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Abstract 

 Visual knowledge obtained from our lifelong experience of the world plays a critical role in our 

ability to build short-term memories. We propose a mechanistic explanation of how working 

memories are built from the latent representations of visual knowledge and can then be 

reconstructed. The proposed model, Memory for Latent Representations (MLR), features a 

variational autoencoder with an architecture that corresponds broadly to the human visual system 

and an activation-based binding pool of neurons that binds items’ attributes to tokenized 

representations.  The simulation results revealed that the shapes of familiar items can be encoded 

and retrieved efficiently from latents in higher levels of the visual hierarchy.  On the other hand, 

novel patterns that are completely outside the training set can be stored from a single exposure 

using only latents from early layers of the visual system. Moreover, a given stimulus in working 

memory can have multiple codes, representing specific visual features such as shape or color, in 

addition to categorical information.  Finally, we validated our model by testing a series of 

predictions against behavioral results obtained from WM tasks. The model provides a 

compelling demonstration of how visual knowledge   yields compact visual representation for 

efficient memory encoding.    
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Introduction 

In the study of memory, working memory (WM) is thought to be responsible for temporarily 

holding and manipulating information.  This capacity to control information is thought to be a 

keystone of our ability to perform complex cognitive operations. Characterizing WM is an 

integral part of the birth of cognitive psychology, as decades of research have centered on the 

question of discovering the capacity and nature of this short-term memory system (e.g., Miller, 

1956; when the term short-term memory was favored).  

One of the central issues in many discussions over the structure of WM is how it is affected by 

previously learned knowledge (i.e., long-term memory; Baddeley & Hitch, 1974; Cowan, 1988; 

Cowan, 2019; Ericsson & Kintsch, 1995; Norris, 2017; Oberauer, 2009).  Knowledge that 

emerges from long-term familiarity with particular shapes or statistically common featural 

combinations enables us to recognize and remember complex objects (i.e., the prototypical shape 

of a car, or the strokes that comprise a digit). It is widely acknowledged that such information is 

crucial for building WM representations (Cowan, 1999; Brady, Konkle & Alvarez, 2009;  

Oberauer, 2009) but there has been little attempt, if any, to mechanistically implement the role of 

visual knowledge in WM models in spite of abundant behavioral research in this domain 

(Alvarez & Cavanagh, 2004; Chen & Cowan, 2005; 2009; Hulme, Maughen & Brown, 1991; 

Ngiam, et al., 2019; Ngiam, Brissenden & Awh, 2019; Yu et al., 1985; Zhang & Simon, 1985; 

Zimmer & Fischer, 2020).  For instance, Alvarez & Cavanagh (2004) demonstrated that the 

number of items stored in WM is affected by stimulus complexity, with particularly poor 

performance for Chinese characters.  Zimmer & Fischer (2020) expanded on this by showing 

that the difficulty in remembering Chinese characters is specific to individuals who are not 

readers of the language. That is to say, the WM capacity for Chinese characters is higher if 

observers have already been trained on those stimuli. Moreover, Brady, Stormer & Alvarez 

(2016) have demonstrated that evident memory capacity for natural images is higher than 

memory capacity for simple colors, as natural images are the stimuli that people have had the 

most visual experience with compared to artificial shapes. These results can be extended to 

verbal memory, as performance on immediate recall of a list of words is limited by the number 

pre-learned chunks represented in long-term knowledge (Chen & Cowan, 2005; Hulme, 

Maughan & Brown, 1991; Hulme et al., 2003). 
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Even prior to these findings, there has been extensive theoretical discussion of the necessity to 

link WM to long-term memory representations.  Among the earliest memory schemes was the 

Atkinson & Shiffrin (1968) model of memory in which representations in long-term memory 

could be transferred to a short-term storage if needed. Later, Baddeley and Hitch (1974) 

proposed the multicomponent model of WM. In this model the short-term storage for visual 

information (i.e., visuospatial sketchpad) was shown to be dependent on visual semantics and 

episodic long-term memory with a bidirectional arrow indicating the flow of information 

(Baddeley, 2000). This idea is also carried by theories of activated long-term memory account 

(Cowan 1988, 1999, 2001; Ericsson & Kintsch, 1995) which is also discussed by Oberauer 

(2009). In this account (also known as the embedded process framework), WM representations 

are built by activating pre-existing representations within the long-term memory.  

The above accounts (i.e., multiple components and activated long-term memory) provide a venue 

toward a WM mechanism integrated with long-term knowledge, but their lack of computational 

specificity has made it challenging to make testable predictions of how knowledge reflects in 

WM mechanisms. This includes addressing questions such as “How do we form rapid memories 

of novel configurations (Lake et al., 2011)?” and “Why is WM capacity higher for familiar items 

(Yu et al., 1985; Zhang & Simon, 1985; Zimmer & Fischer, 2020)?”  

To fill this gap, we implemented a computational WM model in conjunction with a visual 

knowledge system named Memory for Latent Representations (MLR). The proposed model 

simulates how latent representations of items embedded in the visual knowledge hierarchy are 

encoded into WM depending on their level of familiarity. Subsequently, the encoded items in 

WM can be retrieved by reactivating those same latent representations in the visual knowledge 

system.  This paper outlines a candidate model for storing and retrieving visual memories of 

complex shapes in a dedicated pool of neurons and provides empirical validation of the 

flexibility of WM.  
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The new MLR model of working memory 

The MLR model takes advantage of recent innovations in generative deep learning models to 

represent and reconstruct visual stimuli that are embedded in the visual knowledge.  Rather than 

storing unidimensional attributes as in other recent working memory models (Bouchacourt & 

Buschman, 2019; Schneegans & Bays, 2017; Lin & Oberauer, 2019; Swan & Wyble, 2014), 

MLR can encode and reconstruct arbitrary shape attributes, such as a particular handwritten 

digit, or an article of clothing. To achieve this, MLR uses the latent distributions from the hidden 

layers in a pre-trained deep neural network. In this context, latent is a representation of a 

stimulus attribute such as the shape, color, or category of a stimulus.  Figure 1 illustrates an 

example of digits that can be reconstructed from a simple two-dimensional latent space in a 

variational autoencoder (i.e., VAE) trained on the MNIST dataset, which is a collection of 

60,000 hand-written digits (Kingma & Welling 2013).  

 

Figure 1. A latent space for MNIST digits from Kingma & Welling (2013). These digits represent the output of a 

generative model when a particular x,y location in the latent space is activated and then used to drive a 

reconstruction back to a full 28x28 pixel image of a digit.  

The visual knowledge in MLR 

In the context of our work, knowledge is the emergent feature of a trained sensory system. For 

instance, the connectivity of the visual system is adjusted via experiencing visual objects in a 
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child, which results a visual knowledge system. MLR captures two fundamental characteristics 

of visual knowledge that enables us to explain its interaction with WM. In the proposed 

framework, these two features are compression of visual information and categorical 

representations. Later, we show how these aspects of visual knowledge would affect WM 

capacity and precision of retrieved items for familiar and novel items (Brady, et al., 2008; Yu et 

al., 1985; Zhang & Simon, 1985; Zimmer & Fischer, 2020).  

Compression: The amount of visual sensory input that we receive at every moment is enormous. 

Therefore, efficient data compression is essential given the limited-resources available to the 

perceptual system. It is likely that the visual ventral system represents familiar visual patterns 

with fewer neurons at successively later levels of the pathway (i.e., LGN, V1, V2, V4, IT) of the 

visual system (Bates & Jacob, 2020). Hence, hierarchical visual knowledge can be formed from 

the compression of visual data (Norris & Kalm, 2020; Ngiam, Brissenden & Awh, 2019) by 

learning, via synaptic plasticity (Lamprecht & LeDoux, 2004), to encode and decode that data 

with high visual specificities. In this framework, later levels of the ventral stream (i.e., IT cortex) 

can represent specific shape patterns with minimal loss of visual details relative to earlier layers 

(i.e., V1) despite utilizing a smaller number of neurons to form the representation.  This is due to 

connections between neurons encoding feature conjunctions in a hardwired fashion (VanRullen, 

2009). Importantly, this compression is only effective for representations that are deeply familiar 

to the visual system (i.e., in which there have been thousands of exposures, sufficient to develop 

perceptual expertise, see Pelli, Burns, Farell & Moore-Page, 2006) and not for novel stimuli. 

Consistently, empirical data has shown long-term memory to have highly detailed 

representations of visual objects (Brady, et al., 2008; Konkle et al., 2010; also see Experiment 2).  

Categorical representation: A familiar object also can have a conceptual/categorical 

representation. It has been demonstrated that whenever we perceive patterns that correspond to 

familiar concepts, that information is rapidly interpreted by the visual system to be translated 

into categorical codes that exist at an abstract level (Huang & Awh, 2018; Potter & Faulconer, 

1975, Potter, Valian & Faulconer,1977; Potter, 2018). For instance, for an experienced reader of 

the Roman alphabet, take note of the character : ‘A’. This character can be represented as a series 

of strokes with fine grained visual details that include the rightward slant, or the conceptual 

representation of A in a form of purely categorical information. The memory of seeing the 
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familiar letter ‘A’ could be composed of one or both of these codes depending on task 

requirements.  

The framework described here as visual knowledge, entailing the compression and categorical 

representation for visual data endows WM with a doubly efficient representation of familiar 

objects. In other words, familiar objects benefit from compressed representations of visual 

information and also abstract categorical codes as they are encoded into WM, whereas novel 

objects lack such efficient representations. Figure 2 illustrates the diagram of hypothetical 

compressed and categorical representations of a handwritten digit ‘5’ as it is being processed by 

the visual system. The key point here is that with increasing depth into the ventral stream the 

visual character is represented by progressively fewer neurons but the loss of detail is minimal as 

the stimulus category is familiar to the visual system.  Moreover, this visual representation elicits 

a separate categorical representation which is even more compact than the visual representation, 

though it lacks the visual data. 

 

Figure 2. The compression and categorical representation of a single stimulus. The trained visual pathway represents 

the stimulus with specific visual details in all layers with little loss of visual specificities. The width of the cone 

reflects the number of neurons involved in the representation at different stages of processing. The final 

representation at the highest level would elicit a categorical representation that lacks the visual information. 
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Informal Description of MLR 

Memory formation in MLR can rapidly and selectively encode specific attributes (e.g., shape, 

color, label) from one or more visual items within a distributed neural representation using a 

tokenized binding pool (Swan & Wyble, 2014).  In MLR, information is encoded with varying 

levels of efficiency depending on the degree to which it matches representations embedded 

within the pre-trained visual knowledge hierarchy. The visual knowledge is built using gradient 

descent to train a modified VAE on a set of stimuli combining handwritten digits and articles of 

clothing (MNIST, LeCun, 1998; and fashion-MNIST, Xiao, Rasul & Vollgraf, 2017). We chose 

to build our model based on a fully connected VAE rather than a more complex convolutional 

network, because it is simple in terms of layers, and generates smooth latent spaces.  More 

complex models would provide more detailed reconstructions, but our goal is to develop a clear 

and explainable theory rather than an optimized memory system.   

In a trained VAE, familiar stimuli are encoded efficiently into a small-dimensional latent space 

(analogous to IT cortex) and classified into categorical labels, while novel stimuli can only be 

represented into higher-dimensional latents closer to the beginning of the visual pathway 

(analogous to V1 cortex).   

As illustrated in Figure 3, a visual stimulus is processed by the feedforward portion of the visual 

knowledge system to produce compressed shape and color representations of the object as well 

as a categorical label of each attribute. A binding pool stores a representation of selected features 

and/or labels according to a set of tunable parameters. These parameters control the proportion of 

different kinds of information that flow from the knowledge hierarchy into the memory trace.  

Each memory trace binds visual forms, colors, and categorical labels together into a single 

tokenized representation that can be stored alongside other tokenized representations of objects.  
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Figure 3. The simplified architecture of MLR with its two major elements: visual knowledge as represented by the 

modified VAE and the working memory as represented by the binding pool. We modified the bottleneck to 

represent shape and color in separate maps. 

A brief description of the landscape of WM theories 

A clarifying assumption of MLR is that the memories are stored in a particular group of neurons 

that are allocated specifically to the role of memory storage and sits apart from the sensory areas 

themselves (Figure 4a). This account is in accordance with classic theories of prefrontal cortical 

involvement in WM (Goldman-Rakic,1995; Miller, Erickson & Desimone,1996).  This can be 

contrasted with models that imply distinct representations for visual and non-visual forms of 

memory (Baddeley & Hitch, 1974; Figure 4b), and embedded process models that distribute the 

storage of information through a variety of memory and sensory systems (Cowan 1988, 1999; 

Cowan, Morey, & Naveh- Benjamin, 2020; Morey, 2018; Pasternak & Greenlee, 2005; Teng & 

Kravitz, 2019; Figure 4c).   

Much thought and experimental evidence has been allocated to adjudicating between these 

hypothetical architectures (Cowan, 1999, 2001; Lee, Kravitz & Baker, 2013; Logie, Camos & 

Cowan, 2020; Morey, 2018). Our goal is not to refute competing accounts at this point, but rather 

to provide a possible functional implementation of how knowledge could be combined with 
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WM. We are advancing one particular instantiation of such an account, and will discuss a 

comparison between approaches in the discussion.  However, it should be emphasized that the 

mechanism of storing latent representations in a binding pool as described here has some 

generality and could be adapted to other architectures (i.e., it would be easy to use two binding 

pools, one for visual and one for non-visual information).  A primary goal of this paper is to 

clarify potential implementations to develop computational formalisms for comparison of 

different architectures.   

 

 

Figure 4. Three architectures for working memory as it relates to the visual system.  A. The MLR model as proposed 

here has a single memory representation that encompasses visual and categorical information in varying proportions 

according to task-dependent tunable parameters. B.  A working memory model that suggests there are distinct 

systems for maintaining visual and non-visual forms of information C. A working memory model that has its 

representations embedded in the sensory system   

Modelling Philosophy of this account 

Computational models can be used in a variety of ways to advance psychological theories (Guest 

& Martin, 2021).  In this case, the MLR model provides a new conceptualization of WM via 

implementation that achieves a range of benchmarks, some of which are functional and others of 

which are neural.  This can be considered as an abductive approach, in which a likely 

explanation is proposed for a set of data.  We consider the problem of WM models to exist in the 
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M-open class (Clarke, Clarke & Yu, 2013), which means that though it is impossible to specify 

the exact biological system, we are able to distill useful constraints from behavior and biology.   

 Functional constraints of MLR 

To motivate our account, we start with a list of empirical constraints that define the relevant 

functional capabilities of memory and several key neural plausibility constraints.   

MLR is constrained by empirical data obtained from human behavior, termed functional 

constraints. To minimize the complexity of the model’s ancillary assumptions, these constraints 

will be met in a qualitative fashion rather than by matching of specific empirical data points.   

Reconstructive: Although reconstruction of visual stimuli is not required in typical visual 

memory tasks, it is a form of retrieval, and people are able to draw or otherwise reconstruct the 

specific shape of remembered objects, particularly if subtle visual details need to be remembered 

(Bainbridge, Hall & Baker, 2019; Carmichael, 1929; Kosslyn, 1995).  The MLR accounts for 

this form of retrieval through pixel-wise reconstruction of images.  

Multiple codes: A memory of a familiar stimulus can be represented by a variety of different 

codes, from low level visual details to abstract categorical information (Potter & Faulconer, 

1975; Potter, Valian & Faulconer, 1977; Potter, 2017). The MLR can store a combination of 

different kinds of information from a single stimulus, including its visual details or its categorical 

labels.  

Encoding Flexibility: Within the visual memory of a single item, specific attributes (e.g., color, 

shape, etc.)  are stored with varying degrees of precision. That is, depending on the task, some 

visual features are encoded more accurately than others. For example, Swan, Collins and Wyble 

(2016) showed that memories for features that are relevant to the task (e.g., color of an oriented 

bar) are remembered more precisely than irrelevant features (e.g., orientation of the bar). 

Parameters in MLR control the ratio of distinct attributes of an object that are stored in memory.  

In the simulations here, color and shape are treated as distinct attributes but in a larger model, the 

set of tunable attributes could include any stimulus dimension for which there are distinct 
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representations. This would be a separate latent space in the context of an VAE, or a separate 

cortical area in the context of neuroscience (Konkle & Caramazza; 2013) 

Representing Novel stimuli: WM performance is more efficient for previously learned items (Yu 

et al., 1985; Zimmer & Fischer, 2020), however, humans can still encode novel configurations 

that they have not seen before (Lake et al., 2011; see also Experiment 1). Similarly, MLR stores 

and retrieves novel shapes that it has not seen before, although those memory reconstructions are 

less precise compared to shape categories that the model was trained on.   

More Efficient representations of familiar items: Frequently-experienced objects drawn from 

long-term knowledge have compressed representations with high visual detail (Brady et al., 

2008; Konkle et al., 2010). This allows more familiar objects to be stored in memory compared 

to novel stimuli (Hue & Erickson, 1988; Zimmer & Fischer, 2020). MLR achieves this by 

encoding compressed representation of familiar items generated by a smaller number of neurons, 

whereas it resorts to encoding features represented in larger number of neurons if the object is 

unfamiliar.  

Individuated Memory for Multiple items: Memory for one visual display or trial is able to store 

several different items and retrieve them individually using a variety of cues.  For example, one 

could store a series of colored shapes and then retrieve a specific item based on one particular 

attribute, such as color, shape, location or serial order.  In addition, people can store repetitions 

of the same item as well as the temporal order of different items (see Swan & Wyble, 2014 for 

more detailed discussion of this point, see also Bowman & Wyble, 2007; Kanwisher, 1991; 

Mozer, 1989 and Swan & Wyble, 2014). MLR uses tokens as pointers to individuate different 

items, including repetitions.    

Content Addressability and Binding: Memory representations include a form of binding in which 

multiple attributes can be attached to one another, which is often thought of as object bindings 

when those attributes belong to distinct visual objects.  Also, content addressability means that 

such bindings can be used to retrieve any attribute associated with the object from any other 

attribute. For example, a colored, oriented line can be accessed either through its color or 
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orientation (Gorgoraptis et al., 2011). MLR can use any attribute or code associated with a token 

to retrieve other information from that token.   

Mutual interference: Storing multiple items and/or additional features of an item (i.e., shape, 

color, size, etc.) in WM causes interference that degrades the memory precision based on the 

number of items stored (Wilken & Ma, 2004) and the number of attributes within one stimulus 

(Swan, Collins & Wyble 2016). The shared neural resources in MLR cause overlapping 

representations to interfere with one another, both for attributes within a stimulus and between 

stimuli.   

Neural constraints of MLR 

Rapid encoding and forgetting: WM representations are thought to be the result of persistent 

neural activity (Compte, et al., 2000; Fuster & Alexander, 1971) or transient latent synaptic 

representations that can be rapidly changed (Rose et al. 2016; Szatmáry & Izhikevich, 2010). 

These representations allow for rapid encoding and removing of visual information. The shared 

binding pool of MLR stores visual information by creating temporary activity states in a matrix 

that is intended as a generalization of either a population of self-sustaining neural attractors or 

other forms of rapidly modifiable representations (e.g., silent synapses; Rose et al. 2016). These 

activations are received via fixed randomly assigned weights from different layers of the visual 

knowledge hierarchy.  

Hierarchical structure of ventral stream: The ventral visual pathway contains at least part of the 

visual knowledge that is gradually formed through extensive experience with the world.  In 

primates, this pathway has cells that vary along a spectrum from receptive fields that are tuned to 

orientation and color in the earliest layers such as LGN and V1 cortex, up to cells that have large 

receptive fields and that are tuned to more complex shapes such as faces and complex 

configurations (Grill-Spector, Kourtzi & Kanwisher; 2001; Kanwisher, McDermott & Chun, 

1997).  In MLR, visual knowledge is based on a VAE architecture as illustrated in Figure 5. The 

VAE resembles the hierarchical structure of the visual ventral stream with more generic 

representations at the early level and more compressed representations at higher levels (i.e., the 

bottleneck) with the number of neurons decreasing progressively. In a VAE, the layers from the 
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bottleneck to the output translates between latent representations and a pixelwise representation. 

These are similar to the extensive feedback projections that extend backwards down the ventral 

stream from higher to lower order areas (Bullier, 2001; Lamme, Super & Spekreijse;1998).   

Training through synaptic weight adjustments: Our biological brain is an ever-changing system 

that alters its connectivity over time to represent the statistical regularities of the environment. 

Likewise, MLR learns statistical regularities underlying visual categories through experiencing 

abundant exemplars that are used during the training phase. As a result of this training, the 

network’s connectivity is tuned to better reconstruct the visual stimuli from compressed 

representations in the bottleneck. Moreover, training in the VAE occurs without explicit labels or 

supervision, akin to how a child can learn to see through exposure to patterned information.  

 

Figure 5. Illustration of the architecture of a VAE (Kingma & Welling 2013) and its coarse neuroanatomical 

correspondence.  In the neuroanatomical projection, solid arrows correspond to feedforward connections from V1 to 

IT cortex (or L1 to bottleneck in the VAE) and dashed arrows refer to feedback projections in the reverse direction 

(or from bottleneck to L5 in the VAE).  The inputs were either colorized versions of MNIST and f-MNIST. Note 

that one image at a time is fed into the VAE. 
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The Architecture of MLR 

The model is composed of two components: a modified variational autoencoder (mVAE) 

operating as visual knowledge and a binding pool (BP), the memory storage that holds one or 

more objects (see Figure 6 for the detailed architecture). 

mVAE: The VAE (Kingma & Welling 2013) is an hourglass shape fully connected neural 

network consisting of three main elements – feedforward, bottleneck and feedback – which are 

trained by using a colorized variant of MNIST (LeCun, 1998) and fashion-MNIST (Xiao, Rasul 

& Vollgraf; 2017) stimulus sets prior to any memory storage simulations. We modified the VAE 

by dividing the bottleneck into two separate maps – a color map and a shape map – to represent 

each feature distinctively. See the appendix for details about the colorized stimuli and the 

modified objective functions.  

 Feedforward pathway: Translates information from a pixel representation into compressed 

latent spaces as a series of transitions through lower dimensional representations.  This is 

typically called the encoder in autoencoder models.    

Shape and Color maps: Typically, the bottleneck layer of a VAE that has the smallest number of 

neurons consists of one map. To generate distinct feature maps, we divided the bottleneck into 

two separate maps: one for representing shape and the other one for representing color.  Each of 

the two maps is fully connected to the last layer of the feedforward pathway and the first layer of 

the feedback pathway. 

Feedback pathway: Translates information from the compressed shape and color maps into pixel 

representations as a series of transitions through progressively higher dimensional 

representations.  This is typically called the decoder in autoencoder models.  

Skip Connection: To allow reconstruction of novel stimuli without involving the shape and color 

maps, a skip connection was added to the mVAE that linked the first layer to the last layer. 

Anatomically, this would be the equivalent of a projection between layers with V1 cortex 

(Thomson 2010) 
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Categorical labels:  In order to apply categorical labels to a given stimulus, we used a standard 

support vector machine classifier (SVM; Cortes & Vapnik, 1995). The SVM maps 

representations in the latent spaces onto discrete labels for different stimulus attributes such as 

shape or color. See appendix for the details of the SVMs.  

Binding Pool (BP):  The BP uses a modified formulation of the model described in Swan & 

Wyble (2014) and is similar to a Holographic Reduced Representation (Plate, 1995). It is a one-

dimensional matrix of neurons that is bidirectionally connected to each layer of the feedforward 

pathway (L1, L2, shape and color maps) as well as the outputs of the SVM classifiers which 

provide one-hot categorical labels of shape and color. The BP stores a combined representation 

of the information from each of these sources for one or more stimuli in individuated 

representations indexed by tokens. The bidirectional connections allow information to be 

encoded into the BP, stored as a pattern of neural activity, and then projected back to the specific 

layers of the mVAE to produce selective reconstruction of the encoded items.  The connection 

between the BP and the latents is accomplished through normally generated, fixed weights. 

These are not trained through gradient descent but are assigned at the beginning of the simulation 

for a given model.   

Tokens: The tokens function as object files (Marr 1976; Kahneman & Triesman, 1984) for each 

specific stimulus (e.g., token 1 stores stimulus 1). Having tokens allows multiple items to be 

stored, even if they are spatially overlapping. They index representations that are held in the BP 

and do not store information about the individual stimuli. See the appendix for additional details 

on the tokens.   

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.02.07.430171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430171
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

 

Figure 6. The complete MLR architecture that consists of the mVAE, binding pool, tokens, and classifiers for 

extracting labels (SVMss and SVMcc). Information flows in only one direction through the mVAE but can flow 

bidirectionally between the latent representations and the binding pool. Tokens are used to differentiate individual 

items. Note that three tokens are shown here but there is no limit to the number of tokens that can be allocated.  

The MLR implementation  

Architecture: The mVAE consists of 7 layers. Input layer (Li; dim= 28 x 28 x 3), Layer 1 (L1; 

dim= 256), Layer 2 (L2; dim= 128), bottleneck (color map, dim= 8; shape map, dim = 8), Layer 4 

(L4; dim= 256), Layer 5 (L5; dim= 256) and the output layer (Lo; dim=28 x 28 x 3). A skip 

connection was added from L1 to L5.  The BP layer is connected to the feedforward layers of 

mVAE bidirectionally (Figure 6, also see appendix).  

Dataset: Training was done using the MNIST stimulus set (LeCun et al., 1998) consisting of 

70,000 images of 10 categories of digits (0-9) and fashion-MNIST set (i.e., f-MNIST; Xiao, 

Rasul & Vollgraf, 2017) which has the same number of images as MNIST but for 10 categories 

of clothing (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneakers, Bag and Ankle 

boot). To add additional attributes to the dataset, we colorized all images using 10 distinct colors 
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– red, blue, green, purple, yellow, cyan, orange, brown, pink, teal – with minor variations (see 

Figure 7 for examples and appendix for details of the color values).  

Training and testing the mVAE: The mVAE was trained on 120,000 images with 200 epochs 

(batch size= 100) with three objective functions to the train shape, color and the skip connections 

distinctively.  See appendix for details on objective functions and training.   

Figure 7. Colorization of MNIST and Fasion-MNIST inputs using 10 prototypical colors with independent random 

variations on the RGB channels. Left: images used to train the mVAE . Right: Transformed images of the same 

dataset that were used to train the skip connection. 

BP memory encoding of latents:  Once the mVAE was trained, memories could be constructed 

by shifting information from the latent spaces into the BP with 2500 neurons in total. The 

effective number of neurons representing each item was 1000 since 40% of the BP was allocated 

to each token. Such memories are constructed with a matrix multiplication of the activation 

values of a given latent space (i.e., L1, L2, shape and color map) or one-hot categorical labels, by 

a randomly generated and fixed (i.e., untrained by gradient descent), normally distributed set of 

weights. This multiplication produces a vector of activation levels for each neuron in the BP. 

Multiple attributes can be combined into one representation in the BP by summing the activation 

values from multiple encoding features and then normalizing them.  Equation 1 demonstrates the 

encoding of activations in the BP, where 𝐵𝛽 represents each node in the BP, 𝑁𝑡,𝛽 represents the 

connection matrix between the BP nodes and the token, 𝑋𝑓 represents the activations in a given 

latent space, n is the number of neurons in the latent space that is being stored in the BP, and 𝐿𝑓,𝛽 

is the connection matrix between the latent space and the BP. 

𝐵𝛽 = 𝐵𝛽 + 𝑁𝑡,𝛽 ∑ 𝑋𝑓𝐿𝑓,𝛽
𝑛
𝑓=1      (1) 

Examples used to train the mVAE
layers (input to output layer)

Examples used to train the mVAE
skip connection linking the L1 to L5
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BP memory encoding of categorical labels: The color and shape category labels estimated by an 

SVM classifier, as an analog of categorical representations, could also be encoded into the BP. 

The shape labels were extracted from SVMSS (i.e., an SVM trained to decode shape labels from 

the shape map) and the color labels were extracted from SVMCC. (i.e., an SVM trained to decode 

color labels from color map).  Shape was one-hot coded in a vector of length 20 (10 digits and 10 

fashion items), while color used a vector of length 10. Either or both of these vectors could be 

added to a BP representation through matrix multiplication described above.  Reconstructions 

from the BP were converted into a one-hot vector with a max function.    

One-shot encoding of novel shapes in BP: Novel shapes were 6 examples of colorized Bengali 

characters. The colorization of Bengali characters was similar to that of MNIST and f-MNIST. 

The colored novel images were used as inputs to the model, and activations from L1 and shape 

and color maps were encoded and retrieved from the BP to compare the efficiency of encoding 

from these layers (Figure 10).   

Storing multiple items: Working memory, though limited in capacity, is capable of storing 

multiple objects. The tokens in MLR provide an index for each object that can be later retrieved 

from the BP as in Swan & Wyble (2014). Without such an indexing mechanism, more than one 

object cannot be stored in the memory.  Each token contacts a random, fixed proportion of the 

binding pool, effectively enabling those units1 for memory encoding while that token is active.  

Any number of tokens can be stored in this way, although more interference is expected as the 

number of stored tokens increases.  This mechanism enables multiple distinct sets of attributes to 

be stored in each token, effectively binding those attributes into one object. The tokens can be 

retrieved individually and in any order. Once stored in this way, a token can reactivate its portion 

of the BP to reconstruct the attributes associated with it. Moreover, tokens enable content 

addressable recall in that a given attribute (e.g., the shape or color of a digit) can be used as a 

retrieval cue to determine which of several tokens was associated with that specific attribute. 

 
1 Tokens could be implemented either by enabling encoding in their own BP nodes through excitation of gate 
nodes, or alternatively by disabling encoding in the other BP nodes through suppression of gate nodes.  These 
methods are functionally equivalent.  
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Then, that token can be activated to retrieve the other attributes associated with it (see Swan & 

Wyble, 2014 for more details).   

Memory Maintenance in BP:  The binding pool is a simple implementation of a persistent-trace 

model that holds the vector of activation produced by the encoding operation(s). This is 

consistent with self-excitatory neural attractors, or silent synaptic storage (Rose et al. 2016). The 

specific mechanism of trace-maintenance was not a crucial question in this implementation as 

there was no time course or delay of activity over time.   

Token Retrieval:  To determine which token was linked to a given visual form (e.g., a shape map 

representation), information can be passed from a given latent through the BP to determine 

which token has the strongest representation of that particular latent.  Equation 2 illustrates the 

retrieval of a given token 𝑍𝑡.Other parameters are similar to that of Equation 1.  

𝑍𝑡 = ∑ 𝐵𝛽𝑁𝑡,𝛽 ∑ 𝑋𝑓𝐿𝑓 ,𝛽
𝑛
𝑓=1

𝑛
𝛽=1                          (2) 

Memory Reconstruction and model’s evaluation: Memory reconstructions to any given latent or 

one-hot vector were accomplished by retrieving the associated token and multiplying the entire 

BP vector by the transpose of the same fixed weight matrix that was used during the encoding of 

that representation.  As represented by Equation 3, the result is a noisy reconstruction of the 

original latent activity state, which can be processed by the rest of the mVAE in the same manner 

as visual inputs.  

𝑋𝑓 = 𝑍𝑡 ∑ 𝐵𝛽𝐿𝑓 ,𝛽𝑁𝑡,𝛽
𝑛
𝛽=1                    (3) 

Two methods were used to evaluate the quality of memory reconstructions of MLR.  1)  

Representations in the shape and color maps were classified by radial basis SVMs, which were 

trained to decode shape (one of 20) or color (one of 10) using the remaining 10,000 MNIST and 

10,000 fashion MNIST as test set stimuli. The classification allowed us to assess the amount of 

shape and color information in the shape and color maps before and after memory 

reconstruction. Note that we also used the same pre-trained classifiers to create the labels and to 

assess memory performance 2.) An alternative measure of the accuracy of reconstructing the 

original image was to correlate the reconstructed pixels with the original stimulus. We used this 
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approach to quantify reconstructions of novel stimuli which have no pre-learned categories. A 

detailed implementation of the model was written in Python 3.7 using pytorch toolbox and can 

be found in https://osf.io/tpzqk/ (The original VAE code that we modified was retrieved from a 

GitHub repository: https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/pytorch-mnist-

VAE.ipynb). 

Simulation results 

1. The mVAE disentanglement prior to memory encoding: Figure 8 shows reconstructions from 

shape, color and both maps respectively. The results of classification accuracies in Table 1 show 

that color and shape representations were successfully disentangled in their corresponding maps. 

In other words, the shape map contained mostly shape information and the color map represented 

mostly color.  This is a coarse approximation of the general finding that the ventral visual stream 

has specialization of cortical maps for different types of information (Cohen et al., 2014; Konkle 

& Caramazza, 2013). The benefit of such anatomical disentanglement in the context of a 

memory model like MLR is that it permits top-down modulation to select particular kinds of 

information for promotion to WM because the control signals only need to operate on the scale 

of selection regions of cortex, rather than individual neurons.  That said, the complete 

disentanglement of color and shape as we achieve here is not likely to be a real phenomenon but 

is very helpful for demonstrating the principles of encoding attributes selectively.  

 

Figure 8. Reconstructions from the mVAE. Information from just one map is shown by setting the activations of the 

other map to 0.  Both maps together produce a combined representation of shape and color, showing that the model 

is able to merge the two forms of information that are disentangled across the two maps. The model only processes 

one item at a time in these simulations, and these are combined into single figures for ease of visualization.   

Original images

Both map reconstructions

Shape map reconstructionsColor map reconstructions

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.02.07.430171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430171
http://creativecommons.org/licenses/by-nd/4.0/


22 

 

 

Table 1. Classifiers accuracies (%) of mVAE for information represented in shape and color maps 

                                Classifier type 

 SVMSS SVMSC SVMCC SVMCS 

Shape/color maps     

 84 (.20) 22 (.30) 87 (.40) 15 (.1) 

Note. The table shows mean classification accuracies (%) for the mVAE for 10 trained models. The values in 

parentheses represent standard errors. SVMSS represents an SVM trained on shape labels using data from the shape 

map. On the other hand, SVMSC was trained to decode color labels from the shape map.  SVMCC Represents an 

SVM trained on color labels using data from the color map, whereas SVMCS was trained to decode shape labels 

from the color map. Chance performance is 10% for classifiers trained on color labels (SVMCC and SVMSC) and 5% 

for classifiers trained on shape labels (SVMSS and SVMCS). As shown, SVMSC and SVMCS accuracies are above 

chance, but much smaller than SVMSS and SVMCC respectively.  

2.The BP encoding and retrieval of visual features:  Projecting information from the latent 

representations into the BP and then back to the mVAE allows us to reconstruct the original 

activity pattern of that layer. Figure 9 illustrates examples of single items encoded individually 

and then reconstructed using the mVAE. Table 2 indicates the classifiers’ accuracies averaged 

across 10 models for determining the shape and color of items according to which layer of the 

mVAE was encoded and then retrieved.  According to the simulation results, it is evident that 

memory retrieval from shape and color maps is more precise than reconstructions from L2 and 

L1. Hence, compression resulted in more accurate memory retrieval, presumably due to the 

noisier reconstruction of the larger L1 and L2 latents. It is important to note that retrieval process 

of the familiar shapes requires images to pass through all the subsequent layers including the 

shape and color maps (e.g., L2 representations are stored in the BP, then projected back to L2 and 

then reconstructed by passing through the maps, L4, L5 and the output layer.  Likewise, 

classifying the accuracy of the memory formed from the L2 layer involves reconstructing the L2 

latent from the BP, then passing it forward to the shape and color maps and classifying those 

map activations with the SVMs).  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.02.07.430171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430171
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

 

Figure 9.  Demonstration of different latents that can be stored from one of the trained models (both shape and color 

were encoded in all conditions).  Note that the reconstructions are visually less precise for memories formed from L1 

and L2 latent spaces compared to the shape and color maps. Each item is stored individually in a separate BP, but the 

examples are combined into single images for ease of visualization.   
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Table 2.  Mean classification accuracy (%) of shape and color information based on encoding conditions   

                                                            Classifier type  

 SVMSS SVMSC SVMCC SVMCS 

Encoding conditions     

Shape map and Color map 83 (.43) 20 (.36) 80 (1.45) 15 (.29) 

Shape map only 83 (.36) 20 (.45) 9 (.18) 4 (.22) 

Color map Only 4 (.24) 8 (.69) 83 (.83) 15 (.33) 

L2 75 (.55) 18 (.45) 69 (2.87) 14 (.34) 

L1 44 (1.82) 13 (.85) 52 (2.96) 7 (.34) 

Note. The table indicate means of classifier accuracies (%) after memory retrievals of a single stimulus from each 

layer for 10 independently trained models. The values in parentheses indicate standard errors. Rows correspond to 

different encoding conditions, showing which latent(s) were stored in the binding pool.  Shape map only and color 

map only indicates that only shape or color of a stimulus was encoded and retrived. L1 and L2 representations were 

passed forward to the shape and color maps after being stored in the BP to be classified.  

3.Storing multiple attributes and codes of one stimulus: MLR is able to flexibly store specific 

attributes of a given stimulus such that BP representations are more efficiently allocated for a 

particular task.  For example, when just color is expected to be task relevant, the BP 

representation can largely exclude shape information which comes with a small increase in 

accuracy for reconstructing color.  This matches human performance which shows that even 

when remembering the color of an oriented arrow in WM, there is a small but measurable cost 

for storing both color and orientation (Swan Collins & Wyble 2016). This is evident in Table 2 

wherein the classification accuracy of retrieving color was improved when the shape map was 

not stored by setting its encoding parameter to zero.  The reverse phenomenon was not observed 

(i.e., shape was not improved by eliminating color; SVMSS in Table 2). It should be noted that 

the random assignment of BP nodes to each feature map would always result in overlapping 

activation patterns for different attributes and therefore interference, however the extent of 

interference depends on the number of BP nodes as well as the number of attributes that are 

being encoded.   
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Moreover, MLR is able to store categorical labels of information alongside the visual 

information in a combined memory trace.  By converting the output of a classifier into a one-hot 

representation, a neural code of label can be stored into the BP, summing with the 

representations of the shape and color maps.  This allows a memory to contain unified 

categorical and nuanced shape/color information within a single trace (e.g., remembering that 

one saw a ‘5’ and it had this particular shape or color). As we will show, the categorical labels 

have shown to be more resistant to interference as more items are being encoded into memory 

(see Table 3).  

4.Encoding of Novel stimuli:  MLR has the ability to store and retrieve novel shapes (i.e., 

Bengali characters) that it has not seen before. To do so, it stores the L1 latent into the BP and 

retrieves it via the skip connection. The skip connection is critical to reconstruct novel forms, 

since the nature of the compressed representations in the maps force the reconstructions to 

resemble familiar shapes (Figure 10).  

 

 

Figure 10. Illustration of storing a single novel Bengali character six times. The original images were reconstructed 

as familiar shapes when the BP stored the shape and color maps (bottom left). However, the successful 

reconstructions can be seen when the BP stores the L1 activations and retrieve them via the skip connection. These 

representations are connected in one image for simplicity but each Bengali character was stored and retrieved from 

an empty memory store.     

Original images

Stored and Retrieved from 
the shape/color maps 

Reconstructed directly from L1 using skip

Stored and Retrieved from L1 using skip
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5.Encoding multiple visual items: Tokens allow individuation of different items in memory 

(Kanwisher, 1991; Mozer, 1989), which in this case occurs by allocating each item to a subset of 

the binding pool as introduced in earlier work (Bowman & Wyble 2007).  Tokens thus provide 

object-based clustering of attributes in memory. Each item stored in the pool causes interference 

for the others as their representations partially overlap. Thus, representational quality degrades as 

additional items are added to memory in agreement with human behavior (Wilken & Ma, 2004).   

Note that here we are reconstructing the actual shape and specific colors of the items, not just 

their categorical designations.  As the number of items stored in memory gets larger, the quality 

of those representations visibly decreases as demonstrated in Figure 11. Note also that the color 

of the retrieved items becomes more similar as set size increases, reflecting the overlap in 

representation between the different items. This is emblematic of the interference observed in 

storing multiple visual stimuli in Huang & Sekuler (2010). To quantify this decrease of memory 

quality, the number of items stored was increased incrementally and reconstruction accuracy was 

assessed by classifying the retrieved item (Table 3 and see simulation 6 below).   

 

Figure 11. Illustration of the storage and retrieval of 1, 2, 3 and 4 items in memory. The interference increases as 

more items are stored in the BP. This results in inaccurate reconstructions of both shape and color, as well as the 

emergence of ensemble encoding. 

6.Multiple codes for multiple objects: To assess the memory retrievals for visual and categorical 

information as a function of set size we consider four encoding conditions replicated for set sizes 

1-4: 

Condition 1 (encode visual, retrieve visual): shape and color map activations are stored together 

in the BP for each item; Then, either shape is retrieved (1s) or color is retrieved (1c). The 

retrieval accuracy was estimated by the same classifiers trained on the shape and color map 

representations (SVMSS and SVM CC).  

Original images

Retrieved images
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Condition 2 (encode visual + categorical, retrieve visual): shape and color map activations are 

stored together in the BP along with shape and color labels for each item; either shape is 

retrieved (2s) or color is retrieved (2c). the retrieval accuracy was estimated as in condition 1.  

Condition 3 (encode visual + categorical, retrieve categorical): shape and color map activations 

are stored in the BP alongside shape and color labels; either shape label is retrieved (3s) or color 

label is retrieved (3c). The retrieval accuracy of labels was computed by comparing the pre-

encoding one-hot representations estimated by the classifiers for each item when it was first 

classified  with the labels reconstructed from the BP.  

Condition 4 (encode 50% visual + categorical, retrieve categorical):  This was similar to 

condition 3 except that the encoding parameters for the visual attributes was set at 0.5, to 

prioritize categorical information over visual.  When both shape and color maps are stored as 

visual information in the BP along with the one-hot coded labels, the visual information was not 

greatly perturbed (see condition 1 vs. 2 in Table 3 and Figure 12). This is because the one-hot 

labels are akin to a digital form of information that causes little interference with the stored 

visual details. It is also evident that retrieving labels result in higher accuracy compared to the 

visual information when all visual and categorical information are stored in one memory trace 

specifically for larger set sizes (condition 2 vs. condition 3 in Table 3 and Figure 12). By 

reducing the amount of visual information stored in memory down to 50%, the effect of set size 

on retrieving labels becomes smaller (condition 4 in Table 3, and Figure 12). On the other hand, 

accuracy of storing and retrieving only visual information is sensitive to the number of items 

(condition 1 in Table 3 and Figure 12).  These simulation results match the common finding that 

people are able to remember several distinct familiar objects that have well-learned categorical 

labels (i.e., digits or familiar colors) with high accuracy up through approximately 3-5 items, 

while working memory for specific shape details is more limited (Alvarez & Cavanagh 2004).   
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Table 3. Accuracy of retrieving visual and categorical information (%) as a function of set size 

conditions 

 1s 1c 2s 2c 3s 3c 4s 4c 

Set size         

1 83 (.56) 81 (.59) 82 (.66) 80 (.82) 75 (.58) 82 (.46) 83 (.46) 87 (.69) 

2     63 (.56)  56 (.79) 63 (.40) 56 (.71) 64 (.53) 72 (.69) 81 (.41) 85 (.41) 

3 50 (.60) 45 (.55) 50 (.69) 45 (.50) 53 (.74) 62 (.36) 75 (.59) 80 (.46) 

4 40 (.65) 38 (.56) 39 (.79) 38 (.65) 43 (.69) 54 (.55) 67 (.49) 73 (.37) 

Note. Mean classifier accuracy (%) of retrieved items as a function of set size in conditions 1 and 2, and the mean accuracy of 

one-hot labels before and after storage in memory as a function of set size in conditions 3 and 4. The values in parentheses 

indicate standard errors computed over 10 independently trained models. In all cases the accuracy declines as more items are 

stored in memory, however, labels are more resistant to interference as shown in condition 4, especially when the amount of 

visual information stored in memory decreases.  

 

Figure 12. Visualization of Table 3 for mean accuracies of retrieved shapes and color maps (drawn from the 

classifiers) and labels.   

7.BP binding and content addressability: Through token individuation, the BP is able to store the 

attributes of a given stimulus in a combined representation that allows it to link a particular shape 

to its color.  Importantly this allows content addressability (Gorgoraptis et al., 2011), such that if 

two colored digits are stored in memory using the shape or color representations, memory can be 

probed by showing just the shape of one of the items and retrieving the token associated with 

that item.  That token can then be used to retrieve the complete representation of the stimulus, 
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including its color.  Figure 13 illustrates an example of such binding and subsequent retrieval by 

a shape cue, and vice versa.   

To test accuracy of binding retrieval, 500 digit-pairs were stored in the BP using the color and 

shape maps and two tokens.  Afterwards, a grayscale MNIST was used as a retrieval cue to 

determine how often the model successfully retrieved the correct token based on this cue (Figure 

13).  When the two digits were from two different digit categories (e.g., a “2” and a “3”) the 

mean classification accuracy across the 10 trained models was 87% (SE=.45) with a baseline of 

50% chance. We are also able to simulate a case where the model stores two of the same MNIST 

digit (e.g., two 2’s with a slightly different shape), and then measure if the model is able to 

correctly retrieve the token associated with one of them.  In this case the mean classification 

accuracy across the 10 trained models is 70% (SE= .50), notably worse than when the digits were 

different but still far better than chance. This is a demonstration of retrieving a cue based on 

subtle variation in shape between categorically identical stimuli.   This capacity is a novel 

prediction of the model, which is that human WM is able to bind features to an item even when 

shape differences are subtle and the item category is the same.   (see Experiment 4 below for the 

human data).   

 

Figure 13. A diagram showing the flow of information during binding. The MLR stores two colored MNIST digits 

sequentially (step 1and step 2) in the BP. A grey scale shape cue is used to probe and retrieve the corresponding 

token (step 3). The resulting token is used to retrieve the shape and color of the cued input (step 4). The MNIST 

digits shown in this figure are not the result of direct simulation, but are just examples to show how binding process 

occurs.  
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8. More efficient storage of familiar information: It has been shown that people have higher 

memory capacity for familiar items drawn from long-term knowledge than novel stimuli (Chen 

& Cowan,2005; Ngiam, et.al., 2019; Zimmer & Fischer, 2020). The MLR model can show how 

familiar items are stored more efficiently than unfamiliar ones, and therefore have less 

degradation of representations in WM as the set size increases. As shown earlier, the BP better 

encodes the compressed shape and color representations for familiar items (see Figure 9), 

whereas novel shapes must be encoded from L1 and then pass through the skip connection for 

precise retrieval (see Figure 10). To quantify the memory performance, instead of classifiers we 

compared the pixelwise cross-correlation of input and retrieved images as the function of set size 

for familiar and novel2 stimuli, such that familiar shapes are encoded from the shape/color maps 

and novel shapes are encoded from L1 and retrieved from the skip connection. The result of the 

cross-correlations for 500 repetitions are illustrated in Figure 14.  

As it is shown, the correlation value declines as the set size increases, but more steeply for novel 

than familiar stimuli. Using cross-correlation, we also measured the memory performance for 

when familiar items are encoded from L1 and retrieved via the skip connection, versus when 

novel items are encoded from the shape/color maps. The values have been summarized in Table 

4. The shape/color map memory retrievals of the novel shapes are ~15% for all the set sizes, 

indicating that novel configurations cannot be represented by the highly compressed maps at the 

center of the mVAE (see also Figure 10 for illustration of memory retrievals from the shape and 

color maps of Bengali characters). The results also revealed that the L1 encoding of familiar 

shapes and retrieving it via the skip connection yielded a lower performance across all the set 

sizes compared to encoding of shape and color map representations. Hence, the compressed 

shape and color representations achieved by training allows for more precise memory 

representation for familiar shapes, whereas this efficient representation does not exist for novel 

configurations. Therefore, the model relies on the early-level representations of L1 to store novel 

shapes, which in turn comes at a cost of less precise memory retrievals.   

 
2 Due to the limited number of images for Bengali characters as novel shapes, we augmented the data by doing 
slight rotation (10° rotation) and random crop with padding =8 on the 6 characters. This enabled us to do the 
permutations test for measuring cross-correlation. 
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It should be noted that the efficient representation of the shape and color maps is limited to when 

the model encodes the information into memory. In other words, if the images were to be 

reconstructed from the mVAE without being stored in memory, the L1 representations contain 

slightly more visual detail than the shape and color maps. This is illustrated in Figure 15 for 

familiar items, in which we computed the correlation values of a single input and its 

reconstruction when images were reconstructed from L1 via the skip connection versus when 

they were reconstructed from the shape and color maps in the no memory storage condition (left 

panel). This was compared to memory retrievals from L1 and shape/color maps, for which the 

retrievals from the latter were shown to be more precise (right panel). 
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Figure 14. Mean cross-correlation of pixel values for 500 repetitions between input and retrieved images of 10 

trained models for familiar (blue) and novel (Bengali, orange dots) shapes across different set sizes Blue dots 

indicate the correlation for familiar stimuli when the shape/color maps were stored in the binding pool and retrieved 

via the mVAE feedback pathway. Orange dots indicate the correlation of a novel stimulus when the L1 latent was 

stored and then reconstructed with the skip connection. Note that the reconstruction quality is lower for novel shapes 

and also that novel reconstructions deteriorate more rapidly as set size increases. The bars stand for standard errors.  

 

 

 

 

 

 

 

C
ro

ss
 c

o
rr

el
at

io
n

 b
et

w
ee

n
 

in
p

u
t 

an
d

 r
et

ri
e

ve
d

 im
ag

e

Number of items stored in memory

0

.2

.4

.6

.8

1

1 2 3 4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.02.07.430171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430171
http://creativecommons.org/licenses/by-nd/4.0/


33 

 

Table 4. The correlation values between input and retrieval stimuli as a function of set size 

                        Stimuli type 

 Familiar Novel 

    Retrieval     

 S/C maps L1-skip S/C maps L1-skip 

Set size     

1 .84 (.03) .79 (.03) .15 (.06) .79 (.01) 

2 .72 (.05) .69 (.04) .15 (.05) .66 (.03) 

3 .65 (.05) .61 (.04) .14 (.06) .56 (.03) 

4 .59 (.06) .51 (.05) .14 (.06) .50 (.04) 

Note. The mean cross-correlation between stimuli and their retrievals for different set sizes across 10 trained 

models. S/C maps stands for shape and color maps. The values in parentheses are standard errors.  The correlation 

values were measured in cases where the BP encoded the shape and color activations of the novel/familiar stimuli 

and then the stimuli were retrieved via the feedback pathway (retrieval condition: S/C maps). The correlation values 

were also measured in cases where the BP encoded the L1 activations of the novel/familiar stimuli, and then the 

stimuli were retrieved via the skip connection (retrieval condition: L1-skip). 
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Figure 15. The mean cross correlation values between a familiar input and a reconstructed image for 10 trained 

model.  The blue bars are the mVAE reconstructions of L1 via skip connection (left-blue) and the shape/color maps 

without being stored in memory (right-blue). The red bars are memory retrieval of one item when the L1 

representation is stored in the BP and retrieved via the skip connection(left-red) vs. when the shape/color maps are 

stored in the BP and then retrieved via the decoder (right-red). The error bars represent standard error.  

Empirical Validation of the MLR Model 

In partial validation of the model, we provide a series of predictions with empirical tests about 

the capabilities of working memory in storing visual information. These capabilities were 

derived from the general properties of the MLR model.  

Prediction 1: Working memory experiments are typically performed with repetitive experience 

using the same stimuli that enable participants to develop fine-tuned expectations about the task 

demand. We posit, however, that WM is typically used without such expectations in daily life 

and can store mental representations that are useful despite having no expectation of the 

memoranda or response.  The specific prediction is that people can remember the fine-grained 

shape details of stimuli that they are not very familiar with even in the absence of specific 
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expectations or experience in the task. MLR achieves this result by encoding the L1 

representations of the Bengali characters, and retrieving them via the skip connection. Cross-

correlation of pixel values between the input and the retrieved image was .79 (SE = .01) for one 

item across 10 independently trained models (See Figure 10 for visualizations of memory 

reconstructions)   

Experiment 1: 20 Penn State University undergraduates (Mean age = 19.55, 90% female, 20% 

left-handed) participated for course credit.  All the experimental designs were approved by IRB 

at the Pennsylvania State University, and the scripts are available at this link 

(https://osf.io/tpzqk/). Participants were shown one Bengali character and were then asked to 

click on the exact character they remembered seeing from a search array of four Bengali 

characters (Figure 16). Critically participants were only instructed to pay attention, and were 

uninformed as to the nature of the ensuing memory question until after viewing the image.3 Five 

Bengali character categories were taken from the stimulus set downloaded from 

www.omniglot.com, which includes multiple different exemplar drawings of a Bengali character 

in grayscale. The experiment was developed in Psychopy (v2020.2.2, Peirce et al., 2019) before 

being translated to JavaScript using the PsychoJS package (v 2020.2) and run online via Pavlovia 

(Peirce et al., 2019). Each character was presented in the center of a grey screen at size 

(0.15x0.15 Psychopy height units, a normalized unit designed to fill a certain portion of the 

screen based on a predefined window size) for 1000ms, followed by a 1500ms delay. After 

viewing the image, participants were then instructed to click on the image they just saw. Four 

images including 3 distractors and the target were presented to the participants. On the first trial, 

non-target answer options were selected from different Bengali characters, and on trial 2 non-

target answer options were different exemplars of the same character. Participants were not 

aware a 2nd trial would occur until after the completed the first. Accuracy scores were considered 

 
3 The exact instructions for the experiment were provided separately on each trial, to minimize the potential of 
participant’s predicting what they may need to remember during this experiment. Thus, the instructions occurring 
before trial 1 were as follows: "Thank you for participating in this experiment. You will be completing two separate 
experiments! This 1st experiment will be a very short, ONE TRIAL experiment where we show you some visual 
information. Because there is only one trial we need your full attention, as you only get ONE SHOT. So keep your 
eyes on the fixation cross before the stimulus appears. Press the SPACEBAR when ready to begin.” The instructions 
following trial 2 were as follows: “"That concludes our first experiment! We will now begin the 2nd, equally fast 
ONE TRIAL experiment. We will show you some new visual information. Again, we need your full attention, as you 
only get one trial. Press the SPACEBAR when ready to begin.” 
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significantly above chance if a 95% bootstrapped CI (95% bCI) did not include the chance 

baseline (25%).  

 

 

Figure 16. Trial layout for all experiments conducted on human participants. In Experiment 1, participants saw a 

grayscale Bengali stimulus before being asked to click which image they remembered seeing. The foils presented in 

the 4-afc varied between trial 1 and trial 2. They were not informed ahead of time that there would be a memory 

task. Experiment 2 was identical to Experiment 1, except the stimuli used were MNIST digits. In Experiment 3, 

participants viewed grayscale MNIST and were instructed to type in the category of the image (e.g., type ’4’ in 

displayed trial) for 31 consecutive trials before being surprised with a question asking them to click on the exact 

MNIST exemplar they remembered seeing. In Experiment 4, participants were instructed to remember the color-

exemplar pairing of MNIST digits, before being cued with the specific exemplar and asked to click on the color that 

exemplar was. The key behavioral result is summarized below each condition, see text for details.  

Experiment 1 results: Though participants were shown novel targets and given no instruction to 

remember the Bengali character presented to them, the mean accuracy on the very first trial was 

95%, 95% bCI [85%,100%]. Participants were also highly accurate on the second trial which 
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asked a more difficult question by requiring them to find the target image from the same 

category, M = 90%, 95% bCI [75%,100%].  

Prediction 2: When people create a memory for a familiar stimulus, they can also have a 

memory for the specific shape of that stimulus, as well as being able to categorize it. This is 

particularly true when there is no specific expectation as to what response will be necessary. 

MLR predicts this by storing multiple codes of a given visual stimulus in one memory trace.     

Experiment 2: A new sample of 20 Pennsylvania State University undergraduates (Mean Age = 

18.6, 90% female, 5% left-handed) participated in this online experiment for course credit. 

Participants viewed one grayscale MNIST digit image (3, 4, 6, 7, and 9) on a black background 

before being asked to click on the exact image they remembered seeing (Figure 16). Again, 

participants were not informed there would be a memory task4. Thus, the first trial served as an 

unexpected memory test. Non-target options were exemplars from the same digit category (e.g., 

they saw four different instances of the digit 3, one of which was an exact match to what they 

had just seen; see Figure 16). Participants completed 5 trials in total, with a new digit category 

shown on each trial (i.e., digit categories were never repeated within an individual). All other 

components of Experiment 2 were identical to Experiment 1.  

MLR simulates the lack of expectation via setting the encoding parameters of the shape and 

color maps to 1.0. and encoding both features as well as the categorical labels into memory. We 

replicated simulation 6 (Table 3, condition 2s) except with grey scale stimuli. The mean 

decoding accuracy of the retrieved shape across 10 trained models was 83% (SE = .43). 

Results: Overall, the mean accuracy of reporting the MNIST exemplar without being specifically 

instructed was 85% (95% bCI [60%, 95%]) on the very first trial. Accuracy on subsequent trials 

was 85% (95% bCI [70%,100%]), 90% (95% bCI [75%, 100%]), 100%, and 100%. Thus, people 

could remember the shape of a familiar stimulus even when there was no expectation to report on 

the its shape and improved to perfect accuracy with a small amount of experience. This supports 

 
4 The specific instruction was: “This experiment will be a very short experiment where we show you some visual 
information. Because it is short and each of the 5 trials are unique, we need your full attention right from the start. 
Keep your eyes on the fixation cross before the stimulus appears. Press the SPACEBAR when ready to begin."  
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our assumption that even highly familiar stimuli are encoded at the specific shape level in the 

absence of expectation of what specific question will be asked.  

Prediction 3: Our next prediction is that expectation can tune representations for highly familiar 

objects to represent categorical information at the expense of visual information.  This will be 

tested by asking subjects to repeatedly report the identity of a digit, ignoring its specific shape, 

and then giving them an unexpected question about its shape after 30 trials. Thus, the same 

question about visual shape that could be easily answered in Experiment 2 should be hard to 

answer after memory encoding settings have been tuned to exclude visual details.   

This prediction stems from the fact that MLR has modifiable parameters controlling the relative 

contribution of shape vs one-hot categorical representations as memories are constructed. We 

modified the parameters similar to simulation 6 (Table 3, condition 4) except that only 20% of 

shape information is stored in memory alongside the categorical label. The classification 

accuracy of the decoded shape information demonstrated 24% (SE=1.6) shape accuracy, whereas 

the accuracy of retrieving the label was 84% (SE =.6). It should be noted that the ceiling 

accuracy of labels is constrained by the classifier accuracy, which is about 85% and thus lower 

than human performance in identifying an MNIST digit, which is near 100%.   

Experiment 3: A new sample of 20 Pennsylvania State University undergraduates (Mean Age 

18.8, 95% female, 5% left-handed) participated in this online experiment for course credit. The 

paradigm (Figure 16) resembles that used in standard Attribute Amnesia studies (Chen & Wyble, 

2015). Participants viewed a grayscale MNIST digit (from any digit category 0 through 9), and 

were instructed to report the category of the image by typing the respective digit on the 

keyboard5. This task was repeated for 50 trials before participants were asked a surprise question 

on Trial 51: instead of identifying the image category, they had to select the specific category 

exemplar they remembered seeing (i.e., which specific “2” among a 4-AFC array of MNIST 

“2s”).  On the surprise trial, participants reported the specific shape of the digit they just saw by 

 
5 The exact instructions were as follows: “In this task, you will be presented with an image of a digit. Your task is to 
identify which digit it is. When asked to do so, using the number keys on the top of your keyboard (NOT the 
number pad), press the key of the number you remember seeing.” 
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clicking on the image that matches the target6. The display response consisted of the target and 3 

distractors from the target category but with different shapes (see Figure 16).  

Participants then completed 9 more exemplar identification trials (termed control trials). 

Significance for accuracy changes on the surprise trial was assessed by comparing surprise trial 

accuracy to accuracy on the 1st control trial via a permutation test (10,000 iterations). All other 

parameters of this study were identical to Experiment 2. 

Results: The mean accuracy of identifying the target was 97% during the 50 pre-surprise trials. 

However, on the surprise trial, the accuracy of identifying the exact shape of the presented 

stimulus was 15%, 95%bCI [0,30%].   On the very next trial, when participants had an 

expectation to report such information, the accuracy of reporting the shape of the digit elevated 

to 100% on the very next trial. The difference between performance on the surprise and first 

control trials was significant as determined via a permutation test, p <.0001. This demonstrates 

that memory representations can be tuned to represent largely categorical information, with 

minimal specific shape information.   

Prediction 4:  Perhaps the most striking capability of WM that is unique to MLR among 

competing models is the ability to bind two specific colors to two different shapes, even when 

the two shapes are from the same category (binding accuracy: M=69.92%, SE= .50).  This 

follows from the fact that tokens link shape map information to color map information.  

Therefore, when shown two different instances of an MNIST digit of a given category with 

different colors, participants should be able to report which color was bound to which specific 

shape (See Figure 13) 

Experiment 4: A sample of 20 participants (Mean Age 21.9, 45% female, 15% left-handed) were 

recruited from the online website Prolific.  On each trial (Figure 16), 2 MNIST exemplars from 

the same digit category were presented sequentially to the participant. Each exemplar was 

randomly colored from a list of 10 options (Red, Green, Blue, Pink, Yellow, Orange, Purple, 

Teal, Cyan, and Brown), and colors did not repeat within a trial. Each digit was visible on screen 

 
6 The exact instructions presented on the surprise trial were as follows: “This is a surprise memory test! Try to 
remember the digit you last saw? What was its specific shape? Click the image that matches the image you just 
saw” 
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for 500 ms, with a 500 ms ISI between exemplars and a 500 ms delay between the second 

exemplar and the response screen. One of the exemplars (counterbalanced across trials) was then 

presented to the participant in grayscale, and participants were instructed to click on the color 

that was paired with this exemplar (10-afc; chance = 10%). Unlike in previous experiments 

where no instruction was given, participants were explicitly instructed to remember the color-

shape pairing7￼.  

Results: Participants were able to remember which color was linked to which specific MNIST 

exemplar. Overall, Participants correctly reported the target color 81.5% of the time8, 95% bCI 

[75.5%, 87.25%], with swap errors (reporting the color of the other MNIST digit) occurring on 

average 9% of the time, 95% bCI [4.75%, 14%]. Importantly, participants were capable of 

completing this task on the first trial, as 17 of 20 participants (85%) reported the correct color on 

trial 1, 95% bCI [70%, 100%]. This shows that the ability to utilize one attribute of a bound 

representation to retrieve another attribute is a general capability of WM, rather than a specific 

capacity that emerges through training.   

 

General Discussion 

The MLR model provides a plausible account of rapid memory formation that utilizes a limited 

neural resource to represent visual and categorical information in an active state. The model 

mechanistically explains how WM representations could build on long-term knowledge traces, 

capitalizing on visual experience to store familiar items more efficiently.   Using a generative 

model such as a VAE, we were able to build a knowledge system based on synaptic plasticity. 

The VAE layers also share similarities with the visual ventral stream and can represent complex 

shapes with compressed representations. We showed that when images are drawn from MNIST 

 
7 The exact instructions were as follows: “In this task, you will be presented with 2 images of digits in different 

colors. The digits will be the same (i.e. two 4s) with different shapes. Please remember which shape is linked to 

which color. You will then be asked to report the color of 1 of the 2 digits. You will be reshown one of the twp 

previously seen shapes, and when asked to do so, please click on one of the 10 color choices that was paired with 

that shape.” 
8 Target presentation order had no influence on accuracy. Participants were as accurate at reporting the target’s 
color when the first exemplar served as the probe (M = 84%) compared to the second (M = 79%), permutation p-
value = 0.49.  
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or f-MNIST datasets as familiar stimuli, the visual knowledge provided the WM with the item’s 

compressed representation at its later levels or its categorical label. Whereas, for novel shapes 

the model could leverage generic representations at early layers to encode them into WM. 

Subsequently, we demonstrated that the advantage of storing compressed format of known 

shapes is having less interference between items compared to when early level representations of 

novel shapes9 are stored in memory(Figure 14). Moreover, we showed attribute binding for 

individual items by encoding 2 digits with different colors in WM, and cuing one of the shapes to 

retrieve the whole item. Finally, we provided empirical evidence of the basic principles of the 

model, showing that naïve subjects can retrieve the specific shape of both novel and familiar 

stimuli and can bind attributes to presented shapes.  

Addressing the functional capabilities of Working memory 

There is a tremendous amount of literature on the functional capabilities of working memory. 

Thus, it is impossible to address all of it here.  As detailed below, there are specific and 

important aspects of the memory literature that we are unable to address due to the scope of the 

model, but the model is able to address high-level requirements of a working memory model as 

provided by Oberauer (2009). Here we describe them with reference to MLR.   

1. Build new structural representations:  This refers to the ability to quickly link or dissolve 

representations that bind parts of existing representations together into novel 

configurations.  This is demonstrated by the ability of MLR to form representations of 

novel spatial arrangements of line segments (i.e., Bengali characters) extracted from the 

L1 latent.  

2. Manipulating structural representations:   This refers to the ability to access information 

that is currently stored in memory and to implement cognitive operations on it. MLR 

does not represent cognitive operations, but it has tunable parameters that control the 

 
9 It is important to clarify that in reality we cannot have a purely novel stimulus, as any shape can be decomposed 

into elements that we are more or less familiar with. For instance, an unfamiliar Chinese character can be 

remembered as lines and strokes or even objects that one has encountered with in her lifetime. 
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flow of information to determine what specific attribute(s) or labels should be encoded 

into WM.   

3. Flexible reconfiguration:  This refers to findings that WM is a general-purpose 

mechanism that can be reconfigured.  This flexibility is at the heart of MLR’s mechanism 

for adjusting which latent spaces are projected into the binding pool according to task 

requirements. For instance, novel configurations are stored using a different latent than 

familiar shapes.  Moreover, changing the encoding parameters does not require adjusting 

gradients, but is instead a modulation of transmission along a given pathway.   

4. Partially decoupled from long-term memory:  WM must be able to store and retrieve 

information in a way that is distinct from information stored in long term memory.  The 

binding pool exhibits exactly this property by creating active representations that are 

separate from the latent spaces embedded in the visual knowledge. 

5. Draws on long-term memory:  The primary function of MLR is its ability to build 

efficient memories on existing long-term knowledge representations. The BP in MLR can 

use compact latent spaces for stimuli that the model had training experience with.   

6. Transferring useful information into long-term memory:  It must be possible to convert or 

“train” WM representations into long-term memory representations. This capability is 

enabled by the generative aspect of MLR. Memories for novel stimuli can be 

reconstructed at the earliest levels of input and can then be used to drive learning 

mechanisms at any subsequent latent representation. In other words, memory 

consolidation could occur by regenerating remembered representations and then using 

those to drive perceptual learning (or gradient descent in an artificial neural network). 

Another requirement emphasized by Norris (2017) is the need for a short-term memory system to 

explain how novel visual stimuli can be remembered, which MLR can do by virtue of 

reconstructing the L1 latent with the aid of BP. Norris also discussed extensively the distinction 

between copies of information and pointers. In MLR, memory encoding is a combination of the 

two.  When a latent space is projected into the BP, it is not a literal copy of the original pixelwise 

stimulus.  Instead, the BP stores a copy of the representation in a latent space, and thus requires 
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that latent space, and the supporting circuitry in the feedback pathway to reconstruct the 

information at the pixel level.   

More detailed constraints on WM can be found in a comprehensive list of empirical benchmark 

effects (Oberauer et al. 2018).  Future iterations of computational models such as MLR with a 

larger scope and a more direct simulation of time, could take advantage of such data to constrain 

more detailed models.   

Comparison of approaches 

As mentioned in the introduction, there are several major frameworks for thinking about the 

storage of information in WM in relation to long-term knowledge. Separate-store accounts imply 

a delineation between perceptual systems, long-term memory, and the WM system (Atkinson & 

Shiffrin 1968; Baddeley & Hitch, 1974; Baddeley, 2000).  This separation is consistent with the 

notion of prefrontal cortex as a substrate for WM as discussed in the electrophysiological 

literature (Goldman-Rakic,1995; Miller, Erickson & Desimone, 1996).  These accounts can be 

contrasted with embedded process accounts (Cowan 1988, 1999, Cowan, Morrey & Benjamin-

Naveh 2018; Oberauer 2009, Teng & Kravitz, 2019) in which there is less of a distinction 

between WM and other cognitive systems such as long-term memory.  

The MLR has a binding pool for storage that is distinct from the perceptual system and visual 

knowledge and therefore is more in line with the classical separate-store account.  However, the 

MLR model could in principle be modified to resemble an embedded process account by placing 

small binding pools within each of the processing layers.  This example illustrates the value of 

implemented models, as they provide a computational intuition for contrasting accounts, even in 

the absence of explicit implementation.  Making such a modification to MLR, without losing its 

ability to bind features together would require that the tokens link to each of the small binding 

pools.  Moreover, such an account would not exhibit very much interference between different 
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levels of representation given that they were represented in different cortical areas (i.e., one 

could store familiar and unfamiliar objects together with minimal interference).10   

Another distinction in the space of WM models is whether there are unitary or separate memory 

storages for different types of information (i.e., visual and non-visual). MLR makes no 

distinction between the storage of information in that it encodes categorical and visual 

information in one memory trace. While auditory representations are not included in MLR, it 

would be possible to project latent representations of phonological information into the binding 

pool as well.   However, the model could be amended to incorporate a distinction between visual 

and non-visual information by adding a second binding pool.  We are persuaded by Morrey 

(2018) that the evidence for such a distinction is not clear cut and thus are proposing the simpler 

and parsimonious unitary account. Developing computational theories such as this is a means to 

advance these debates by providing more tangible implementations of these theoretical positions.  

Advantages of the binding pool architecture in MLR 

Given these possible implementations, we propose that a key advantage of clustering neural 

activity associated with memory into a binding pool of general-purpose storage neurons is that 

higher-order processes have a straightforward path to control those representations, allowing 

them to be sustained, deleted, or instantiated into constituent cortical areas with a relatively small 

amount of circuitry.  In the context of MLR, it is harder to imagine how a centralized executive 

control system could exert control over an embedded memory system, since those control 

circuits would have to synchronously infiltrate a large number of cortical areas in order to 

reactivate, manipulate or extinguish those memory representations.  Binding information 

between different features within distinct objects is also simpler to implement in a binding pool 

architecture as demonstrated here because the information is physically clustered in a well-

defined population of neurons.  Thus, the arguments in favor of an account like MLR is that it 

places less demands on the interplay between functional networks. On the other hand, it could be 

that synchrony mechanisms could play a role in aligning tokens with an anatomically distributed 

 
10 Other embedded process accounts as described by Cowan (2001) are able to explain cross-dimensional 
interference as an attention limitation and it would be useful to develop implementations of those accounts to 
compare their functional limitations to models such as MLR.  
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binding pool in the absence of highly specific anatomical connections (Miller, Lundqvist & 

Bastos, 2018). 

Finally, perhaps the strongest argument in favor of having a BP mechanism is that BP makes 

storing episodic representations into long-term memory fairly straightforward.  By building 

memories of the binding-pool activity state, the hippocampus can store a copy of the most 

relevant information at the time the WM was constructed.  Thus, a snapshot of the binding pool 

state provides a combined memory trace of the information that was deemed important or task 

relevant at the time that trace was constructed.  

Candidate regions for the binding pool 

The binding pool is instantiated here in a mathematically idealized form of a single pool of 

neurons that is linked with an undifferentiated connection to a wide range of cortical areas.  This 

is the most naïve solution with no training or optimization of the weights between the latents and 

the BP, and it is of course more likely that a biological instantiation would have differentiation to 

represent information more efficiently. Thus, the simple random connectivity we use here should 

not be taken as a strong assumption that there is no learning of this weight matrix in the real 

system.  

As far as physical realizations the claustrum is an example of a brain area that has the potential 

cortical connectivity to support a domain general binding mechanism (Crick & Koch 2005; 

Fernández-Miranda, Rhoton, Kakizawa, Choi & Álvarez-Linera, 2008).  It is also tightly 

interconnected with the medial entorhinal cortex (in mice, Kitanishi & Matsuo 2017) which 

would allow binding pool representations to be stored in the hippocampus as episodic traces. It 

also allows remembered binding pool representations to be reconstructed from the hippocampus 

and then projected down to constituent areas.  Rhinal areas leading into the hippocampus could 

also serve this role, thus enabling transfer of information from the binding pool into more 

durable episodic memory representations.  However, rhinal areas are generally not directly 

connected to lower order sensory areas, which would make it more difficult to store 

representations from very early areas.   
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Another possibility is that the functionality of the binding pool could be distributed through parts 

of the basal ganglia to provide a highly flexible form of working memory that incorporates top-

down control circuitry to determine what information is stored at any point (O’Reilly & Frank 

2006).  The involvement of prefrontal areas in WM has long been suggested by single unit work 

in monkeys (Goldman-Rakic,1995). In particular, the mixed selectivity of neurons in the 

prefrontal cortex across tasks (Rigotti, et al 2013) and sequential order (Warden & Miller 2007) 

is emblematic of how neurons in the binding pool would exhibit different tuning properties 

depending on a particular configuration of cognitive processing strategies (see Wyble, Bowman 

& Nieuwenstein, 2009 for discussion on this). Thus, a system in which the prefrontal cortex 

embodies the token control architecture, while the binding pool resides in areas like the basal 

ganglia or the claustrum are potential candidates for a binding pool.   

Limitations 

MLR is not intended as a complete model of working memory as there are many functional, 

empirical and computational aspects that have not yet been considered.  Their omission is not 

intended to signal that they are unimportant, but rather is an admission that a formal 

implementation of a cognitive function so flexible as WM is beyond the scope of any single 

paper or even career (See Cowan 2001, Barrouillet et al.,2009, Logie Camos & Cowan 2021, 

Oberauer, 2009; Oberauer et al. 2018; Schneegans &Bays, 2019; for extensive discussion on 

other aspects of WM)  

Rather, the MLR is intended as a nucleus of a storage mechanism to store memories in a way 

that is linked to visual knowledge and that is extensible to a broader range of empirical 

phenomena and capacities. Here are several aspects of the model that have not been considered 

but are likely crucial for a more comprehensive account of WM.  

Space: MLR in its current implementation has no ability to represent different spatial locations 

across the visual field, as the input space is only 28x28 pixels and one stimulus fills most of it. 

Adding biologically realistic spatial location as a dimension to an autoencoder such as the 

mVAE is feasible in principle, although it would require additional layers and complexity in 

terms of connectivity gradients across foveal and parafoveal areas. We consider such 
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improvements to be an important next step in the development of models such as this.  The 

binding pool as a storage mechanism is generic with respect to information content and thus 

should be adaptable to any model containing latent spaces.   

Time: For simplicity, there is no explicit representation of time in MLR, which makes many 

empirical phenomena inaccessible.  For example, primacy and recency gradients, the time course 

of memory consolidation and decay of memory over time are not within the scope of the model.  

Future work could address this with a more detailed neural model. 

Attention and central executive:  For simplicity, we assume that control circuits determine when 

information is encoded, or reconstructed, and also tune the encoding parameters so that the most 

relevant latents for a given memory trace are stored. Attention is thereby implemented in 

parameters that are tuned to produce efficient encoding, but no attention is required for 

maintenance of information in the current implementation. Attention would also be required for 

managing the flow of information between different areas of the model (e.g., encoding from 

latents into the BP, retrieving information from the BP, or erasing WM; see appendix for further 

discussion of this point).   

Conclusion  

Working memory has been at the center of cognitive psychology and neuroscience research for 

decades.  It is evident that this mental construct is inseparable from our previously learned 

knowledge, as it has been stated in many of the existing theories (Baddeley, 1992; Cowan, 

1999). However, without an actual implementation of a WM model that is coupled with visual 

knowledge, contrasting and evaluating the existing theories seems to be very challenging, if not 

impossible. The MLR model, constrained by computational, biological and behavioral findings is 

the first attempt to shed light on the computational mechanisms of WM in relation to visual 

knowledge, while highlighting the aspect of familiarity in storing and retrieving visual 

information. We believe implementing models as such are valuable resources for generating 

intuitions about the rapid formation of representations in working memory. 
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appendix 

Colorized MNIST and Fashion MNIST  

The original datasets of MNIST and f-MNIST are in grey color. Each image in the dataset was 

randomly colorized by 10 prototype colors – red, blue, green, purple, yellow, cyan, orange, 

brown, pink, teal – 

with color values being [[0.9, 0.1, 0.1], [0.1, 0.9, 0.1], [0.2, 0.2, 0.9], [0.8, 0.2, 0.8], [0.9, 0.9, 

0.2], [0.1, 0.9, 0.9], [0.9, 0.5, 0.2], [0.6, 0.4, 0.2], [0.9, 0.7, 0.7], [0.1, 0.5, 0.5]].  

The color of each image was chosen by first selecting a prototype color and then adding random 

variation to each of the RGB channels from the range [-.1, .1]. 

Modified VAE 

Our innovation in modifying the VAE was using 3 objective functions to train the shape map, 

color map and the skip connection. All the objectives were derived from Equation 1s that is used 

for VAE. The explanation for variables and parameters of the following Equation can be found 

in Kingma & Welling (2013).  

𝐿(𝜃, ∅; 𝑥, 𝑧 , 𝛽) = −𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃 (𝑥|𝑧) +  𝛽 ∗ 𝐷𝐾𝐿(𝑞∅(𝑧|𝑥)||𝑃(𝑧))               [1s] 

Skip objective function: minimizes the Equation 2s, where the first term represents cross entropy 

and the second term represents the KL divergence for input x and the bottleneck variable of 𝑧𝑠 

for shape and 𝑧𝑐 for color map. z= 𝑧𝑠 + 𝑧𝑐 . The mathematical explanation of all the variables 

can be found in Kingma & Welling, 2013. We adopted  𝛽 =  .25.  

𝐿(𝜃, ∅; 𝑥, 𝑧 , 𝑧𝑠, 𝑧𝑐, 𝛽) = −𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃 (𝑥|𝑧) +  𝛽 [𝐷𝐾𝐿(𝑞∅(𝑧𝑠|𝑥)||𝑃(𝑧𝑠)) +

𝐷𝐾𝐿(𝑞∅(𝑧𝑐|𝑥)||𝑃(𝑧𝑐))]                             [2s]    

Shape objective function: This function converted images into grey scale images by averaging 

across the three RGB channels. Then the following objective was minimized with 𝛽 = .5. 
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𝐿(𝜃, ∅; 𝑥, 𝑧 , 𝑧𝑠, 𝛽) = −𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃 (𝑥|𝑧) +  𝛽 ∗  𝐷𝐾𝐿(𝑞∅(𝑧𝑠|𝑥)||𝑃(𝑧𝑠))      [3s] 

While the shape map was being trained, color map and skip connection were detached. 

Color objective function: This function computes the maximum color value of rgb channels for 

each image and converts the image to those value. That results in replacing each image with 

color patches of highest value. Then, it minimized the Equation 4s with 𝛽 = .5.  

𝐿(𝜃, ∅; 𝑥, 𝑧𝑐, 𝑧 , 𝛽) = −𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃 (𝑥|𝑧) +  𝛽 ∗  𝐷𝐾𝐿(𝑞∅(𝑧𝑐|𝑥)||𝑃(𝑧𝑐))         [4s] 

While the color map was being trained, shape map and skip connection were detached. 

BP Connectivity 

 The binding pool weight matrix was generated via randomly normally distributed values (mean 

0, std dev= 1.0) and are randomly re-generated for each simulated trial.  However, they remain 

fixed each time that the binding pool function is called.  

Token Connectivity  

 Each token is connected to a random set of 40% (i.e., 1000) of total nodes (i.e., 2500). This 

means that when a given token is active, that subset of BP nodes it is connected to can be used to 

store and retrieve information, the remaining BP nodes will still hold their activation state, but 

can neither be encoded to, or retrieved from.  The subset of BP nodes associated with each token 

overlap with one another so that for any given token, 40% of its nodes overlap with any other 

token.  As a result, with increasing the number of tokens stored in memory, the likelihood of 

interference between objects increases due to the overlap between token connectivity to the BP. 

There is no limit on the number of tokens, but the binding pool is assumed to be fixed in size.  

 

 

Control signals for encoding and retrieval 
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As in the simpler binding pool architecture of Swan & Wyble (2014), it is assumed that there are 

control signals that determine when information is encoded into or retrieved from the binding 

pool.  These would correspond to commands from a central executive and take the form of 

volumetric neuromodulation or suppressive gating signals that can determine whether afferent or 

efferent connections are active at any given point.  These control signals are implemented with 

procedural code for simplicity.  

SVM classifiers 

SVM classifiers were used to determine the information represented in shape and color maps as 

well as estimating categorical labels. SVMs were imported from the scikit-learn library as radial 

basis functions (kernel= ‘rbf’) with the decision function parameters to be C=10 and 

gamma=’scale’ respectively.  
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