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Abstract
Neurons in the hippocampus fire in consistent sequence over the timescale
of seconds during the delay period of some memory experiments. For longer
timescales, firing of hippocampal neurons also changes slowly over minutes
within experimental sessions. It was thought that these slow dynamics are
caused by stochastic drift or a continuous change in the representation of
the episode, rather than consistent sequences unfolding over minutes. This
paper studies the consistency of contextual drift in three chronic calcium
imaging recordings from the hippocampus CA1 region in mice. Computa-
tional measures of consistency show reliable sequences within experimental
trials at the scale of seconds as one would expect from time cells or place
cells during the trial, as well as across experimental trials on the scale of
minutes within a recording session. Consistent sequences in the hippocam-
pus are observed over a wide range of time scales, from seconds to minutes.
Hippocampal activity could reflect a scale-invariant spatiotemporal context
as suggested by theories of memory from cognitive psychology.

When we remember a particular experience from a trip, other memories from the same
trip would also come into mind. Indeed, the retrieval of an episodic memory is believed
to involve recovery of the spatiotemporal context associated with that particular episode
(Tulving, 1983). The hippocampus has long been implicated in episodic memory (Scoville
& Milner, 1957) and it contains single neurons that are active when the animal is at a
particular location within an environment (O’Keefe & Dostrovsky, 1971; Moser, Kropff, &
Moser, 2008) or at a particular time point during the gap between two stimuli (Pastalkova,
Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2010;
Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013) (Figure 1a, top). Taken together,
this neural population activity can be thought of as a state of spatiotemporal context
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upon which memories are organized (O’Keefe & Nadel, 1978; Howard, Fotedar, Datey,
& Hasselmo, 2005; Polyn & Kahana, 2008; Staresina & Davachi, 2009; Hasselmo, 2012;
Eichenbaum, 2017; DuBrow, Rouhani, Niv, & Norman, 2017; Buzsáki & Tingley, 2018;
Ekstrom & Ranganath, 2018; Yonelinas, Ranganath, Ekstrom, & Wiltgen, 2019).

Episodic memory retrieval is organized according to spatiotemporal proximity at many
different scales. When a participant has an episodic memory for an event from a particular
temporal position within a list (Kahana, 1996) or spatial position within an environment
(Miller, Lazarus, Polyn, & Kahana, 2013), this brings to mind events from nearby posi-
tions, in time or in space. If episodic memory is indeed associated with the recovery of a
spatiotemporal context (Tulving, 1983), then the effect of proximity on behavior could be
caused by gradual changes in spatiotemporal context reflected in hippocampal ensembles
(Manns, Howard, & Eichenbaum, 2007; Ezzyat & Davachi, 2014; Rubin, Geva, Sheintuch, &
Ziv, 2015; Cai et al., 2016). In this view, memories for events close in space or time are linked
because of overlap in the spatiotemporal contexts associated with those events. Sequences of
time cells or place cells could serve as a spatiotemporal context; because they change slowly
over time they could mediate associations between nearby events (Wallenstein, Eichenbaum,
& Hasselmo, 1998; Howard et al., 2005; Hsieh, Gruber, Jenkins, & Ranganath, 2014). Thus
far, time cell sequences have only been observed over a few seconds within the delay pe-
riod of an experimental trial embedded in a much longer recording session (Pastalkova et
al., 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2011; Kraus et al., 2013). However,
behavioral effects linking memories separated in time are observed over many timescales
in list learning experiments (Howard, Youker, & Venkatadass, 2008; Unsworth, 2008) and
can span days and weeks in memory for real-world events (Healey, Long, & Kahana, 2019;
Uitvlugt & Healey, 2019). If memories across lists separated by many minutes can be linked,
this suggests that hippocampal sequences should also unfold across trials over the scale of
minutes. Perhaps the sequence of cells that unfolds in the moments following the beginning
of a delay period of a few seconds has an analog in a sequence that unfolds over the entire
recording session following the beginning of the session.

A series of studies have found that the activity of hippocampal neurons does change
slowly over long timescales. For example, it was reported that population neuronal activity
in CA1 exhibits gradual changes over multiple trials that span minutes (Manns et al., 2007;
Ziv et al., 2013; Mau et al., 2018) (Figure 1a, bottom). It has also been reported that place
cell and time cell activity slowly “drift” across hours and days (Ziv et al., 2013; Mankin,
Diehl, Sparks, Leutgeb, & Leutgeb, 2015; Mankin et al., 2012; Rubin et al., 2015; Mau et
al., 2018; Cai et al., 2016). The observation of these slow changes with multiple recording
techniques make it unlikely that they are a recording artifact. However, it is possible that
this slow drift is simply caused by stochastic processes in the neural system or perhaps
a gradual but continuous change in the representation of events. Stochastic mechanisms
would cause changes in firing across trials but there is no reason to expect that they would
cause the same sequence over repeated experiences (Figure 1b, bottom left). However, if
slow changes are generated by the same mechanism as time cell sequences, we would expect
the dynamics to be consistent across repeated experiences. In much the same way as time
cell sequences can be understood as coding for the time since the delay period began, slow
changes in firing across trials could contain information about the time since the recording
session began.
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Figure 1 describes a strategy for data analyses to distinguish consistent sequences from
stochastic drifts. Consider a population of cells being recorded over two separate experi-
ences. During each experience the activity of the population changes gradually. This effect
can be demonstrated by measuring the correlation of firing over the population at differ-
ent points in time. As one chooses time points further apart from one another within the
experience the population becomes more decorrelated. Now, suppose that the population
fires consistently from one experience to the next (Figure 1b, top left). In this case one
would observe an analogous decorrelation when examining firing across different experi-
ences (Figure 1b, top right). Although the two experiences could be separated by a time
interval much longer than the duration of the experience itself, the population activity from
a particular time point in each experience will be similar even if those time points are taken
from different experiences. In contrast, if the within-experience correlation were not due to
consistent sequences but, say, stochastic variability (Figure 1b, bottom left), the population
would still change gradually over time within one experience. However, if the population
activity simply decorrelates with time, that would also mean that one would not observe
correlation between analogous time points within different trials (Figure 1b, bottom right).

The strategy of this paper is to evaluate whether slow changes in hippocampal activity
across trials include consistent sequences extending across multiple trials. To compare to
more well-understood sequences—time cells and place cells—we apply the same analyses to
population activity both within trials and across trials. It is impossible to assess whether a
sequence is consistent or not if one cannot record from the same population. Therefore, we
study populations recorded using chronic calcium imaging technique that allow identifica-
tion of the same neurons across recording sessions (Ziv et al., 2013). We found that across
three behavioral tasks, populations of neurons in the CA1 region of mouse hippocampus ex-
hibit consistent dynamics both within seconds-long trials and across trials, spanning many
minutes within a recording session.

Results

To distinguish consistent sequences from stochastic dynamics (Figure 1), we exam-
ined the consistency of the neuronal dynamics across two timescales while mice performed
reward-based navigational tasks (Mau et al., 2018; Levy, Kinsky, Mau, Sullivan, & Has-
selmo, 2019; Rubin et al., 2015). In all experiments, each session consists of multiple trials,
during which mice were trained to navigate through an environment to obtain rewards (Fig-
ure 2). One-photon endoscope calcium imaging was used to record the activity of many
neurons in the CA1 region of the hippocampus across sessions. Images from different ses-
sions were cross-registered so that the activity of the same neurons could be tracked across
sessions (Methods). We develop a series of computational measures for the consistency of
activity over seconds-long delay intervals across trials. Not surprisingly these measures of
consistency detect sequences over seconds that are consistent across trials, driven by time
cells and place cells. Next, we apply the same computational measures to detect slow se-
quences of activity over multiple trials that are consistent across experimental sessions. To
the extent these measures show the same kind of consistent dynamics described by time cells
and place cells, we will establish that hippocampal ensembles exhibit consistent sequences
of activity across trials at the time scale of a session.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.07.430172doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430172
http://creativecommons.org/licenses/by-nc-nd/4.0/


SLOW SEQUENCES IN MOUSE HIPPOCAMPUS 4

a. 

b. 

?

Timescale: 

seconds

Timescale: 

Minutes

Random drifts:

Slow sequences:

T
im

e
, 

e
x
p
e
ri
e
n
c
e
 2

Time, experience 1

S
im

ila
rity

 b
e
tw

e
e
n
 

p
o
p
u
la

tio
n
 v

e
c
to

rs

Time, experience 1

T
im

e
, 

e
x
p
e
ri
e
n
c
e
 2 S

im
ila

rity
 b

e
tw

e
e
n
 

p
o
p
u
la

tio
n
 v

e
c
to

rs

Neuron 1 Neuron 2

Neuron 3

Time (minutes)

A
c
ti
v
it
y

. . .

Neuron 1 Neuron 2

Neuron 3

A
c
ti
v
it
y

. . .

Trial 1

Trial 2
Neuron 1 Neuron 2

Neuron 3

Time (seconds)

A
c
ti
v
it
y

. . . T
im

e
 i
n
 a

 t
ri
a
l

Time in a trial

S
im

ila
rity

 b
e
tw

e
e
n
 

p
o
p
u
la

tio
n
 v

e
c
to

rs

T
ri
a
l 
n
u
m

b
e
r

in
a

s
e
s
s
io

n

Trial number

in a session

S
im

ila
rity

 b
e
tw

e
e
n
 

p
o
p
u
la

tio
n
 v

e
c
to

rs

Experience 1

Experience 2

Time (minutes)

Figure 1 . Distinguishing slow consistent sequences from random drifts. a. Top:
The firing of time cells changes across seconds in sequences that are consistent across tri-
als (left), which contributes to the decorrelation of population activity pattern over the
timescale of seconds (right). Bottom: The firing of hippocampal neurons also changes
slowly over trials (right), but it is not known if this is driven by consistent sequences on
the timescale of minutes (left). b. Two possibilities for the nature of the slow dynamics
over minutes. Top: it may reflect the animal’s experience. If so, the neural activity would
be similar if the animal goes through the same experience twice (left), analogous to the
sequences on the timescale of seconds. In this case, the correlation between a pair of pop-
ulation vectors from different experiences will decay as the difference in their time, each
within its experience, increases (right). Bottom: alternatively, the slow dynamics may be
solely driven by the stochastic noise in neural systems and therefore drift randomly during
different experiences (left). In this case, the correlations described above would not have
any pattern (right).
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Exp 1: Treadmill running

(Mau et al., 2018)
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(Levy et al., 2019)

Exp 3: Linear track 

(Rubin et al., 2015) Rest (3 mins)
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. . .
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Figure 2 . Two timescales in the structure of the experiments. For each experiment
studied in this paper, the animals are trained to perform some task for several seconds-long
trials in a recording session spanning tens of minutes. The calcium activity of the same
neurons are recorded across sessions. During the treadmill running task (Experiment 1),
mice are trained to run on the treadmill for 10 seconds before going to the opposite side of
the maze to collect a water reward. The mice perform the same task for tens of trials each
session for a total of around 20 minutes. For the spatial alternation task (Experiment 2),
mice are trained to alternate between left and right turns in a T-maze to collect food
rewards. Each trial consists of a study and test phase where mice have to turn to opposite
directions at the choice point. Mice perform tens of trials for a total of around 30 minutes
during each session. For the linear track experiment, mice are trained to run back and forth
on a linear track to collect water rewards at both ends of the track. Each trial is about
3 minutes long and is separated by 3-minute resting periods where mice are placed in a
separate box. Each session consists of 5 pairs of running and resting trials for a total of
30 minutes. See Methods section for more details of each experiment.
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Figure 3 . Many hippocampal neurons exhibit consistent dynamics across seconds
and across minutes. a-c. Example neurons with consistent dynamics across trials for each
of the experiments. In a, the 10-second running period is evenly divided into 10 time bins.
In b, the start arm of the maze is evenly divided into 10 location bins. In c, the linear track
is evenly divided into 10 location bins, and neural activity is averaged over all runs within
a 3-minute trial. See Methods for details. d-f. Example neurons with consistent activity
across sessions. Trials within each session are evenly divided into 5 trial bins. Each line
represents the z-scored calcium transient rate over one trial/session. Inactive trials/sessions
are not shown. See Supplementary figures S1 and S2 for more example neurons.

Single hippocampal neurons have consistent activity across seconds and minutes

We first plotted the normalized calcium transient density of individual Region of Inter-
ests (ROIs) against position or time within a trial. For each ROI we only included trials
where it had at least one calcium transient event during the trial period examined. We ob-
served that many ROIs have consistent activity within a trial (Figure 3a-c). For example,
some ROIs always have higher activity at a particular time bin (Figure 3a, right) or location
bin (Figure 3b-c, right) during each included trial. Other ROIs have higher activity at the
start (Figure 3a, left) or end (Figure 3b-c, left) of each active trial. At longer time scales,
similar consistent neural activity was observed when activity was plotted against trial num-
ber (Figure 3d-f, Methods). For example, some ROIs consistently increase (Figure 3d-e,
left) or decrease (Figure 3f, left and 3e, right) their calcium activity across trials within a
session. Other ROIs are consistently more active during particular trials within the session
(Figure 3f, right).

To quantify the extent to which single neurons fire consistently across the population,
we computed a firing consistency rank for each neuron, which is a number between zero and
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one that represents the consistency of that neuron’s calcium dynamics between pairs of trials
or sessions compared to chance (see Methods for details). We found that in all experiments
and for both timescales, the distributions of the firing consistency rank are significantly
skewed towards one compared to those obtained from the shuffled data (Figure 4). A
Kolmogorov-Smirnov test between the distribution from true and shuffled data showed
reliable differences in all cases, panel a p < .001, n = 1860; panel b p < .001, n = 3525;
panel c p < .001, n = 1202; panel d p < .001, n = 1330, panel e p < .001, n = 4078; panel f
p < .01, n = 1673. This indicates there are significantly more neurons that have consistent
dynamics both across trials and across sessions than would be expected by chance.

There could be different types of single cell dynamics that contribute to the observed
high firing consistency across repeated experiences. For example, some cells could have
gradually increasing or decreasing activity, or they could exhibit non-monotonic dynamics
over time such as those of time cells. To disentangle these two types of single cell dynamics,
we used a similar method as above to construct a firing linearity rank for each neuron. The
right panels of Figure 4 show the joint scatter plot of the firing consistency rank and the
firing linearity rank for each of the experiments. As can be seen, there is a wide distribution
of firing linearity across the population. This indicates that there is a diversity of consistent
temporal dynamics both across a trial and a session. Firing linearity rank on the timescale
of minutes and seconds are not significantly correlated with one another across neurons
(Supplementary figure S14d-f).

Hippocampal population dynamics are consistent both over seconds and min-
utes

The single cell analysis above left out trials or sessions where a given neuron is not
active (does not have any calcium transient during the selected time period). To examine
whether the consistency is present when the full ensemble of neurons are considered, we
next investigated the consistency of the population-level dynamics across trials and sessions.
To this end, we computed the cosine similarity between pairs of population vectors from
different trials (Figure 5a-c) or sessions (Figure 5d-f) and assembled them into a matrix
(see Methods for details). We found that in all experiments and across both timescales,
the matrices exhibit a pattern where the values are highest along the diagonal, which indi-
cates that the population dynamics are consistent across repeated trials and sessions (c.f.,
Figure 1b). Statistical significance was evaluated using a permutation test (see Methods
for details). The degree to which all matrices show a diagonal pattern are greater than
the heatmaps obtained from 10,000 random shuffles of the data. Notably, for the across-
trial similarity matrix in the treadmill running task, the high-valued region spreads out
later in the trial, indicating that the population dynamics slow down as time progresses
(Figure 5a). This is consistent with the observation in the original study that the number
density of sequentially-activated time cells goes down in time (Mau et al., 2018).

Discussion

In this paper, we show that the firing dynamics of hippocampal neurons are consistent
over both seconds and minutes. The novel observation is that slow dynamics over minutes
include slow sequences and are not simply random drifts (Figure 5d-f, Figure 1b). This
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Figure 4 . Many hippocampal neurons have consistent responses across seconds
and across minutes. For each neuron, a firing consistency rank was computed to esti-
mate how consistent the single cell dynamics are for within trial dynamics (a-c) and for
across-trial dynamics (d-f). The histograms show the distribution of firing consistency
rank relative to a surrogate distribution. To the extent these distributions differ, one can
conclude that there are consistent sequences. To evaluate the degree to which dynamics
were simply monotonic changes in firing rate, we also computed a firing linearity rank.
The scatter plots show the consistency rank and linearity rank for each neuron. Red dots
indicate the example single neurons shown in Figure 3. L and R refer to the example neu-
ron on the left and right of each panel in Figure 3, respectively. See Methods for more
details. Supplementary figures S3-S13 show the same analyses for each trial type, session
and animal.

population effect results from a significant proportion of neurons with consistent dynam-
ics over repeated experiences (Figure 4). These neurons have both monotonic and more
complex activity modulations across each experience (Figures 3 and 4 and Supplemen-
tary figures S1 and S2). Therefore, the hippocampal neurons exhibit consistent dynamics
over two nested timescales—changing both systematically within a trial and systematically
within a session—in each of these experiments.

This result suggests that the spatiotemporal context as represented by population of
neurons in the hippocampus has meaningful dynamics over multiple timescales, from sec-
onds to minutes. The sensitivity to multiple timescales may enable the hippocampus to
adaptively encode natural stimuli, which vary at many different scales (Voss & Clarke,
1975; Hasson, Yang, Vallines, Heeger, & Rubin, 2008) and account for the self-similar
structure in hippocampal correlations (Meshulam, Gauthier, Brody, Tank, & Bialek, 2019).
The responsiveness of hippocampal dynamics provides a constraint for behavioral models
of human memory. Models that rely on boundaries and event segmentation (Farrell, 2012;
Franklin, Norman, Ranganath, Zacks, & Gershman, 2020) must be able to construct and
utilize segments over multiple nested scales. Similarly, neural models for sequence gener-
ation (Buzsáki & Tingley, 2018; Rajan, Harvey, & Tank, 2016; Howard et al., 2014) must
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Figure 5 . Population dynamics in the hippocampus are consistent across both
seconds and minutes. a-c. Consistent population dynamics within seconds-long
trials. Each element of the matrix is the cosine similarity between a pair of population
vectors at different binned locations within a trial, average over pairs of trials, trial types (for
b and c), sessions and animals. Critically, the population vectors are taken from the same
time or location bin, but from different trials. See Methods for the details of how binning
was performed for the different tasks. All three experiments (a: treadmill task, b: spatial
alternation, c: linear track) show higher correlation along the diagonal, indicating that the
population goes through a consistent sequence within each trial. This is as we would expect
from the known properties of time cells (a) and place cells (b and c). d-f. Consistent
population dynamics across trials. Similar to a-c, except each element of the matrix
is the cosine similarity between a pair of population vectors from two different sessions,
averaged over all pairs of sessions and animals. Rather than computing population vectors
from bins of time or space within a trial, population vectors were computed by averaging
over entire trials (see Methods for details). The similarity between population vectors from
different recording session was then computed for different pairs of trial bins. The elements
of all three matrices are highest on the diagonal and gradually decrease off-diagonal, similar
to the matrices over a trial (a-c). This indicates that the population dynamics are also
consistent across minute-long sessions.
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have the capacity to generate sequences at many different scales.

Possible causes of slow dynamics

Possible non-physiological causes. There are recording artifacts specific to calcium
imaging that could conceivably cause slow dynamics. For example, photobleaching could
cause the calcium fluorescence signal to decrease gradually during each imaging session or
gradual heating of the brain could potentially produce stereotypical changes in the apparent
calcium fluorescence signal for each ROI over the course of an imaging session. It is difficult
to reconcile these artifactual accounts of slow dynamics with non-monotonic patterns of
firing over the session or the striking similarity between effects observed across trials to the
effects within trial. The findings within-trial are quite consistent with results using extra-
cellular electrodes. We conclude that it is likely that the slow dynamics are physiological
in origin.

Variables correlated with time during a session. It is possible that the slow
dynamics observed in the hippocampus are not due to memory per se but reflect consistent
slow dynamics in the environment or internal state of the animal over the course of the
recording session. There are several possibilities for such variables. For example, the satiety
of the animal presumably decreases over the course of each recording session. Indeed, it has
recently been reported that thirst level has a dramatic impact on the population activity
in multiple brain regions in mice over the course of minutes (Allen et al., 2019). Slow drifts
over minutes in area V4 and prefrontal cortex of monkey are correlated with systematic
changes in animal’s behavior during a perceptual decision making task (Cowley et al.,
2020). Microdialysis of acetylcholine shows higher levels of acetylcholine when an animal is
first removed from the home cage and placed in a task (Acquas, Wilson, & Fibiger, 1996).
Acetelcholine levels decrease over time on the scale of minutes and have been shown to
depolarize hippocampal neurons (Cole & Nicoll, 1984) and increase firing rate (Fu et al.,
2014). In all of these cases, the sequential activation of cells over the recording session would
require that the hippocampus codes for a monotonically changing variable with a sequence
of receptive fields. Indeed, this kind of pattern has been observed for hippocampal receptive
fields as a function of smooth changes in frequency of a behaviorally-relevant tone (Aronov,
Nevers, & Tank, 2017).

In some sense the empirical story for very slow sequences is analogous to the empirical
story for place cells or time cells shortly after their initial report. Although a consensus has
emerged that place cells and time cells express spatial and temporal relationships between
events in the service of memory (e.g., Eichenbaum, 2017), this view only emerged after
extensive empirical studies. For instance, a neuron that fires when the animal is in a
specific position of an environment could be responding to the visual stimuli available at
that location, the particular configuration of auditory stimuli available, or olfactory cues
present on the track. Early studies ruled out a series of possible confounds of spatial
position (e.g., Quirk, Muller, & Kubie, 1990; Save, Cressant, Thinus-Blanc, & Poucet, 1998).
Similarly, it is possible that initial reports of time cells could have been solely a reaction to
a behavioral confound during the delay such as a stereotyped behavior. However, time cells
have been observed in head-fixed animals and different stimuli trigger distinct sequences
(e.g., Pastalkova et al., 2008; Taxidis et al., 2020; Cruzado, Tiganj, Brincat, Miller, &
Howard, 2020), ruling out most possible confounds.
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Slow dynamics as memory for the past. It has been clearly established that hip-
pocampal time cells express memory for the time and identity of past events (e.g., Pastalkova
et al., 2008; Taxidis et al., 2020; Cruzado et al., 2020). The most interesting possible cause
of the slow dynamics observed here is that they reflect the same computational mechanism,
but over much slower time scales than within-trial time cells. This raises the question of
how the neurons in the hippocampus could generate such slow sequences. One possibility
is that the slowness of the hippocampal representation is inherited from its inputs. Tsao et
al. (2018) observed very slow changes in the firing of neurons in lateral entorhinal cortex
(LEC). In that study, LEC neurons changed their firing rate abruptly and then relaxed back
to baseline with a broad range of decay rates. For instance, upon entry to a particular envi-
ronment, a neuron might rapidly increase its firing rate and then decay exponentially back
to baseline over several minutes. Other neurons ramped over the entire recording session so
there was a variety of decay rates across neurons. This slowly-varying signal in LEC at the
scale of minutes could be a cause of the slow sequences we observed in hippocampus. The
same mechanism could also cause time cells on the scale of seconds. Bright et al. (2020)
studied neurons in monkey EC during a visual task. After an image was presented, the
neurons changed firing rate then gradually relaxed back to baseline with a variety of decay
rates. Because there was a variety of relaxation rates it was possible to decode time since
image onset over several seconds (see also Hyde & Strowbridge, 2012). Very long-lasting fir-
ing in EC has been observed in vitro (Egorov, Hamam, Fransén, Hasselmo, & Alonso, 2002)
and is believed to be caused by the nonspecific calcium-sensitive (CAN) cationic current.
Computational models show that the CAN current can also induce slowly decaying firing
with a variety of decay rates in a simple integrate-and-fire neuron model (Tiganj, Hasselmo,
& Howard, 2015). Computational models have shown that the temporal information carried
by slowly-decaying activity can be used to generate a population of sequentially-activated
time cells (Shankar & Howard, 2012; Howard et al., 2014; Liu, Tiganj, Hasselmo, & Howard,
2019; Rolls & Mills, 2019).

In this study we showed that slow hippocampal sequences are consistent across trials
in a recording session. The definitive test of whether hippocampal sequences reflect a very
slow form of memory is whether the identity of events on previous trials can be decoded.
In these studies, the trials were very similar to one another. Studies of in learning tasks
have shown robust memory for information about the identity of past trials. For instance,
neural activity on one trial of a learning task can be used to decode the identity and reward
history of previous trials in orbitofrontal cortex and piriform cortex of rats (Schoenbaum
& Eichenbaum, 1995b, 1995a), posterior parietal cortex of mice (Morcos & Harvey, 2016)
and anterior cingulate cortex, dorsolateral prefrontal cortex and lateral intraparietal cortex
of monkeys (Bernacchia, Seo, Lee, & Wang, 2011).

A recent study shows that there are neurons in the hippocampus CA1 of mice that
encode the number of laps that the animal has traversed in a task where they have to run
four consecutive laps to obtain a reward (Sun, Yang, Martin, & Tonegawa, 2020). Some of
the neurons reported in our work indeed show elevated activity at a particular trial bin, but
we have also observed neurons whose activity exhibit more complex modulations by trial
bin number (Figure 3d-f and Supplementary figures S1- S2). It remains to be shown the
exact functions of the slow sequences reported here.
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Methods

Behavioral tasks and calcium imaging

The treadmill running task. Four mice were trained to traverse a rectangular track
followed by running in place on a motorized treadmill for 10 s at a constant velocity to
receive sucrose water reward after traversing an additional part of the track (Figure 2,
Experiment 1). During each session, the mice completed between 35-37 trials. A total of 4
sessions were performed for each mouse.

Mice received infusions of AAV9- Syn-GCaMP6f (U Penn Vector Core). Imaging data
in dorsal CA1 were acquired using a commercially available miniaturized head-mounted
epifluorescence microscope (Inscopix). The raw video was pre-processed using an image
segmentation algorithm called Tenaspis (D.W. Sullivan et al., 2017, Soc. Neurosci., ab-
stract, software available at https://github.com/SharpWave/TENASPIS) to extract ROIs
and assign calcium transient events to each ROI. This algorithm is designed to better dis-
tinguish between overlapping ROIs. The calcium transients it detects correspond to the
rising phase of the calcium fluorescence. 296-1136 ROIs were identified during each session.

In order to identify the same neurons across recording sessions that are days apart,
ROIs were cross-registered across days. Briefly, this was done by first aligning the field
of view of each session to the first session using vasculature as stationary landmarks via
image registration software from MATLAB’s Image Processing Toolbox, assuming rigid
geometric transformation. Then, cells were successively registered from each session to the
next session (Day 1 to Day 2, Day 2 to Day 3, etc.). Cells were registered by searching for
the nearest ROI with a threshold that the ROI centroids must be within 3.3 microns apart.
To ensure that neurons do not drift excessively across days, the first day’s neurons were
registered with the last day’s neurons, and any registrations between Day 4 and Day 1 that
are different from Day 4 and Day 3 were discarded.

More details about the behavioral setup and the calcium imaging experiment can be
found in the Methods section of Mau et al. (2018).

The spatial alternation task. Four mice were trained on a spatial alternation task,
during which they alternated between “study” and “test” trials. On study trials, mice were
placed on the center stem of maze, ran to the crossroads, where a removable barrier forced
them to run down one of the two return arms and received a reward of chocolate sprinkle.
They were then moved into the delay area located at the bottom of the center stem, waited
through a 20-second delay, and the delay barrier was lifted to start the test trial. On a
test trial, mice again ran up the center stem to the crossroads but this time there was no
barrier and they had to remember the direction they traveled on the study trial and turn
to the return arm opposite to the preceding study trial in order to receive a reward. They
then moved to the delay area, and were placed in their home cage to wait through a 15-25
second inter-trial interval while the next study trial was set up (Figure 2, Experiment 2).
Mice completed between 25 and 40 study-test trial pairs per session. Each of these trial
pairs is considered a “trial” in the analysis in the main text.

The experimental procedures for calcium imaging and the data pre-processing pipeline
are the same as the treadmill running task. 1149-3165 ROIs were identified for each session.
The cell cross-registration procedure is slightly different from the treadmill running task.
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Sessions were aligned to a “base” session from the middle of the recording schedule using
25-40 “anchor” cells. Cells with centers within 3 microns were identified as the same cell.
More details about the experimental setup can be found in Levy et al. (2019).

The linear track task. Three mice (2 were injected with AAV2/5-CaMKIIa-GCaMP6f
and one was a Thy1-GCaMP6f transgenic; Jackson stock number 025393) were trained to
run back and forth on an elevated 96 cm long linear track. They received water sweetened
with lemon flavored fruit juice concentrate at each end of the track. An overhead camera
(DFK 33G445, The Imaging Source, Germany) was used to record mouse behavior. Each
session consisted of five 3-min trials with 3-min intertrial intervals. 7-8 sessions were per-
formed in total for each mouse. Sessions were performed in the morning and the afternoon
in alternation.

An integrated miniature fluorescence microscope (nVistaHD, Inscopix) was used to ob-
tain the imaging data from the CA1 region of the hippocampus. Imaging data was pre-
processed using commercial software (Mosaic, Inscopix) and custom MATLAB routines as
previously described in Ziv et al., 2013. Spatial filters corresponding to individual ROIs
were first identified using a cell-sorting algorithm that utilizes principal component analysis
and independent component analysis (PCA and ICA, Mukamel, Nimmerjahn, & Schnitzer,
2009) and then subjected to further manual cell sorting (see the “Materials and methods”
section of Rubin et al. (2015) for more details). Calcium transient events were identified
when the amplitude of the calcium traces

(
dF
F

)
crossed a threshold of 5 median absolute

deviations (MAD). Further measures were taken to avoid the detection of multiple peaks
as well as the spillover of the calcium fluorescence to neighboring cells (see the “Materials
and methods” section of Rubin et al. (2015) for more details).

Registration of cells across sessions was performed by first aligning the field of view in
each session to the first session and then computing the spatial correlation between ROI
centroids in the reference coordinate system. Pairs with spatial correlation > 0.7 or distance
< 5 µm were registered as the same neuron. For the full detail on the experimental setup
please refer to the “Materials and methods” section of Rubin et al., 2015.

Data analysis methods

Coarse-graining of calcium activity.
Coarse-graining for the across session dynamics. To extract the slow neuronal

dynamics across multiple trials while filtering out the fast within-trial dynamics, the neural
activity was first temporally coarse-grained before further analysis. When comparing a pair
of sessions, the session with more trials was first truncated to have the same number of trials
as the other session. Then, all the remaining trials within a session were evenly divided
into 5 trial bins by using the array_split function in Numpy. Then the neural activity for
each ROI is the calcium transient density over that trial bin. Therefore, the temporally
coarse-grained activity of an ROI n during a session i was represented by a time series with
length 5: vn,i = {vn,i,1, vn,i,2, vn,i,3, vn,i,4, vn,i,5}. Furthermore, since we are interested in
the temporal modulation of the neural activity rather than the absolute magnitude of the
activity, the coarsed-grained activity of each cell was z-scored across trial bins. We chose
5 as the number of time bins within a session since each session in the linear track task
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consists of 5 running trials (Figure 2, Experiment 3), and we wish to keep the way trials
are divided consistent across experiments. Similar results were obtained for the treadmill
running task and the spatial alternation task by using 10 trial bins. Furthermore, we only
averaged over the calcium activity during time periods when the animal’s behavior is under
experimental control. In the treadmill running task, the time periods used are when the
animal is running on the treadmill for 10 seconds. In the spatial alternation experiment,
the time periods used are when the animal is running along the start arm. In the linear
track experiment, the time periods used are when the animal’s position is within the middle
60% of the linear track.

Coarse-graining for the within-trial dynamics.. For the across-trial analysis,
coarse-graining was done in a similar way by computing the calcium transient density over
10 time bins or location bins within each trial. For the treadmill running task, calcium event
rate was averaged over each second during the 10-second running period. For the spatial
alternation task, the start arm was evenly divided into 10 location bins and total number of
calcium transient events within each bin divided by the amount of time the animal spent in
that bin was computed. Unless otherwise specified, all analysis was performed separately
for the two task epochs (study and test) and two trial types (turn left and turn right)
and the results were averaged. For the linear track task, the within-trial neural activity
was computed by first computing for each individual run the number of calcium transient
events within each location bin divided by the amount of time the animal spent in that bin,
and then averaging this quantity over all runs within a 5-minute trial. This was done for
the two running directions separately, and the results were averaged. The 10 location bins
span the middle 30% of the track. We chose the middle 30% of the linear track because
this is similar to the length of the start arm in the spatial alternation task. Lastly, for all
experiments, the activity of each neuron was z-scored across all spatial or time bins for each
trial.

Cosine similarity between population vectors. For Figure 5d-f, we computed the
cosine similarity between pairs of population activity vectors during different sessions after
they were coarse-grained and z-scored as described above. We then built a matrix where
each element represents the cosine similarity between a pair of population vectors at two
trial bins during two different sessions, averaged over all pairs of sessions and all animals.

For Figure 5a-c, population vectors were computed by averaging neural activity over time
or location bins within each trial, as described above. Then a similar correlation matrix
was constructed where each element is the cosine similarity between a pair of population
vectors from different trials.

To test that the matrix shows a significant diagonal pattern, neural activity across
all bins within each session (Figure 5d-f) or trial (Figure 5a-c) was shuffled 10000 times
independently for each neuron and matrices from this shuffled data were constructed. We
characterized the degree to which each matrix shows a diagonal pattern by an index d,
which equals the difference between the average value of the near-diagonal matrix elements
to that of the off-diagonal matrix elements. The near-diagonal matrix elements are those
whose row and column indices are differed by less than half the dimension of the matrix.
Mathematically, d = 〈Mij〉|i−j|< N

2
− 〈Mij〉|i−j|≥N

2
, where N is the dimension of the matrix.

Then we counted how many matrices constructed from the shuffled data have a value d
greater than the matrix obtained from the true data. As a result, none of the 10000
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matrices from the shuffled data has a higher d than the matrices in Figure 5.
Firing consistency rank. To assess the consistency of the single neuron dynamics

across repeated trials or sessions, we computed a firing consistency rank for each neuron.
For each cell n and each pair of sessions or trials (for example i and j), we computed the
Pearson’s correlation coefficient between the coarse-grained activity vectors vn,i and vn,j

obtained from the method described above. Then we shuffled the entries in each activity
vector and computed the Pearson’s correlation coefficient again. This was repeated for 100
times, and all the Pearson’s correlations were ranked from the lowest to the highest. We
then found the percentile where the true Pearson’s correlation is at among all the shuffles
(if there are multiple shuffles that yield the same Pearson’s correlation as the true data,
the median percentile was used). Finally, the firing consistency rank is the mean percentile
across all pairs of sessions (or trials). The rank across trials (Figure 4a-c) was further
averaged across trial types (for Figure 4a, c) and sessions. Sessions or trials where the
neuron does not have any calcium transient event during the selected time period were
excluded from the analysis.

Firing linearity rank. To disentangle the gradually ramping/decaying activity from
more complex temporal modulations, we computed a firing linearity rank for each neuron.
For a given neuron n and session (or trial) i, we fitted a linear model as a function of
the bin number for the coarse-grained activity vn,i of that neuron. The F-statistic of this
linear model was computed along with those obtained from 100 shuffled activity vectors
(shuffling was performed in the same way as in computing the firing consistency rank). The
percentile of the true F-statistic among all the shuffles was computed (if the F statistic of
multiple shuffles equal the true F statistic, the median percentile was used). This percentile
was then averaged across all sessions (or trials) to obtain the firing linearity rank for that
neuron. The rank across trials (Figure 4a-c) were further averaged across trial types (for
Figure 4a, c) and sessions. For each neuron, sessions (or trials) where no calcium transients
were observed were excluded from the analysis.
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Figure S1 . Additional hippocampal neurons that fire consistently within trials across mul-
tiple trials. Each line represents the z-scored transient rate of that neuron during a trial.
Trials where the neuron is not identified or is inactive are not plotted.
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Figure S2 . More example hippocampal neurons that fire consistently over specific trials
across sessions. Sessions where the neuron is not identified or is inactive are not plotted.
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Animal 1

Animal 2

Animal 3

Animal 4

Session 1 Session 2 Session 3 Session 4

Figure S3 . The distribution of the across-trial firing consistency rank for each individual
session in the treadmill running task.
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Figure S4 . The across-trial firing consistency rank plotted against the across-trial firing
linearity rank for each individual session in the treadmill running task.
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. . .

Figure S5 . The distribution of the across-session firing consistent rank for real and shuffled
data (top) and he joint distribution of the across-session firing consistency rank and firing
linearity rank (bottom) for each individual mouse in the treadmill running task
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Mouse Bellatrix

Figure S6 . The distribution of the across-trial firing consistent rank for real and shuffled
data (left) and the joint distribution of the across-trial firing consistency rank and firing
linearity rank (right) for each individual session and trial type in the spatial alternation
task. Data for mouse Bellatrix.
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Mouse Calisto

Figure S7 . The distribution of the across-trial firing consistent rank for real and shuffled
data (left) and the joint distribution of the across-trial firing consistency rank and firing
linearity rank (right) for each individual session and trial type in the spatial alternation
task. Data for mouse Calisto.
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Mouse Nix

Figure S8 . The distribution of the across-trial firing consistent rank for real and shuffled
data (left) and the joint distribution of the across-trial firing consistency rank and firing
linearity rank (right) for each individual session and trial type in the spatial alternation
task. Data for mouse Nix.
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Mouse Polaris

Figure S9 . The distribution of the across-trial firing consistent rank for real and shuffled
data (left) and the joint distribution of the across-trial firing consistency rank and firing
linearity rank (right) for each individual session and trial type in the spatial alternation
task. Data for mouse Polaris.
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. . .

Figure S10 . The distribution of the across-session firing consistent rank for real and shuffled
data (top) and the joint distribution of the across-session firing consistency rank and firing
linearity rank (right) for each individual mouse in the spatial alternation task
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Session 5 Session 6 Session 7 Session 8

Session 1 Session 2 Session 3 Session 4

Session 5 Session 6 Session 7

Figure S11 . The distribution of the across-trial firing consistency rank for each individual
session in the linear track task. Data shown separately for left and right runs

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.07.430172doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430172
http://creativecommons.org/licenses/by-nc-nd/4.0/


SLOW SEQUENCES IN MOUSE HIPPOCAMPUS 32

Animal c68m3

Animal c16m4

Animal C6M4

Session 1 Session 2 Session 3 Session 4

Session 5 Session 6 Session 7 Session 8
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Figure S12 . The across-trial firing consistency rank plotted against the across-trial firing
linearity rank for each individual session in the linear track task.
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. . .

Figure S13 . The distribution of the across-session firing consistent rank for real and shuffled
data (top) and the joint distribution of the across-session firing consistency rank and the
firing linearity rank (bottom) for each individual mouse in the linear track task
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a.

b.

c. f.

e.

d.

Figure S14 . The firing consistency and linearity ranks are not meaningfully correlated
when comparing within trials timescale (seconds) to within sessions timescale (minutes).
The correlation between the consistency rank across trials and sessions for the treadmill
running (a), spatial alternation (b) and linear track (c) experiments. The same for the firing
linearity rank (d-f). Kendall’s τ : a: τ = 0.05, p = 0.008, n = 1241. b: τ = −0.008, p =
0.488, n = 2999. c: τ = 0.02, p = 0.293, n = 1098. d: τ = −0.002, p = 0.912, n = 1241. e:
τ = 0.002, p = 0.867, n = 2999. f : τ = 0.03, p = 0.09, n = 1058.
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Animal 1

Animal 2
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Figure S15 . The cross-trial correlations for each individual session in the treadmill running
task

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.07.430172doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430172
http://creativecommons.org/licenses/by-nc-nd/4.0/


SLOW SEQUENCES IN MOUSE HIPPOCAMPUS 36

1 5

1

5

Trial bin, session i

T
ri
a
l 
b
in

, 
s
e
s
s
io

n
 j Animal 1

1 5

1

5

Trial bin, session i

T
ri
a
l 
b
in

, 
s
e
s
s
io

n
 j Animal 4

1 5

1

5

Trial bin, session i

Animal 2

T
ri
a
l 
b
in

, 
s
e
s
s
io

n
 j

1 5

1

5

Trial bin, session i

Animal 3

T
ri
a
l 
b
in

, 
s
e
s
s
io

n
 j

. . .

Figure S16 . The cross-session correlations for each individual mouse in the treadmill run-
ning task
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Mouse Bellatrix

Figure S17 . The cross-trial correlations for each individual session, task phase and turn
direction in the spatial alternation task. Data for mouse Bellatrix.
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Mouse Calisto

Figure S18 . The cross-trial correlations for each individual session, task phase and turn
direction in the spatial alternation task. Data for mouse Calisto.
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Mouse Nix

Figure S19 . The cross-trial correlations for each individual session, task phase and turn
direction in the spatial alternation task. Data for mouse Nix.
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Mouse Polaris

Figure S20 . The cross-trial correlations for each individual session, task phase and turn
direction in the spatial alternation task. Data for mouse Polaris.
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Figure S21 . The cross-session correlations for each individual mouse in the spatial alterna-
tion task
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Animal c68m3

Animal c16m4

Animal C6M4

Figure S22 . The cross-trial correlations for each individual session and running direction
in the linear track task
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Figure S23 . The cross-session correlations for each individual mouse in the linear track task
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