain dominance, in order to choose the best molecule or 220 

mode of application. This can only be achieved with higher resolution diagnostics. 221 

To understand the mechanism underlying these different population composition in fermentation 222 

with high and low industrial performance we analysed the L. fermentum population composition 223 

for each unitary step of the fermentation process. The population composition during the 224 

beginning of the fermentation is crucial for defining the industrial performance of the 225 

fermentation batch. More specifically, the relative abundance of strain cluster 2 is directly 226 

correlated with higher industrial performances scores (ρ = 0.73, FDR = 0.003), and the 227 

abundance of strain clusters 1 and 3 are linked to lower industrial performance scores (ρ = -0.51, 228 

FDR = 0.042; ρ= -0.70, FDR=0.006, respectively) (Supplementary Table 6).  229 

 230 

Notably, the strain level composition of strain clusters 1 and 2 in the acid wash tank, the unitary 231 

step immediately prior to the new fermentation batch, is directly correlated with their relative 232 
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abundance in the beginning of the fermentation defining the strain composition of new batches (ρ 233 

= 0.60 and FDR = 0.016 for cluster 1; ρ = 0.85 and FDR = 0.0002 for cluster 2) (Supplementary 234 

Table 6). The direct correlation between acid wash and the beginning of the fermentation 235 

suggests that the microbial community composition is mainly driven by cell recycle, rather than 236 

the addition of novel contaminants through the broth. This hypothesis is further backed by the 237 

higher dissimilarity observed in the broth, when compared to the other fermentation steps 238 

(Supplementary Table 1), suggesting a more diverse and different community composition than 239 

the one found in actual fermentations. 240 

 241 

The population dynamics of the two strain clusters suggest direct competition in the acid wash (ρ 242 

= -0.81, FDR = 1.6 x 10-4; Figure 3B). The outcome of this competition between closely related 243 

strain clusters in the acid wash is decisive for the industrial performance of the following 244 

fermentations.  245 

 246 

Focusing on identifying potential process parameters that could influence this strain level 247 

dynamics we have analysed the correlation between the strain level compositions of L. 248 

fermentum populations against all registered metadata. We have also broken down this analysis 249 

into the specific operational processes, in order to identify any trends correlated with a specific 250 

step of the ethanol production process.  The fermentation temperature found in individual vessels 251 

is the key driving factor defining L. fermentum strain level composition in the acid wash. More 252 

specifically, higher temperatures throughout the fermentation lead to a higher relative abundance 253 

of strain cluster 1 in the acid wash, after the fermentation (ρ = 0.55, FDR = 0.0001; Figure 3C), 254 

favouring this specific cluster. In that way, the different fermentation batches are intimately 255 
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connected, and the impact on process is more dependent on the established microbiome rather 256 

than novel contaminants entering via fermentation broth. 257 

258 
 259 

Figure 3: L. fermentum strain dominance is associated with process performance. A: The 260 

mean relative abundances of the 3 L. fermentum strain clusters, within its population, in all 261 

fermentation steps (beginning, middle and end) against industrial performance score (Low, 262 

Medium and High). Strain cluster 2 dominates high-performance batches during most of the 263 

fermentation process (p<0.02), whereas clusters 1 and 3 reach their lowest relative abundances in 264 

these high-performance batches. B: The interplay between L. fermentum strain clusters 1 and 2 in 265 

the acid wash are intimately connected the population composition in the beginning of the 266 
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fermentation (ρ = 0.52 and FDR = 0.021, ρ = 0.82 and FDR = 0.004 for clusters 1 and 2, 267 

respectively) and with performance scores. The competition between these two strain clusters 268 

decides the fate of the next fermentation batch, being mutually exclusive in the acid wash (ρ = -269 

0.81, FDR = 1.6 x 10-4). C: Higher fermentation temperatures privilege the detrimental strain 270 

cluster 1, being directly correlated with its higher relative abundance in the acid wash, and in 271 

subsequent fermentations, for both mills (ρ = 0.84, FDR = 0.0048 for mill A; ρ=0.74, FDR= 272 

0.0185 for mill B). 273 

 274 

Temperatures above 32oC during the fermentation process are correlated with higher relative 275 

abundances of cluster 1, and with lower performance scores. Keeping the fermentation below 276 

this temperature threshold would, therefore, favour strain cluster 2, a less detrimental cluster of 277 

L. fermentum.  278 

 279 

To test if our hypothesis is correct we sought to investigate if there are strain level variance in the 280 

temperature dependence of the growth rate of different Lactobacillus strains. In laboratory 281 

conditions it was also possible to replicate this phenomenon. The growth rate (h-1) of actual 282 

industrial lactobacilli isolates was compared in two different temperatures (30oC and 37oC). 283 

While L. amylovorus shows a growth rate 14% higher at 30oC, the three different strains of L. 284 

fermentum are favoured by higher temperatures, but with considerable differences among them. 285 

Strain F1 had its growth rate leaping from 0.03 to 0.21, a 5 fold increase in the growth rate. 286 

Strain F2 shows a growth rate 76% higher at 37oC, and Strain F3 a growth rate 170% higher 287 

(Figure 4). These results suggest that the strain level dynamics of microbial populations is 288 
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directly affected by environmental factors, and might be responsible for shaping the 289 

functionalities of microbiomes. 290 

strain F2

-14%

+530%*

+76%*

+170%*

 291 

Figure 4: The influence of temperature in the growth rate (h-1) of different industrial 292 

isolates. Higher fermentation temperatures favours L. fermentum in detriment of L. amylovorus, 293 

which has its growth rate reduced in 14% (from 0.052±0.026 to 0.045±0.005). Within L. 294 

fermentum, different strains display diverse responses to the increase of temperature. Strain F1 295 

shows an average increase in its growth rate of 530% (from 0.33±0.001 to 0.211±0.004). Strain 296 

F2 grows 76% faster (from 0.082±0.002 to 0.143±0.004), and strain F3, 170% (from 0.08±0.002 297 

to 0.217±0.009). *p < 0.05. 298 

 299 

 300 

The comparison of the pangenomes of the 3 L. fermentum strain clusters revealed the presence of 301 

functions and pathways not found in the other strains, which may be associated with their impact 302 

and prevalence on the industrial process. (Methods, Supplementary Table 7). Strain clusters 1 303 

and 3 (the most detrimental ones) present several unique genes which seem to be correlated to an 304 
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adaptation for living and growing in the fermentation environment. Furthermore, strain cluster 1 305 

contains arginine biosynthesis genes (KO1438), an amino acid that L. fermentum is otherwise 306 

known to be auxotrophic for34. Ameliorating this auxotrophy could improve the competitive 307 

fitness of this strain in an amino acid depleted environment35.   308 

 309 

Loss of performance in fermentation is related to the competition between bacteria and 310 

yeast, and the metabolite profile of L. fermentum strains 311 

To elucidate the impact of strain variation on the ethanol fermentation yield by S. cerevisiae, we 312 

performed static batch cultivations, using the model yeast strain PE-2 and L. fermentum strains 313 

isolated from the samples used in our microbiome analyses (Figure 5A). Here, we conducted 314 

pairwise fermentations that simulated the conditions of a typical industrial setup by applying a 315 

yeast-to-bacteria ratio of 100:15, and using a chemically-semi defined synthetic medium that 316 

resembles the sugarcane molasses-based broth36,37.  317 

 318 

The yield obtained from the standalone fermentation by yeast PE-2 served as a control. To 319 

further contextualise our findings, we repeated these experiments on the 6 most abundant 320 

bacterial species (Figure 1B). Altogether, the species we analysed account for almost 80% of 321 

known species in the contaminant microbiome (Supplementary Table 4).  322 

 323 

Our results demonstrate that the presence of L. fermentum, compared to other abundant bacterial 324 

species, can have a negative impact on fermentation performance20, with one strain decreasing 325 

ethanol yield by 4.63±1.35% (Figure 5A). This contrasts with L. amylovorus, P. claussenii or L. 326 

buchneri, which showed positive effects on ethanol yield (multiple t-test, p < 0.05). Both L. 327 
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amylovorus and P. claussenii have a homofermentative metabolism, which has been shown to be 328 

less detrimental to S. cerevisae in this fermentation setup6. Notably, L. buchneri strains have 329 

previously been shown to produce considerable amounts of ethanol and lactate from glucose38. 330 

This ethanol production might contribute to greater ethanol titres and yields, despite competing 331 

with yeast during the fermentation process. These observations are reinforced by our 332 

metagenomics analyses, where the presence of these species correlated poorly with acidity, 333 

which was strongly associated with lower ethanol yields (Figure 2B).  334 

 335 

Interestingly, we provide experimental evidence that not all L. fermentum strains are detrimental, 336 

as in the case of strain F2 (91.38±3.04%), which was comparable to control (89.23±0.23%; 337 

multiple t-test, p < 0.05). When comparing the metabolite profile of supernatants from 338 

monocultures of the L. fermentum isolate strains, we observe that there is a striking difference 339 

between the somewhat neutral strain F1 and the beneficial strain F2 with the detrimental strain 340 

F3. Not only its organic acid production titre is twice as the one observed for strains F1 and F2, it 341 

also does not produce ethanol, which will have a direct impact on final ethanol titre and yield of 342 

co-cultures with S. cerevisae (Figure 5B). These findings are in accordance to literature 343 

observations, which suggest that the ratio between different organic acids is more important than 344 

the high titres of specific organic acids for the inhibition of S. cerevisae27,39. This data 345 

demonstrates the importance to monitor not just the total acidity, but also the composition of the 346 

organic acid pool, in order to adapt the response to microbial contamination accordingly to this 347 

particular data.  348 

 349 
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 350 

Figure 5: Specific L. fermentum strains cause reduction in bioethanol fermentation yield. A: 351 

Ethanol yield of control fermentations (PE-2 yeast strain standalone) is compared against 352 

pairwise fermentations with yeast strain PE-2 and 3 L. fermentum industrial isolates (filled bars); 353 

and with each of the 5 most common contaminant bacteria found in sugarcane ethanol 354 

fermentations. Of these species, which account for 80% of the contaminant microbial 355 

community, only L. fermentum strains F1 and F3 reduce ethanol yield, albeit only F3 being 356 
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statistically significant (by 1.98±1.68% and 4.63±1.35% respectively; multiple t-test). *p < 0.05. 357 

B: The metabolite profile of the different L. fermentum strain isolates supernatants. Strains F1 358 

and F2 show a similar metabolite production. On the other hand, strain F3 – the most detrimental 359 

one – presents a remarkably different metabolite production, with twice as much lactate (up to 21 360 

g x l-1) and no ethanol produced, when compared to the other strains. This suggests that the mode 361 

of inhibition of lactobacilli is directly correlated with their organic acid production profile6. 362 

 363 

In the detrimental strain F3 genome we identified a unique gene cluster that is involved in 364 

glycerol catabolism (KO2440, KO6120, KO6121 and KO6122). Glycerol is the second most 365 

abundant metabolite produced by S. cerevisiae in alcoholic fermentations33. The ability to use 366 

glycerol as an electron acceptor, as it is done by L. reuteri40,  could likely provide a competitive 367 

advantage for these strains when growing in the presence of yeast, allowing them to exploit this 368 

exclusive niche created by yeast metabolism. Moreover, more of the carbon source could be 369 

deviated towards biomass production instead of energetic metabolism, since this strain would not 370 

require to reduce acetaldehyde into ethanol to rebalance the NADH/NAD+ pool, as it is 371 

commonly done in lactobacilli. The metabolite profile data indeed suggests that such strain lacks 372 

ethanol production under fermentative conditions and provides a mechanism for its particular 373 

detrimental effects on overall ethanol yields. In order to identify functions or pathways in our L. 374 

fermentum strains that may have contributed to their distinct fermentation behaviour, we 375 

sequenced their genomes and conducted a comparative analysis (Methods, Supplementary 376 

Table 7).The genetic diversity found between these strain clusters could allow, in theory, for the 377 

development of modern diagnostic tools (e.g. qPCR analysis) which could predict the 378 

performance of future fermentation batches, improving the process control of this industry. 379 
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 380 

Discussion  381 

Taken together, we have demonstrated that strain-level variation affects the output of a well-382 

controlled industrial bioethanol fermentation process. This highlights the importance of using 383 

high-resolution, cross-sectional analysis of the contaminant microbiome in combination with 384 

relevant industrial indicators. We observe the interplay between L. fermentum and L. amylovorus 385 

that suggests competition between the two species in 2 ethanol producing mills. We also 386 

demonstrate the utility of the industrial sugarcane ethanol fermentation as a model system to 387 

study the dynamics and ecological interactions of microbial community, due to its highly 388 

compartmentalized setup, which enables the impact of perturbations (such as strain-level 389 

alterations) to be easily quantified.  390 

 391 

Along these lines, we also introduce a novel metric by which to assess and compare the 392 

performance of an industrial bioethanol fermentation batch. Using this metric, we associated 393 

genetic variants of L. fermentum with fermentation efficiency, and identified the mechanism 394 

underlying the prevalence of detrimental strains as being the temperature of fermentations. 395 

Higher fermentation temperatures, above 32oC, privilege specific L. fermentum strains, which 396 

become the dominant strains in the population, and are considerably more detrimental to yeast 397 

fermentation, due to their different metabolic profile. Selective removal of the identified strain 398 

clusters could potentially improve ethanol yield by almost 5%, translating to estimated economic 399 

gains of 690 million USD41 and more than 2 million tons per year of CO2 emissions for the 400 

Brazilian bioethanol industry42. 401 

 402 
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Methods 426 

Chemicals  427 

Unless stated otherwise, all chemicals and reagents used were purchased from Sigma-Aldrich 428 

(St. Louis, MO, USA). 429 

 430 

Sampling strategy 431 

We sampled two independent ethanol mills (named Mill A and Mill B) in the production season 432 

of 2017. Both mills are located in the State of São Paulo, Brazil - in a region with the prevalence 433 

of the humid subtropical climate (Cfa) with an annual precipitation of around 2000 mm, and with 434 

a sea-level altitude of ca. 600m. The mills were completely independent from each other, with a 435 

distance greater than 300 km apart, and have raw material sourced from different producers and 436 

sugarcane fields. Both mills operated via fed-batch fermentations (Melle-Boinot setup), and had 437 

a similar ethanol production capacity with a daily output of ca. 400m3 of ethanol. Mill A was 438 

sampled in the dates: 26/05/2017; 26/10/2017 and 17/11/2017. Mill B was sampled in the dates: 439 

02/06/2017; 29/10/2017 and 03/11/2017. The following steps of the ethanol production process 440 

were sampled: (1) Fermentation broth (Feeding line with fresh fermentation media); (2) start; (3) 441 

middle; (4) end of fermentation; (5) yeast cream after separation of the wine, which is sent to 442 

distillation centrifugation); and (6) biomass after acid wash treatment (sulphuric acid pH 2.5 for 443 

1hour). The phases of the fermentation were defined according to the feeding regimen of each 444 

mill: the beginning was set as the beginning to the middle of the feeding; the middle was defined 445 

from the middle to the end of the feeding, and the end was defined as the final hours of 446 

fermentation, after the feeding had ceased. Due to the fact that different vessels are fed 447 

sequentially, we were able to sample different vats at different stages of fermentation, during the 448 
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same sampling. Samples were collected directly from the production process and diluted 1x in a 449 

sterile Phosphate Buffered Saline (PBS) solution with glycerol (50%). The samples were readily 450 

frozen in dry ice, until final storage in ultrafreezer (-80oC). Each mill had several vessels 451 

operating in the same fermentation step, which allowed for process replicates. Samples were 452 

taken in duplicates. 453 

 454 

Industrial metadata 455 

The industrial metadata was provided by the operational staff from each mill, and consisted on 456 

key process control parameters collected and registered by industrial staff, related to the ethanol 457 

fermentation. Those parameters were: Ethanol yield daily average); ethanol yield (weekly 458 

average); acidity from wine (gacetic acid equivalent.l-1, where gacetic acid equivalent is related to 459 

the amount, in g.l-1, of acetic acid equivalent obtained via titration); yeast cell counts in the 460 

fermentation (CFU); bacteria cell counts in the fermentation (CFU); yeast viability (% of the 461 

population); yeast budding rate (% of the population); vessel current volume (in m3); vessel 462 

operational status (idle, feeding, running or finished fermentation) and vessel temperature (in 463 

oC). 464 

For correlation analyses, the data was converted into monthly averages. 465 

 466 

DNA extraction and sequencing of isolates and metagenomes 467 

All DNA extractions were performed using the DNeasy Powerlyzer Powersoil Kit (QIAGEN, 468 

Hilden, Germany), according to manufacturer’s instructions. Pure lactobacilli isolates had their 469 

DNA extracted using MasterPure™ Gram Positive Purification Kit (LGC Biosearch 470 

Technologies, Hoddesdon, UK). All DNA extraction quantifications were performed with Qubit 471 
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Fluorometer (Thermo Fischer Scientific, Waltham, MS, USA). Due to low biomass content, 472 

DNA extraction was not possible for broth sample (Process Step 1) from Mill A at the 3rd 473 

sampling timepoint. Shotgun metagenomics and isolates genome sequencing was performed on 474 

the NextSeq 500 using NextSeq High Output v2 Kit (300 Cycles) (Illumina, San Diego, CA, 475 

USA) by the Sequencing Core Facility at The Novo Nordisk Foundation Center for 476 

Biosustainability (Technical University of Denmark, Kongens Lyngby, Denmark). The library 477 

preparation was performed using the KAPA HyperPlus Library Prep Kit (Roche, Basel, 478 

Switzerland), and the indexing kit used was the Dual Indexed PentAdapters, Illumina compatible 479 

(PentaBase, Odense, Denmark). Quantity and quality control were performed using Qubit 480 

dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) and DNF-473 Standard Sensitivity NGS 481 

Fragment Analysis Kit (1 bp - 6000 bp; Agilent, Santa Clara, CA, USA). Average library length 482 

was 341 bp. The sequencing reads length were 150 base pair paired-end (2x150 bp). The index 483 

(i7 and i5) reads were 8 bp, dual indexed and flow cell loading was 1.3 pM. The sequencing 484 

chemistry used was 2-channel sequencing-by-synthesis (SBS) technology, and Phix control V3 485 

(Illumina San Diego, CA, USA) was added (2.5%).  486 

 487 

Processing of genomic and metagenomic data 488 

Raw reads (from both metagenomic and isolate sequencing) underwent quality trimming, i.e. 489 

filter out adapter and universal primer sequences, as well as low quality bases (< Q20), reads 490 

shorter than 75 bp and duplicated reads (Supplementary Table 2), as previously described43. 491 

All 481 S. cerevisiae genomes from NCBI genome database (August 2018) were downloaded. 492 

Reads were aligned to concatenated genomes using the BWA mem model with default 493 

parameters43. Reads over 95% identity were considered to belong to S. cerevisiae (SC reads) and 494 
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not used in our analyses (Supplementary Table 2). Kraken44 was selected for taxonomic read 495 

assignment of non-SC reads as it has been shown to perform well in benchmarking studies45,46, 496 

especially for medium-low complexity microbiome communties47 such as the ones in industrial 497 

fermenters. Specifically, Kraken v. 0.10.5-beta was applied on non-yeast reads with default 498 

settings against the minikraken 2017.10.18 8GB database. Bracken48 v. 2.0 was used for accurate 499 

species abundance estimation with parameters -r (read length) 150 and -l (level) S (species).  500 

 501 

Analyses of metagenomics data 502 

Rarefaction of read counts and subsequent analyses were done using R package vegan49. We 503 

considered the 10 most prevalent contaminant species as those with the highest median relative 504 

abundance across all samples. Microbial community compositions were compared using Bray-505 

Curtis distance on species relative abundance and Permutational Multivariate Analysis of 506 

Variance (PERMANOVA) with 999 permutations and the Bray-Curtis method was applied by 507 

providing Mill/Process step/Date as function. Pairwise Spearman’s correlation coefficient was 508 

calculated for pairs of metadata variables, and between metadata variables and taxon 509 

abundances. False discovery rate (FDR) was calculated using Benjamini-Hochberg (BH) 510 

method, with FDR < 0.05 used as cut-off.  511 

 512 

Strain level profiling 513 

To profile the strains within a bacterial species, we used a published pipeline43,50 with the 514 

following modifications: (1) all contigs from one NCBI genome were concatenated as a 515 

consecutive sequence with spacers (N of 100bp); (2) genome assemblies from the NCBI 516 

database were automatically downloaded and renamed; (3) the new NCBI accession ID system 517 
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in place of the old sequence ID and taxonomic ID system, which allowed more assemblies to be 518 

included. For each species, genomes were downloaded from the NCBI Genome database 519 

(August 2018) to construct a SNV and pan-genome database. In cases where more than 200 520 

genome assemblies existed, only complete assemblies and chromosome-level assemblies were 521 

used. The SNV-based core-genome strain profiling was used for downstream analyses. Strains 522 

with a maximum relative abundance less than 5% in at least one sample, or present in less than 523 

20% samples were discarded.  524 

For each species, Spearman’s correlation coefficient was calculated among different strains’ 525 

relative abundance of all metagenomic samples. False discovery rate (FDR) was calculated using 526 

Benjamini-Hochberg (BH) method. FDR < 0.05 was used as the significant level cut-off. Strain 527 

abundance dissimilarity among different samples was calculated by Euclidean distances and 528 

hierarchical clustering was performed. As a result, all strains were clustered into two to six strain 529 

clusters for each species, where no significant negative correlation could be captured in each 530 

strain cluster (see Supplementary Figure S3 as an example from L. fermentum).  531 

 532 

Industrial performance calculation 533 

The industrial performance calculation was obtained by the product of the multiplication of the 534 

parameters directed correlated with process performance (i.e. ethanol yield and yeast viability), 535 

divided by the product of the multiplication of the parameters inversely correlated with process 536 

performance (i.e. bacterial cell counts and acidity titre): 537 

Industrial performance �
(Ethyield x Yeastviab)

(Baccounts x Acidtitre)
 

Equation 1: Proposed equation for obtaining a general industrial performance score. The 538 

score is obtained by multiplying ethanol yield (Ethyield) and yeast viability (Yeastviab) values, and 539 
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dividing its product by the product obtained from the multiplication of bacterial cell counts 540 

(Baccounts) and wine acidity titre (Acidtitre) values.  541 

 542 

Strains used in laboratory experiments 543 

Saccharomyces cerevisiae strain PE-2 was kindly provided by Prof. Thiago Olitta Basso. Strains 544 

of Lactobacillus amylovorus and Lactobacillus fermentum were isolated from stored industrial 545 

samples. Strains of Pediococcus claussenii, Lactobacillus helveticus, Lactobacillus buchneri and 546 

Zymomonas mobilis were purchased from ATCC (Manassas, VA, USA). 547 

 548 

Isolation and maintenance of industrial strains  549 

For strain isolation, a previously introduced protocol was used13. Briefly, industrial samples were 550 

serially diluted in sterile PBS and plated in Man Rogosa Sharpe (MRS) Agar media, containing 551 

cycloheximide (0.1% v.v-1) in order to inhibit yeast growth. Plates were incubated at either 30oC 552 

or 37oC statically. A loopful of an isolated colony was grown in liquid MRS in the same 553 

conditions, and stored at -80oC (see section “DNA extraction and analysis of bacterial isolates”). 554 

Yeast strains were cultured in Yeast Potato Dextrose (YPD) media, at 30oC. Lactobacilli were 555 

cultured in MRS media, either at 30oC or 37oC, and Zymomonas mobilis was cultured at Trypsin 556 

Soy Broth (TSB) media, at 30oC. All cultivations were performed statically, in ca. 5ml volume. 557 

 558 

DNA extraction and analysis of bacterial isolates 559 

Pure isolates were grown overnight in adequate media and conditions, as mentioned in the 560 

previous section. After growth, cells were pelleted via centrifugation (> 10,000g for 4 min.) and 561 
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their genomic DNA was extracted using the MasterPure™ Gram Positive DNA Purification Kit 562 

(Lucigen Corporation, Middleton, WI), according to manual’s instruction.   563 

 564 

Bacterial isolate assembly  565 

A de Bruijn graph-based assembler, SPAdes 3.1251, was used for the genome assembly of 566 

bacterial isolates, using the following parameters: “-m 300 -k 33,55,77,99,127”. To complement 567 

the de novo assembly, reference-assisted genome assembly was performed with idba_hybrid (v 568 

1.1.1)52 with the following parameters “--pre_correction --mink 120 --maxk 180 --step 10  --569 

min_contig 300 --reference [the reference genome downloaded from NCBI for each species]”. 570 

Two modifications were made in the source code before compiling IDBA_UD: in file 571 

src/basic/kmer.h constant kNumUint64 was changed from 4 to 8 to allow maximum kmer length 572 

beyond 124; in file src/sequence/short_sequence.h constant kMaxShortSequence was set to 512 573 

to support longer read length. Final assembly results were summarized in Supplementary Table 574 

4, Methods. 575 

 576 

Genome-based functional analysis 577 

ORFs were predicted on assembled strain genomes using MetaGeneMark v.3.2653. Predicted 578 

proteins were annotated using eggNOG mapper54 with the following settings: mapping mode: 579 

DIAMOND, automatic taxonomic scope, orthologs: restrict to one-to-one (prioritize precision), 580 

GO evidence: use experimental-only terms (prioritize quality). From the resulting file, KEGG 581 

ortholog ids were extracted by significant matches (e-value < 10-5) and those that were unique 582 

for each strain cluster were characterized in terms of KEGG pathway/module membership 583 

(KEGG Mapper Pathway Reconstruct)55. 584 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.07.430133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430133
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 585 

Fermentation experiments 586 

Fermentations were performed in 96 deep-well plates, with either pairwise cultivations 587 

(yeast:bacteria at a 100:1 ratio)8, or standalone yeast or bacteria cultivations. The media used is a 588 

semi-synthetic media, able to simulate sugarcane molasses based media (SM)37. Briefly, all 589 

strains were cultured in their optimal media and conditions (see “Strains” and “Isolation of 590 

industrial strains and maintenance” sections), for up to 48h. After that, the biomass was 591 

calculated via optical density (OD; 600 nm wavelength). All cells were pelleted via 592 

centrifugation (3400 x g, 4oC, 15 min) and washed twice with sterile PBS. Subsequently, cells 593 

were diluted in SM diluted in sterile Milli-Q H2O (10x, final sugar concentration of 18g.l-1) for 594 

an OD value of 1.0. Strains were later diluted in fresh SM media in specific wells in the 96 deep-595 

well plate to a final OD value of 0.1. 596 

The lactobacilli growth rate analysis was performed at 30 and 37oC, under agitation (double 597 

orbital, fast mode) in Synergy H1 plate readers (Biotek Instruments, Inc. Winooski, VT, USA). 598 

OD was measured every 30 minutes for 24h. The growth rate was later calculated using the R 599 

package growthcurver56. 600 

 601 

All the pairwise cultivations were performed statically, overnight, at 30oC, in ca. 1 ml volume. 602 

The fermentations were performed in triplicate. The carbohydrate titre and composition (sucrose, 603 

glucose and fructose) and fermentation metabolites (glycerol, ethanol, and acetic acid) were 604 

determined by high-performance liquid chromatography (HPLC) (UltiMate 3000, Thermo-605 

Fischer Scientific, Waltham, Massachusetts, USA). The analites were separated using an Aminex 606 

HPX-87H ion exclusion column (Bio-Rad, Hercules, California, USA) and were isocratically 607 
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eluted at 30°C, with a flow rate of 0.6 ml.min−1, using a 5mM sulphuric acid solution as mobile 608 

phase. The detection was performed refractrometrically. 609 

Ethanol yield was calculated according using the following equation: 610 

Ethanol yield �
(EtOHobs x 100)

EtOHtheor

 

Equation 2: Ethanol yield calculation. Where: EtOHobs = the observed ethanol titre on each 611 

sample. EtOHtheor = the maximum theoretical ethanol titre for each sample. Obtained by 612 

multiplying the sugar titre from the broth solution with the stoichiometric conversion factor for 613 

ethanol production (i.e. 0.5111)57. 614 

 615 

Community composition was resolved via flow-cytometry (BD LSRFortessa™, BD Biosciences, 616 

Franklin Lakes, New Jersey, USA). A sample from each well (10 µl) was taken after the 617 

overnight cultivation, and was transferred to a new microplate and diluted in 190µl PBS buffer 618 

(pH 7.4). Yeast and bacteria populations were resolved via front and side scatter comparison 619 

(SSC versus FSC). The statistical analyses were performed using the software GraphPad Prism 620 

8. The difference on final ethanol yield was analysed by multiple t-tests (statistical significance 621 

analysis with alpha value of 0.05).  622 

 623 

Lactobacilli supernatant metabolite profile was analysed via HPLC after 48h of growth, using the 624 

aforementioned analytical method. A pre-inoculum of lactobacilli stored at -80oC was grown in 625 

MRS for 24h. After that the OD from these cultures was measured and fresh MRS media was 626 

inoculated with a fixed OD of 0.1 and incubate statically at 37oC. After growth, the cells were 627 

separated via centrifugation and the supernatant was sent for further analysis. 628 

 629 
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Metagenomic co-assembly and functional annotation 630 

To overcome the imbalance between the sequencing yields of bacterial and fungal reads in 631 

different samples, achieve higher completeness of pan-genome regions with low sequencing 632 

coverage, and perform sample-wise gene presence and absence comparisons, co-assembly was 633 

performed for the non-SC reads. Non-SC reads were concatenated separately from all sequenced 634 

samples and the maximum k-mer depth was normalized to 100 fold by BBnorm 635 

(https://sourceforge.net/projects/bbmap/) before co-assembly. IDBA_ud (v. 1.1.1)52 was used for 636 

the assembly using the following parameters: “--min_contig 300 --mink 50 --maxk 124 --step 10 637 

--pre_correction”. Co-assembly results are summarized in Supplementary Table 3, Methods. 638 

For the non-SC assembly, MetaGeneMark v. 3.26 was adopted to predict the coding DNA 639 

sequence (CDS) regions in the assembled metagenome contigs using the default parameters.  640 

 641 
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