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Abstract 23 

Premenstrual dysphoric disorder (PMDD) affects nearly 5% women of reproductive age. The 24 

symptomatic heterogeneity, along with largely unknown genetics, of PMDD have greatly 25 

hindered its effective treatment. In the present study, 127 Chinese PMDD patients of the 26 

‘invasion’ and ‘depression’ subtypes clinically differentiated by us earlier were analyzed 27 

together with 108 non-PMDD controls for genome-wide copy number variations (CNVs). 28 

Germline genomic DNA samples from white blood cells were subjected to AluScan 29 

sequencing-based CNV profiling, which enabled clustering of patient samples readily into the 30 

V and D groups, dominated by the “invasion” and “depression” clinical subtypes, 31 

respectively; the CNVs obtained with 100-kb windows yielded two clusters that were 32 

correlated with these subtypes with a consistency of up to 89.8%. Diagnostic correlation- and 33 

frequency-based CNV features of either CNV-gain (CNVG) or CNV-loss (CNVL) that could 34 

differentiate between V and D subtypes were selected and analyzed. CNVG features located 35 

preferentially in S2-phase replicating regions and enriched with steroid hormone biosynthesis 36 

pathway of genes were found protective against PMDD. Moreover, machine learning 37 

employing the correlation-based CNV features could predict with >80% accuracy whether a 38 

genomic sample was D-type, V-type or control. In terms of their CNV profiles, the D- and V-39 

types differed more from one another than from the controls, thereby providing a genomic 40 

basis for the clinical D-V subtyping of PMDD. Genome-wide profiling of CNVs, as a new 41 

approach to complex disease genetics, has revealed recurrent CNVs and genomic features 42 

beyond individual genes and mutations underlying PMDD clinical diversity. 43 

 44 

Introduction 45 

Premenstrual dysphoric disorder (PMDD) is a syndrome that afflicts 5-10% of women in 46 

their reproductive years (1). The severity of the syndrome is typically highest just before the 47 
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menstruation period, suggesting that the symptoms were linked to hormonal changes. This 48 

has been confirmed by the findings of premenstrual neurosteroid fluctuations, and alterations 49 

in the sensitivity of GABAA receptors to neurosteroids giving rise to mood instability (2, 3). 50 

Cortical gamma-aminobutyric acid (GABA) levels also declined during the menstrual cycle 51 

in healthy women but increased in women with PMDD from the follicular phase to the mid-52 

luteal and late luteal stages (4). Furthermore, PMDD has been associated with the estrogen 53 

receptor alpha gene ESR1 (5), and the ESC/E(Z) genes affecting the interactions of sex 54 

hormones with other genes (6). Five major contributors to the etiology of PMDD include: (1) 55 

genetic susceptibility; (2) progesterone and its metabolite ALLO; (3) estrogen, serotonin and 56 

brain-derived neurotrophic factor (BDNF); (4) brain structure and function; and (5) the 57 

hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis (7). The 58 

schizophrenia-associated SNPs in GABRB2, located in introns 8 and 9 near an AluYi6 59 

insertion, have been associated with both schizophrenia and bipolar disorder (8, 9), heroin 60 

addiction (10), altruism (11), autism and mental retardation (12). Deletion of gabrb2 genes 61 

from knockout mice also brought about schizophrenic symptoms that were alleviated by the 62 

antipsychotic Risperidone (13). Recently, analysis of germline copy-number-variations 63 

(CNVs) at the nsv1177513 site in Exon 11, and the esv2730987 site in Intron 6, of GABRB2 64 

in PMDD and schizophrenia patients showed that CNV alterations at both esv2730987 and 65 

nsv1177513 were significantly associated with schizophrenia in Chinese and Germans as 66 

well as PMDD in Chinese (14). Moreover, subjects with different levels of susceptibility to 67 

cancer could be distinguished by means of diagnostic CNV marker features selected from the 68 

germline genomes with the application of machine learning (15).  69 

 70 

It is recognized that the symptoms of PMDD are consistent with multiple clinical subtypes. A 71 

Delphi survey led to the proposal of three symptoms-based types of PMDD, viz. a 72 
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predominantly physical type, a predominantly emotional type, and a mixed type (16); and 73 

DSM-V proposed that PMDD is defined by one or more of the symptoms of marked affective 74 

lability, marked irritability or anger, marked depressed mood and hopelessness, and marked 75 

anxiety and tension, plus at least one of seven other symptoms. At the School of Basic 76 

Medicine, Shandong University of Traditional Chinese Medicine, the medical records also 77 

pointed to at least two major types of PMDD, viz. an irritability-marked ‘invasion’ type 78 

(58.9%) and a depressive mood-marked ‘depression’ type (27.5%) (17). In view of the 79 

spectrum of PMDD symptoms, the objective of the present study was to enquire whether the 80 

two major clinical subtypes of PMDD could be corelated with genomic profiles. Through 81 

genome-wide CNV profiling by AluScan next-generation sequencing (18, 19), the results 82 

revealed two large clusters of CNV profiles that were highly correlated with the clinical 83 

“depression” and “invasion” subtypes. Furthermore, CNV-gain (CNVG) and CNV-loss 84 

(CNVL) features diagnostic of PMDD or each of the two clinical subtypes were uncovered 85 

among CNVs called from sequence windows of different sizes, which were variously 86 

distributed in genomic regions of different replication timing and overlapped with genes in 87 

various genetic pathways of potential clinical relevance. These results provided genomic 88 

verification for the invasion- and depression-subtypes employed by us previously (17), which 89 

corresponded to part of the complex symptoms stipulated by DSM-V (20) as diagnostic 90 

criteria for PMDD.  91 

 92 

Methods 93 

Clinical assessments 94 

Clinical diagnosis of PMDD patients (P-type subjects) from asymptomatic controls (C-type 95 

subjects) was performed in accordance to the protocol in Diagnostic and Statistical Manual of 96 

Mental Disorders (DSM-IV) by two psychiatrists independently. The identifications of 97 
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‘depression-type’ and ‘invasion-type’ subjects were carried out as previously described (17). 98 

 99 

Genomic DNA samples 100 

Peripheral white blood cell DNA samples were collected from PMDD patients and non-101 

PMDD control subjects with approval by the institutional ethic committee of Shandong 102 

University of Chinese Medicine. The patients and healthy volunteers who participated in this 103 

study all signed the informed consent form. The samples consist of a control cohort of 108 104 

subjects and a PMDD cohort of 127 cases. The latter cohort was further divided into the 105 

depression-subtype (71 cases) and invasion-subtype (56 cases). The subtypings of the 127 106 

PMDD cases were given in Table S1. 107 

 108 

AluScan sequencing and CNV calling 109 

Samples of ~0.1μg DNA were subjected to inter-Alu PCR amplification using the four Alu-110 

consensual primers AluY278T18, AluY66H21, R12A/267 and L12A/8 (18). The 200 bp to 111 

~6 kb amplicons in each sample were employed to build a library for sequencing on the 112 

Illumina platform with 100 bp paired-end reads. According to the standard framework, all the 113 

reads were mapped to reference human genome hg19 downloaded from UCSC by BWA, 114 

followed by base recalibration and local realignment by GATK (21). CNVs were called from 115 

the AluScan sequences with the method of AluScanCNV2 (19, 22) based on sequence 116 

windows of 50-500 kb in 50-kb increments on the 22 autosomes and the X chromosome. The 117 

CNV profiles of all 108 control and 127 PMDD subjects were available in Table S2. 118 

 119 

Clustering and grouping of patient samples based on CNV profiles 120 

The profiles of CNVG and CNVL called from the 127 P-group samples using different CNV-121 

calling window sizes were separately subjected to correlation analysis and hierarchical 122 
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clustering with 1,000 bootstraps using the ‘pvclust’ R package (23). The derived correlation 123 

heatmaps as well as the CNVG-based and CNVL-based dendrograms obtained for each 124 

window size were employed to determine the two subgroups of CNV profiles using two 125 

different grouping methods for cross validation.  126 

 127 

In the first method, viz. the straightforward ‘cutree’ method, the sub-clustering was carried 128 

out using the ‘cutree’ function from the ‘dendextend’ R package (24) to cut each dendrogram 129 

into 2-8 sub-clusters (Figure S1). The DNA samples located in the sub-cluster populated with 130 

the highest number of clinical depression-type samples among all the sub-clusters was 131 

referred as D-type genomic samples; and the DNA samples located in the remaining sub-132 

clusters were combined and referred as V-type genomic samples. In the second, or ‘semi-133 

supervised’ method, some branches on the dendrograms were first rotated around their 134 

respective nodes to bring the closely co-localized samples into tightly knit sub-clusters 135 

enclosed by black square boxes on the diagonal of each heatmap. Thereupon, all the samples 136 

within the same block box were all designated as D-type or V-type genomic samples 137 

depending on whether the majority clinical subtype of the samples were depression-type or 138 

invasion-type. The designated D- and V-type genomic samples derived using the two 139 

grouping methods for ten different window sizes are shown in Table S3 and exemplified by 140 

the blue and red branches in Figure 1 and Figure S2 respectively for the 100-kb CNV profiles.  141 

 142 

For either the ‘cutree’ method or the ‘semi-supervised’ method, let the number of CNV-based 143 

D-type samples that also belonged to the clinical depression-subtype be represented by TrueD, 144 

and the number of CNV-based V-type samples that also belonged to the clinical invasion-145 

subtypes be represented by TrueV. Accordingly, the consistency (Y) between CNV-based 146 

classification and the clinical classification of PMDD patient samples could be estimated by:  147 
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� �  ������ 	 �����
 127⁄  

On this basis, the levels of consistency between CNV-based and clinical subtypings for the 148 

different CNVs called using different window sizes for both the ‘cutree’ and ‘semi-supervised’ 149 

methods are shown in Table S4. 150 

 151 

Selection of diagnostic CNV features 152 

The selection of diagnostic CNV features was performed using either (a) correlation-based 153 

method or (b) frequency-based method as described (15). CfsSubsetEval from the Weka 154 

package was employed together with BestFirst search method to select the correlation-based 155 

diagnostic CNV features. Fisher’s exact tests were employed to select the frequency-based 156 

CNV features that showed significantly different occurrence frequencies between a pair of 157 

sample groups (e.g. P-vs-C or D-vs-V) with a false discovery rate (FDR) less than 0.01.  158 

 159 

Predictive subtyping of genomic samples by machine learning 160 

Earlier, diagnostic germline CN-gains and CN-losses from leucocyte DNA samples of 161 

subjects with or without past episodes of cancers in tissues other than leucocytes were found 162 

to provide a useful basis to predict the propensity of the subject to cancer (15). Since the 127 163 

P-group and 108 C-group DNA samples from PMDD and control subjects consisted of a 164 

mixture of D-type, V-type and C-type DNAs, the question arose whether it was possible to 165 

predict the typing of DNA samples between the D-vs-V, D-vs-C and V-vs-C choices 166 

employing the diagnostic CNVG and CNVL features obtained with the correlation-based 167 

method.  168 

 169 

For example, in a choice between the P-vs-C types, a mixture of P- and C-type samples were 170 

randomly separated into a labeled Learning Band and an unlabeled Test Band, with equal or 171 
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near equal number of samples in the two bands. Diagnostic CNVG and CNVL features were 172 

selected from the labeled Combined Learning Band with machine learning using the 173 

correlation-based method and employed to estimate the risk factor R for each DNA sample in 174 

the Test Band according to Eqn. 1. 175 

� � log � �������|�	
���	
�

����������|�	
���	
�
�               Eqn. 1 176 

Pr�����|��������
 � Pr ���������|����
 � Pr �����
 Pr ���������
⁄  

Pr� !"��!#|��������
 � Pr ���������| !"��!#
 � Pr � !"��!#
 Pr ���������
⁄  

where Pr(PMDD|Features) was the posterior probability of membership in the PMDD group 177 

given the CNV data of a particular Test Band sample; Pr(Control|Features) was its posterior 178 

probability of membership in the Control group given the same test CNV data; 179 

Pr(Features|PMDD) was the likelihood function of the test CNV data given membership in 180 

the PMDD group; Pr(Features|Control) was the likelihood function of the test CNV data 181 

given membership in the Control group; Pr(PMDD) and Pr(Control) were the prior 182 

distributions of PMDD and Control samples respectively within the Learning Band; and 183 

Pr(Features) was the prior distribution of CNV-features among all the CNVs within the 184 

Learning Band.  185 

 186 

For every sample in the Test Band, its value of R estimated using Eqn. 1 would predict 187 

whether the sample belonged to the Control group or PMDD group: it would predictively 188 

belong to Control group (viz. ‘non-PMDD’) if R < 0; belong to PMDD group if R > 0; or no 189 

prediction could be made if R = 0. For every PMDD sample in the Test Band, R > 0 190 

represented a ‘true’ prediction whereas R < 0 represented a ‘not true’ prediction. On the other 191 

hand, for any Control sample in the Test Band, R > 0 represented a ‘not true’ prediction 192 

whereas R < 0 represented a ‘true’ prediction. Accuracy of prediction was therefore given by: 193 

Accuracy �  ����� ����������  �! "�����#$%����� ����������  �! &'(($

����)# ����������  �! "�����#$%����)# ����������  �! &'(($
� 100%  Eqn. 2 194 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.08.430168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430168
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 195 

Repetition of this procedure 1,000 times would yield 1,000 Accuracy estimates, and in turn 196 

the Average Accuracy regarding the P-vs-C typing.  197 

 198 

Functional annotation of genes overlapping with diagnostic CNV features 199 

By comparing the genomic coordinates of all the frequency-based diagnostic CNV features to 200 

those of the known genes retrieved from the R package 201 

‘TxDb.Hsapiens.UCSC.hg19.knownGene’ version 3.2.2 (25), and considering any gene to be 202 

‘overlapping’ with a CNV feature if any proportion of its sequence (from > 0% to 100% in 10% 203 

increments) coincided with part or all of the CNV feature, the list of CNV-overlapping genes 204 

obtained was uploaded to DAVID Bioinformatics Resources as a test-list employing the 205 

‘RDAVIDWebService’ R package (26). All the known genes on chromosomes 1-22 and X 206 

were also uploaded as the background-list. Comparison of the two lists using the 207 

‘getFunctionalAnnotationChart’ of the ‘RDAVIDWebService’ R package revealed gene 208 

pathways or categories, as defined in the GO, KEGG and INTERPRO databases, that were 209 

enriched with the test-list of genes among the background-list of genes. The pathways or 210 

categories yielding <0.05 Benjamini-corrected p-values were regarded to be significantly 211 

enriched in the genes on the test-list (Table S5).  212 

 213 

Genomic-feature content of diagnostic CNV features in different replication phases 214 

DNA sequences on 22 autosomes and chromosome X were subject to replication-time 215 

segmentation according to Long & Xue (27). Briefly speaking, experiment-assessed 216 

replication timing of all 1-kb sequence windows in the genomes of fifteen human cell lines 217 

were retrieved from the ‘UW Repli-seq track’ in the UCSC Table Browser (28), and the 218 

representative replication phase of each sequence window was identified as one of the six 219 
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types of sequencing segments (viz. G1b, S1, S2, S3, S4 and G2) based on their experiment-220 

assessed replication timing in all fifteen human cell lines.  221 

 222 

The density or intensity of genomic features were quantified as described in Ng et al (29) in 223 

the diagnostic CNV features and the non-diagnostic-CNV regions in each type of replication 224 

phase. The genomic feature content of diagnostic CNV features is indicated by the fold 225 

change of the density or intensity of the genomic feature in diagnostic CNV features relative 226 

to the non-diagnostic-CNV regions.  227 

 228 

Statistical analysis 229 

All comparisons of CNV frequencies were conducted using Fisher’s exact tests, and the p-230 

values were adjusted by false discovery rate for multiple comparisons. In functional 231 

annotation of genes, p-values from DAVID web service were subject to Benjamini-correction 232 

for multiple comparisons. When annotating the genes that overlapped with any diagnostic 233 

CNV feature, empirical p-values were estimated using Monte Carlo methods with 1,000 234 

simulations to validate the significant gene pathways/categories based on the 50-, 100- or 235 

450-kb size groups of CNV features. In each round of simulation, sequence windows of the 236 

same size as the targeted group of CNV features were randomly selected from chromosomes 237 

1-22 and X, with the number of selected windows being equal to the average number of CNV 238 

features in the different type-comparisons to be analysed (see Table S6). For each simulation, 239 

the genes that overlapped with any of the selected sequence windows were functionally 240 

annotated. The empirical p-value of a targeted pathway was given by (r+1)/(n+1), where n = 241 

1,000 and r = number of simulations that displayed significant enrichment (<0.05 Benjamini-242 

corrected p-values) in the targeted pathway.  243 

 244 
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Software for data processing and visualization 245 

Data processing tasks were carried out using custom R codes, except that tasks requiring 246 

machine learning were processed using Weka package. All figures were drawn under R 247 

environment using the ‘ggplot2’ (30), ‘pheatmap’ (31) and ‘quantsmooth’ (32) packages, 248 

except for Figure 3 which was drawn using http://bioinformatics.psb.ugent.be/webtools/Venn/, 249 

and Figure 5 using Integrative Genomics Viewer 2.3.69 (33). 250 

 251 

Results  252 

Correlations between clinical diagnosis and CNV profiles  253 

In order to examine whether there might be significant correlation between the clinical 254 

symptoms of PMDD patients and their germline CNV profiles, the CNVGs and CNVLs 255 

called from different sizes of sequence windows on the 127 P-type DNA samples, were 256 

subjected to hierarchical clustering in each instance. The CNVGs and CNVLs called from 257 

100-kb sequence windows of the 71 depression-subtype and 56 invasion-subtype patient 258 

samples were segregated using the cutree and semi-supervised methods into distinct D-type 259 

and V-type clusters in the dendrograms as shown in Figure S2 and Figure 1 respectively. The 260 

clusters obtained from the CNVG dendrograms were designated as DG and VG clusters, and 261 

the clusters obtained from the CNVL dendrograms were designated as DL and VL clusters. 262 

Notably, the cutree method yielded 72 VG-type and 55 DG-type CNVG profiles with 81.10% 263 

consistency between the invasion-vs-depression clinical classification and the V-vs-D 264 

CNVG-based classification (Figure S2A); whereas the semi-supervised method yielded 61 265 

VG-type and 66 DG-type CNVG profiles with 89.76% consistency between the invasion-vs-266 

depression clinical classification and the V-vs-D CNVG-based classification (Figure 1A). 267 

Therefore, using either the cutree method or the semi-supervised method, the CNVG-based 268 

classification was highly correlated with the clinical symptom-based classification of the 269 
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PMDD genomes; this was likewise the case with the DL-type and VL-type CNVLs. 270 

Altogether, for the CNVGs and CNVLs in, the 50-500 kb window sizes, the cutree method 271 

yielded consistencies of 68-91%, and the semi-supervised method yielded consistencies of 272 

88-98%, between the CNV-based and symptom-based classifications. The semi-supervised 273 

classifications of P-type samples based on CNVs called from 50-500 kb window sizes were 274 

available in Figure S3. These results demonstrated that both the CNVGs and CNVLs 275 

contributed to the etiology of the depression-type and the invasion-type symptoms. Moreover, 276 

the comparable results obtained using the cutree and semi-supervised methods confirmed the 277 

robustness of the CNV-symptom correlations. When the CNVGs or CNVLs called from 100-278 

kb sequence windows of the 108 C-type control samples were subject to hierarchical 279 

clustering along with the P-type samples, ~40% of the C-type CNV profiles formed a tight 280 

sub-cluster and ~60% were dispersely distributed in the dendrogram, forming sub-clusters 281 

with the depression-subtype or invasion-subtype PMDD samples (Figure S4). 282 

 283 

Use of diagnostic CNV-features for predictive subtyping  284 

The correlation between germline CNV profiles and clinical subtypes of PMDD suggests that 285 

it would be practicable to predict from the germline CNVs of women their propensity to 286 

develop PMDD, as well as the likely subtype of the PMDD clinical condition. Toward this 287 

objective, the method developed earlier by us through the use of diagnostic CNV-features 288 

selected with machine learning to assess a subject’s propensity for cancer (15) could be 289 

employed as described in ‘Selection of diagnostic CNV features’ under Method. Figure 2 290 

shows the diagnostic CNV features selected by either the correlation method or the frequency 291 

method for prediction the propensity of a test subject’s germline CNVs for which of the P, C, 292 

VG, DG, VL and DL genomic groups: the P-type and C-type outcomes would be assessed 293 

based on PMDD symptoms; VG and DG would be based on the distinction between the V and 294 
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D clusters in the CNVG dendrogram in Figure 1A; and VL and DL would be based on the 295 

distinction between the V and D clusters in the CNVL dendrogram in Figure 1B. The 296 

diagnostic CNVG and CNVL features selected using the correlation and frequency methods 297 

are given in Table S7. 298 

 299 

Figure 2A shows the sets of diagnostic CNV features selected using the correlation-based 300 

(red triangles) or frequency-based (black circles) method to enable a choice between a pair of 301 

genomic groups. For example, the DG-vs-C panel of Figure 2A contained a mixture of 66 DG-302 

type samples and 108 C-type samples. The diagnostic CNV features selected from the total of 303 

144 samples by means of either the correlation method (red triangles) or the frequency 304 

method (grey circles) were distributed in a crescent near the y-axis and another crescent near 305 

the x-axis. Accordingly, any DNA sample in the mixture that was enriched with near-y 306 

diagnostic CNV features would be predicted to be endowed with a greater propensity for C-307 

type over DG-type, whereas any DNA sample that was enriched with near-x diagnostic CNV 308 

features would be predicted to be endowed with a propensity for DG-type over C-type. In the 309 

DG-vs-C panel of Figure 2B, diagnostic CNV features selected using the correlated method 310 

was employed to predict the DG-vs-C nature in the 174-sample mixture as described under 311 

the ‘Predictive subtyping of genomic samples by machine learning’ section in Methods. After 312 

1,000 trial runs, each with a random partition of the samples into an 87-sample Learning 313 

Band and an 87-sample Test Band, the average prediction accuracy obtained was 83.0%. 314 

Altogether, the seven panels in Figure 2B yielded average prediction accuracies ranging from 315 

81.0% to 88.4%. Interestingly, the list of correlation-based CNV features useful for 316 

differentiating between the propensities toward the D and V subtypes (Table S8) showed that 317 

the CNV features biased in favor of V-type samples were mostly CNVL features (27/42 for 318 
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VG and 14/17 for VL). The accuracies of sample-classification predictions derived from the 319 

cutree method are available in Figure S5. 320 

 321 

Favorable diagnostic CNV-features were often shared by more than one PMDD types, as 322 

indicated by the overlaps between the colored circles for the P-vs-C (blue), D-vs-C (red) and 323 

V-vs-C (green) comparisons in the Venn diagrams (Figure 3A and B). A range of CNV 324 

features were shared by all three kinds of circles, suggesting that they represented key CNV 325 

features differentiating between the control and PMDD patient samples (Table S9). Notably 326 

also, in all the panels in Figure 3, there was no CNV feature was shared only by the red 327 

circles for D-vs-C and the green circles for V-vs-C, which suggests that the CNV-features 328 

favoring the D-type genomes differed diametrically from the CNV-features favoring the V-329 

type genomes. As well, there were more D-favoring CNVG features than CNVL features, but 330 

more V-favoring CNVL features than CNVG features.  331 

 332 

Genome-wide distribution of diagnostic CNV features  333 

In order to have a global view of CNV profiles, the locations and replication timing of all 334 

frequency-based diagnostic CNV features, whether overlapping with any known genes or not, 335 

were plotted on Figure S6. The results showed that the CNV features were widely spread on 336 

all the somatic chromosomes and chromosome X. Chromosomes 4, 13, 18 21 and X were 337 

particularly abundant in CNV features that replicated in the G2 phase. Given the correlation 338 

between the clinical symptom-based typing of PMDD cases and the clustering of germline 339 

diagnostic CNV features, these CNV features could be useful guides in a search for some of 340 

genomic sites underlying PMDD. 341 

 342 
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In Figure 4, the distributions of the CNV features among DNA regions replicating at different 343 

cell cycle phases exhibited a number of characteristics: (a) In terms of the number of CNV 344 

features that differed between a pair of CNV-types, the P-vs-C panel (viz. P>C or P<C) gave 345 

rise to the smallest difference, whereas the D-vs-V pair (DG>VG or DG<VG) gave rise to the 346 

largest difference; (b) the ratio of CNVL features relative to CNVG features (viz. L/G on 347 

chart) that favored the C-type over P-type were 1.32 for 50-kb CNV features, 2.13 for 100-kb 348 

ones and 2.05 for 450-kb ones, all greater than unity (Figure 4A); (c) the P-vs-C comparisons 349 

were suggestive of protective effects of smaller size CNVLs in the early replication phases 350 

and larger CNVLs in the later phases (Figure 4A); (d) the CNVLs captured by 50-kb 351 

windows included significantly more V-favoring than either C-favoring or D-favoring ones 352 

(L/G = 2.41 in Figure 4C and 1.80 in Figure 4D); (e) the CNVGs were significantly enriched 353 

in D-favoring features compared to C-favoring or V-favoring ones, whereas CNVLs were 354 

significantly enriched in V-favoring features compared to C-favoring or D-favoring ones; (f) 355 

D-vs-V comparisons suggest that V-type PMDD was correlated with smaller CNVG features 356 

belonging to the early replication phases and large CNVGs belonging to the later phases; (g) 357 

Large CNVG features were enriched in the G2-phase replicating sequences, especially 358 

among the features selected for the D-vs-C and D-vs-V comparisons (see G2-phase columns 359 

marked with red asterisks in Figure 4B and D); (h) More than half of the large G2-phase 360 

CNVG features in the C>DG group are identical to those of the VG>DG group, suggesting the 361 

shared genetic variations in G2 phase underlying V and C types; (i) Large CNVL feature 362 

were enriched in S3-phase replicating sequences in the C>VG and DG>VG groups but not in 363 

the VG>C or VG>DG groups. The replication-phase distributions of CNV features obtained 364 

based on the DL- or VL-type samples derived from the CNVL dendrogram in Figure 1B were 365 

available in Figure S7. 366 

 367 
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Pathways and genes enriched in diagnostic CNV features  368 

A wide range of genes showed sequence overlaps with the frequency-based diagnostic 369 

CNVG and CNVL features of a range of KEGG pathways in PMDD and its subtypes (Table 370 

1) which pointed to their possible contributions to the PMDD disorder, and some major genes 371 

were contained in more than one pathway (Table 2). It was striking that, as indicated in lines 372 

1-5 of Table 2, the control C-type was favored by high frequencies of CNVG features relative 373 

to the diseased P-, D- or V-type, suggesting that a major causal factor of the PMDD disorder 374 

could be decreased levels of the CNVG features overlapping with the steroid hormone 375 

biosynthesis pathway, with the involvement of CYP- and UGT-genes replicating in phases S2 376 

and S1. As shown in lines 9-17 of Table 2, the C-type and V-type profiles were favored over 377 

the D-type by high frequencies of CNVL features in the GRI-genes, which were involved in 378 

pathways of nicotine addiction, circadian entrainment, serotonergic synapse, dopaminergic 379 

synapse and cAMP signaling. The chromosomal sites of these genes and their overlaps with 380 

the 100-kb CNV features are shown in Figure 5. 381 

 382 

The 50-kb CNV features overlapped with the genes in the glutamatergic-synapse, alcoholism, 383 

and systemic lupus erythematosus pathway genes, as well as steroid hormone biosynthesis 384 

pathway genes replicating in S2 and S3 (Table S5). On the other hand, the 450-kb CNV 385 

features overlapped with chemokine signaling pathway genes (Table S5). Because high 386 

regional density of genes could impact on gene annotations by yielding false-positive co-387 

localizations when a CNV feature incidentally captured a gene cluster belonging to a pathway, 388 

empirical p-values based on Monte Carlo simulations were also estimated for the 100-kb 389 

CNV features (Table S10), which provided additional support for some of the pathway in 390 

Table 2 through the elimination of such false positives (see ‘Statistical analysis’ in Methods).  391 

 392 
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Genomic features enriched in diagnostic CNV features 393 

Co-localization analysis revealed various associations between 100-kb frequency-based CNV 394 

features and a wide spectrum of genomic features in different replication phases (Table 3 and 395 

Table S11). D versus V differences in genomic feature contents can be identified from the 396 

thermal scale plots of co-localization scores illustrated in Figure 6 and Figure S8. The 397 

genomics features apparently differed between D and V types included: (1) In terms of 398 

retrotransposons, D-favoring CNVG features enriched with more of the subfamily of 399 

evolutionarily very young short transposons SVAef, while V-favoring CNVG and D-favoring 400 

CNVL features enriched with the very young long transposon subfamily, L1vy. (2) With 401 

respect to genetic markers, P-favoring, especially D-favoring CNVL features were enriched 402 

with recombination events as well as genetic variation hotspots and clusters (27). GWAS 403 

reported markers were co-localized with D-favoring CNVGs in S1, V-favoring CNVLs in S4 404 

and C-favoring CNVLs G1b. As well, ClinVar markers were enriched in V-favoring CNVG 405 

of S2 phase and D-favoring CNVL of S1. (3) In respect to the group of CpG-related genomic 406 

features, the main difference between the two types was that D-favoring CNVL features were 407 

more enriched with CpG features such as MeBS in S4 replicating sequences. Compared with 408 

D- and V-favoring, the C-favoring CNV features were more prominently enriched with CpG 409 

features, especially for C-favoring CNVG in S3 and CNVL in G2 and S4 phases. (4) In 410 

regard to non-coding RNA, LINC was enriched in V-favoring CNVL as well as C-favoring 411 

CNV features, but not in D-favoring features. (5) To a lesser extent, the enrichment of histone 412 

binding sites in D-favoring CNVG features of G2 and S2 phases. In contrast, histone sites 413 

were enriched in V-favoring CNVL features of S4 phase. This trend was clearly visible from 414 

Figure 6, where twelve kind histone binding sites were analyzed separately and displayed 415 

side-by-side.  416 

 417 
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Some of the strongly enriched genomic features with great than one-fold enrichment was 418 

listed in Table 3. For example, enrichment of DNase I hypersensitive sites (DNase) was 419 

found in C>P CNVL and C>VL CNVG features in G2-phase replicating sequences and P>C 420 

(as well as D>C and V>C) CNVL features in S4-phase replicating sequences. Regulatory 421 

elements isolated by formaldehyde (FAIRE) were found to enrich in C>V, D>C and D>V 422 

CNVL features that located in the late-replicating S4 and G2 phases. Disease- or trait-423 

associated SNPs identified by genome-wide association studies (GWAS) were enriched in 424 

C>V CNVLs in G1b phase, and P>C CNVGs in S1 phase reaching a fold-change of 5.5 425 

relative to non-diagnostic-CNV regions in S1 phase. The C-favoring (C>P and C>DL) CNVG 426 

features and C-favoring CNVL (C>P and C>VG) features tend to co-localize with CpG 427 

islands (CpGi) in median to late-replicating S3-G2 phases. A range of methylation-related 428 

features (Me450, MeBS, and MeMRE) were found to enrich in C-favoring CNVG features 429 

mainly in early to median G1b-S3 phases, and C-favoring CNVL features in late-replicating 430 

S4-G2 phases. Long intergenic non-coding RNAs (LINC) were found to be enriched in C-431 

favoring CNVGs mainly in S2 phase or CNVLs mainly in G2 phase, D-favoring CNVGs in 432 

G1b phase, and V-favoring CNVLs in S3-G2 phases.  433 

 434 

Discussion  435 

Application of either the cutree method or the semi-supervised method to the hierarchically 436 

clustered CNVGs or CNVLs in the germline genomes of PMDD subjects enabled the 437 

distinction between the D-type and V-type CNV profiles. The high degree of consistency 438 

between the clinical depression-subtype and D-type CNV profiles, and between the clinical 439 

invasion-subtype and V-type CNV profiles, indicated that the two clinical PMDD subtypes 440 

were intrinsically correlated with the two dissimilar types of CNV profiles. This was further 441 

conformed when diagnostic CNVG and CNVL features were selected by means of machine 442 
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learning using the correlation method, and employed as abundance markers to predict 443 

whether a given germline genomic sample belonged to the control group, the PMDD group, 444 

the V-type CNV group or the D-type CNV group, yielding average accuracies of prediction 445 

of 81.0-88.4% (Figure 3), which in turn validated the use of diagnostic CNVG and CNVL 446 

features to identify the genes and pathways that overlapped with such diagnostic features as 447 

potential contributors to the PMDD disorder.  448 

 449 

In this regard, there exists overall accord between the cutree and the semi-supervised 450 

methods in terms of diagnostic CNV features identified, replication-phase distribution and 451 

pathway enrichments (Table S5, S12 and S13). As indicated in DSM-V, PMDD is defined by 452 

a complex system of symptoms. In the present study, limited data allowed the analysis of 453 

only the depression-type and invasion-type symptoms. Nevertheless, the Venn diagrams in 454 

Figure 3 clearly showed that the CNVs underlying the D-type and V-type CNV profiles were 455 

strikingly more divergent from one another than their separate divergences from the CNVs 456 

underlying the C-type. This finding was also consistent with the results in Figure 2A, which 457 

showed that there were more correlation-based or frequency-based CNV features that could 458 

be employed to distinguish between DG-vs-VG or DL-vs-VL compared to CNV-features that 459 

could distinguish between DG-vs-C, VG-vs-C, DL-vs-C or VL-vs-C. As well, the mixed 460 

distribution of control CNV profiles among depression- or invasion-type CNV profiles 461 

(Figure S3) indicated that the difference between the CNVs in the two subtypes of PMDD 462 

was larger than their individual differences from the control. This surprising genome 463 

condition, as illustrated in Figure 7, raises the question of whether the depression-type and 464 

invasion-type conditions of PMDD might represent two distinct clinical disorders. 465 

 466 

A faithful temporal order of DNA replication is fundamental to normal cellular function, and 467 
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aberrant replication timings were observed in complex diseases including cancers (34, 35). 468 

Accordingly, the relative abundances of diagnostic CNVG and CNVL features among 469 

genomic DNA sequence regions preferentially replicating in each one of the six phases of cell 470 

cycle, namely G1b, S1, S2, S3, S4 and G2 were examined in Figure 4. The peaks of C-471 

favoring CNVL features in P-vs-C comparisons (downward hollow green bars in Figure 4A) 472 

shifted clearly from the early S1 phase among the 50-kb features to the late G2 phase among 473 

the 450-kb features, pointing to the enrichment of some small CNVL features in the early-474 

replicating regions and larger CNVL features in the late-replicating regions among the 475 

determinants of the C-type, viz. in the prevention of PMDD occurrence. As well, more D-476 

favoring CNVG features were located in G2-replicating sequences compared to genomic 477 

DNA sequences replicating in other cell-cycle phases within the D>C and D>V groups, 478 

which was particularly notable in view of the enrichment of G2 phase-replicating sequences 479 

in non-coding sequences (27, 29). In addition, the abundance of V-favoring 50-kb CNVL 480 

features in the V>C and V>D comparisons (Figure 4B and D) suggests that small-size 481 

CNVLs also played important roles in the development of V-type PMDD.  482 

 483 

When diagnostic CNVs were analyzed for their genomic feature enrichment with reference to 484 

replication phases, interesting observations were obtained (Figure 6; Table 3). It has been 485 

revealed that the late-replicating S4-G2 phases in the gene-distal zones are found to be 486 

depleted of functional genomic features (27). However, the present study observed 487 

associations of open chromatin signals, regulatory elements and epigenetic regulation sites 488 

with the diagnostic CNV features in these late-replicating sequences (Table 3), indicating that 489 

the diagnostic CNV features might represent pivotal genomic sites in the late-replicating 490 

sequences that sequence alterations may give raise to functional perturbations underlying 491 

PMDD and its two subtypes. As illustrated herein, genomic feature content analysis, 492 
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implemented with replication phase information, has pointed to the likelihood of genomic 493 

events underlying the subtyping of PMDD and hence a genomic nature of the disorder and its 494 

clinical diversity. Since genomic features included in the analysis were broad in spectrum and 495 

well beyond the boundary of known genes, the feature enrichment analysis performed herein 496 

may complement with and surpass genetic pathway analysis as a powerful tool for genomic 497 

studies on complex traits and disorders. 498 

 499 

Previously, a number of genes was proposed to be PMDD suspectable genes, including those 500 

of steroid hormone biosynthesis (2, 3), and estrogen signaling (36, 37), and these proposals 501 

were supported by the presence of these genes in Table 1. The overlaps of genes of nicotine 502 

addiction, glutamatergic synapses, olfactory transduction, alcoholism, systemic lupus 503 

erythematosus, hypogonadism, premature ovarian failure, and breast cancer with PMDD 504 

might be suggestive of hitherto hidden aspects of central nervous system or endocrine system 505 

involvements with PMDD. The GRIA4 gene, overlapping with the 100-kb CNV features for 506 

the C>D and V>D comparisons, groups, has also been found to be associated with 507 

schizophrenia (38), in accordance with the shared CNVs between schizophrenia and PMDD 508 

(14).  509 

 510 

In conclusion, through CNV profiling, the present study provided evidence for strong 511 

correlation of the clinical depression-subtype or invasion-subtype with the D-type and V-type 512 

germline genomes, marked by the overlaps between their CNVs and the machine-selected 513 

diagnostic CNV features that favored one or another type of genomes. On account of this 514 

correlation, the diagnostic CNV features could be employed as frequency markers to predict 515 

the propensity to PMDD and one of its clinical subtypes, as well as position markers to 516 

identify candidate PMDD genes and pathways. Moreover, the genetic difference between the 517 
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depression-favoring and invasion-favoring CNV profiles was found to exceed their individual 518 

divergences from the normal controls (Figure 7), raising the question of how this outcome 519 

might have been evolved. Future studies will be required to determine how many of the array 520 

of PMDD symptoms besides the depression-subtype and invasion-subtype ones could be 521 

significantly correlated with CNVs, and what complex diseases other than PMDD would 522 

embody CNV-symptom correlations as strong as those encountered with PMDD.  523 
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 654 

Figure Legends 655 

Figure 1. Hierarchical clustering of PMDD samples based on their pairwise similarities 656 

in genome wide CNV profiles. For all 127 P-group samples, all CNVs were identified from 657 
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AluScan sequencing data with 100-kb non-overlapping scanning windows across the genome 658 

and used in the plots of similarity scores for CNVGs (A) and CNVL (B), respectively. The 659 

dendrograms on top of the heat maps were bootstrapped 1,000 times. The color of each 660 

square in the heat map indicates the correlation coefficient (r) of a pair of samples according 661 

to the blue-red thermal scale. The semi-supervised classification of samples based on (A) 662 

CNVGs and (B) CNVLs was indicated by the red dendrogram branches for V-type and blue 663 

ones for D-type genomes. The bands below the dendrograms and on the left-hand side of the 664 

heat maps portrayed the subtyping of PMDD samples based on clinical symptoms, with 665 

purple bands representing the clinically determined invasion subtype (n = 56) and orange 666 

bands the depression subtype (n = 71). Each of the square diagonal boxes in panels (A) and 667 

(B) enclosed a group of genomes with close correlations between each other in the group, 668 

such that they could be identified as a coherent block of genomes belonging to either the V-669 

type or D-type CNV profiles depending on their enrichment in the invasion- or depression-670 

subtype samples (see ‘Clustering of patient samples based on CNV profiles’ in Methods). 671 

Comparable heat maps obtained using sequence window sizes of 50 to 500 kb for CNV-672 

calling are shown in Figure S3. 673 

 674 

Figure 2. Occurrence frequencies of diagnostic CNV features and their prediction 675 

accuracies for seven pairs of sample groups. Panel (A) shows the frequency distribution of 676 

diagnostic CNV features for different pairs of sample groups. The x-axis represents the 677 

frequency of CNVs in the first-named group (Group 1 as shown on x-axis), and y-axis the 678 

frequency of CNVs in the second-named group (Group 2 as shown on y-axis) in a given pair 679 

of sample groups. Diagnostic CNV features with higher frequencies in Group 1 relative to 680 

Group 2 (located in lower right crescent) are referred to as ‘Group 1-favoring’ features, 681 

whereas diagnostic CNV features with higher frequencies in Group 2 relative to Group 1 682 
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(located in upper left crescent) are ‘Group 2-favoring’ features. Black circles are CNV 683 

features selected using the frequency-based method with FDR < 0.01 (Fisher’s exact tests), 684 

and red triangles are CNV features selected using the correlation-based method. Panel (B) 685 

shows the prediction accuracies (estimated using Eqn.2 in Methods) of sample classification 686 

in seven sample-pairs based on CNV features selected using the correlation method. For each 687 

of the seven pairs, prediction accuracy was estimated 1,000 times and the average accuracy 688 

(Av.) was given in the pertinent panel. Subscript G denotes that the D- or V-type samples 689 

were derived from the dendrogram of CNVGs (Figure 1A), while subscript L denotes that the 690 

D- or V-type samples were derived from the dendrogram of CNVLs (Figure 1B).  691 

 692 

Figure 3. Overlaps between the diagnostic CNV features differentiating the two 693 

subtypes of PMDD collectively and individually from the control. CNV features identified 694 

using (A) correlation-based method, and (B) frequency-based method. Circled ‘G’ indicates 695 

CNVG features and circled ‘L’ indicates CNVL features. The ‘>’ and ‘<’ signs portray the 696 

relative frequencies of the CNV features for a pair of sample groups, e.g. P>C represents 697 

diagnostic CNV features that occurred in higher frequencies in P-group compared to C-698 

group. Subscript G denotes that the D- or V-type samples were derived from the CNVG 699 

dendrogram in Figure 1A, whereas subscript L denotes that the D- or V-type samples were 700 

derived from the CNVL dendrogram in Figure 1B. 701 

 702 

Figure 4. Distribution of frequency-based diagnostic CNV features among genomic 703 

sequences of different DNA replication phases. Number of base pairs of the CNV features 704 

called using 50, 100 and 450-kb windows for (A) P-vs-C, (B) DG-vs-C, (C) VG-vs-C, and (D) 705 

DG-vs-VG groups. The solid bars represent CNVG features and hollow bars represent CNVL 706 

features in each panel. The replication phases G1b to G2 are color coded as shown. The ‘>’ or 707 
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‘<’ sign portrays larger or smaller frequencies of the CNV features in favor of the first-named 708 

group over the second-named one. L/G represents the ratio of the number of CNVLs over the 709 

number of CNVGs. Significant enrichment of CNV features in a particular replication phase 710 

in the genome is indicated by asterisks that are color coded according to the replication 711 

phase, or in black asterisks for comparison between an L/G value in the upper half of a panel 712 

and an L/G value in the lower half (Bonferroni-corrected, *** p < 0.005, ** p < 0.01, * p < 713 

0.05). Numerical p-values are shown in Table S14. Subscript G denotes that the D- or V-type 714 

samples were derived from the CNVG dendrogram in Figure 1A. See Figure S7 for the 715 

results obtained based on the D- or V-type samples derived from the CNVL dendrogram in 716 

Figure 1B. 717 

 718 

Figure 5. Selected genes overlapping with frequency-based diagnostic CNV features. 719 

Expanded views of chromosomal segments on (A) chromosomes 2 and 7 for steroid 720 

biosynthesis pathway genes, (B) chromosomes 5, 11, 12, 16 and 17 for GRI-genes of the 721 

glutamatergic synapse and nicotine addiction pathways, and (C) chromosomes 6 and X for 722 

the non-pathway TRERF1 and POF1B genes with color-coded representation of the DNA 723 

replication phase in the ‘Phase’ track, and aligned gene sequence(s) in blue (e.g. UGT1A8 or 724 

TRERF1) as described in RefSeq Genes in UCSC Genome Browser. Green rectangular boxes 725 

either below the genes indicate the presence of diagnostic CNVG or CNVL feature(s). Inside 726 

each box, colored stripes are indicative of CNVL features(s), and solid coloring is indicative 727 

of CNVG features(s): purple for predominantly V-favoring features, orange for D-favoring 728 

features, and green for C-favoring features. 729 

 730 

Figure 6. Enrichment analysis of genomic-feature contents in different replication 731 

phases for control and PMDD subtypes. Frequency-based CNV features diagnostic for C 732 
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group, i.e., control, as well as that for D and C groups of PMDD samples clustered by CNVG 733 

dendrogram, identified with 100-kb scanning windows, were used in the analysis. 734 

Enrichment analysis results were plotted for CNVG features in the upper two panels and that 735 

for CNVL features in the bottom two panels. A similar analysis performed in parallel for 736 

clustered by CNVL dendrogram can be found in Figure S8. Fold-change of each genomic 737 

feature in the diagnostic CNV features relative to the non-diagnostic-CNV regions was 738 

estimated according to ‘Genomic-feature content of diagnostic CNV features in different 739 

replication phases’ in Methods, and was color-coded based on the thermal scale. Fold-change 740 

greater than 2-fold was capped at 2 in the heat map. ‘Group 1’ indicated the first-named 741 

group and ‘Group 2’ the second-named group in a given pair of samples. Genomic features 742 

were grouped into Retrotransposon (SVAef, SVAcd, SVAab, AluYvy, AluYy,s AluS, AluJ, 743 

FLAM, L1vy, L1y, L1m, L1o, MIR, L2), Genetic markers (RecD, RecH, RecK, GWAS, 744 

ClinVar, GV hotspot, Cluster, CNVG), Regulatory sites (H3k27me3, H4k20me1, H3k9me1, 745 

H2az, H3k79me2, H3k36me3, H3k4me3, H3k9ac, H3k4me2, H3k27ac, H3k4me1, H3k9me3, 746 

MeMRE, MeDIP, MeBS, CpGi, CpGe, Me450, TFBS, REG, FAIRE, DNase) and 747 

Gene/Transcription (Gene, EXPS, LRNA+, LRNA-, LINC) groups on the x-axis based on 748 

their sequence and functional properties. The descriptions of genomic features and numeric 749 

data were available in Table S11. 750 

 751 

Figure 7. Genetic distances between the two subtypes of PMDD and the control. 752 

Pairwise distances were estimated based on the abundance of diagnostic CNV features 753 

between C-, D- and V-type genomes. The numbers of frequency-based CNV features were 754 

employed as an approximate index of the genetic distance between the D-vs-C, V-vs-C or D-755 

vs-V sample pairs in Table S15, which comprised the 50-500 kb frequency-based CNV 756 
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features. Notably, the D-vs-V distance was larger than the D-vs-C distance or the V-vs-C 757 

distance.  758 
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Table 1. Selected genes overlapping with 100-kb frequency-based CNVG and CNVL features1 with adjusted p-values less than 0.01. 

Gene Ratio H%2 L%3 CNV CNV location   
(x 100 kb)4 p-value5 

CNV in replication phase (%)6 
G1b S1 S2 S3 S4 G2 

GABAA Receptor Family (KEGG: Nicotine addiction) 
GABRR1, 2 C > DG 26 2 L 6:899-900 2.05E-04 0 0 99 0 0 0 
GABRG3 C > DG 61 27 L 15:275-276 5.55E-04 0 0 0 0 0 100 
GABRG3 VG > DG 59 27 L 15:275-276 3.46E-03 0 0 0 0 0 100 

Glutamate Metabotropic Receptor (KEGG: Glutamatergic synapse)             
GRM4 DL > VL 80 51 L 6:339-340 6.99E-03 0 87 0 0 0 0 
GRM8 DL > VL 91 45 L 7:1,267-1,268 1.08E-06 0 0 0 37 45 0 
GRM5 VG > DG 16 0 L 11:882-883 3.98E-03 0 90 0 0 0 0 

Glutamate Ionotropic Receptor (KEGG: Glutamatergic synapse, Nicotine addiction)       
GRIA1 VG > DG 31  0  L 5:1,530-1,531 6.10E-06 0  0  0  12  78  0  
GRIK2 VG > DG 16  0  L 6:1,025-1,026 3.29E-03 0  0  0  0  0  100  
GRIA4 VG > DG 25  3  L 11:1,057-1,058 3.98E-03 0  0  0  0  100  0  

GRIN2B VG > DG 23  0  L 12:138-139 2.56E-04 0  0  0  0  100  0  
GRIN2A VG > DG 39  6  L 16:98-99 1.61E-04 0  0  0  77  16  0  
GRIN2A VG > DG 26  5  L 16:99-100 6.84E-03 0  0  0  94  0  0  
GRIN2C VG > DG 39  12  L 17:728-729 4.36E-03 3  92  0  0  0  0  

UDP Glucuronosyltransferase 1 Family (KEGG: Steroid hormone biosynthesis) 
UGT1A1, 3-10 VL > DL 36  11  L 2:2,346-2,347 6.62E-03 0  0  98  0  0  0  

Cytochrome P450 (KEGG: Steroid hormone biosynthesis) 
CYP3A4, 5, 7 C > DG 30  5  G 7:993-994 3.05E-04 0  100  0  0  0  0  
CYP3A4, 5, 7 C > DL 30  9  G 7:993-994 6.15E-03 0  100  0  0  0  0  
CYP3A4, 5, 7 VL > DL 55  9  G 7:993-994 6.37E-07 0  100  0  0  0  0  
CYP11B1, 2 VL > DL 19  0  G 8:1,439-1,440 6.55E-04 0  1  68  0  0  0  
CYP11A1 VL > DL 51  22  L 15:746-747 7.80E-03 100  0  0  0  0  0  

Premature Ovarian Failure Protein 1B 
POF1B C > P 29  9  G X:845-846 2.13E-03 0  0  0  0  6  92  
POF1B C > DG 29  0  G X:845-846 2.19E-06 0  0  0  0  6  92  
POF1B VG > DG 18  0  G X:845-846 1.20E-03 0  0  0  0  6  92  
POF1B DG > C 23  5  G X:846-847 2.94E-03 0  0  0  0  0  100  
POF1B DG > VG 23  2  G X:846-847 1.67E-03 0  0  0  0  0  100  

Transcriptional Regulating Factor 1 (Breast cancer anti-estrogen resistance 2) 
TRERF1 C > DG 20  0  L 6:423-424 5.55E-04 8  92  0  0  0  0  
TRERF1 VG > DG 16  0  L 6:423-424 3.98E-03 8  92  0  0  0  0  
TRERF1 DL > VL 42  15  G 6:424-425 7.63E-03 97  0  0  0  0  0  
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Opioid Binding Protein/Cell Adhesion Molecule Like (Hypogonadotropic Hypogonadism 14)     
OPCML DG > C 100  79  L 11:1,331-1,332 3.17E-04 0  0  0  0  0  100  
OPCML DG > VG 100  85  L 11:1,331-1,332 7.57E-03 0  0  0  0  0  100  
OPCML DG > C 61  24  L 11:1,332-1,333 1.07E-04 0  0  0  0  0  100  
OPCML DG > VG 61  15  L 11:1,332-1,333 6.24E-06 0  0  0  0  0  100  

MACRO Domain Containing 2 (Mono-ADP Ribosylhydrolase 2, Hypogonadotropic Hypogonadism 21) 
MACROD2 C > DG 21  2  G 20:158-159 7.43E-04 0  0  0  31  34  0  
MACROD2 DG > C 97  77  G 20:151-152 1.45E-03 0  0  0  100  0  0  
MACROD2 C > DG 64  35  G 20:144-145 2.07E-03 0  0  0  74  15  0  
MACROD2 C > DG 64  24  L 20:156-157 2.82E-05 0  0  0  75  23  0  
MACROD2 DG > VG 97  62  G 20:151-152 8.43E-06 0  0  0  100  0  0  
MACROD2 VG > DG 31  2  G 20:158-159 2.79E-05 0  0  0  31  34  0  
MACROD2 VG > DG 21  2  G 20:145-146 2.03E-03 0  0  0  100  0  0  
MACROD2 VG > DG 64  35  G 20:144-145 6.56E-03 0  0  0  74  15  0  
MACROD2 VG > DG 74  24  L 20:156-157 1.17E-06 0  0  0  75  23  0  
MACROD2 VG > DG 15  0  L 20:146-147  7.25E-03 0  0  0  100  0  0  

1 See Table S7 for data on 50-500 kb CNV features; 
2 CNV frequency in first-named, higher frequency group (H), e.g. C-group of C>P pair; 
3 CNV frequency in second-named, lower frequency group (L), e.g. P-group of C>P pair; 
4 Chromosome number with start and end coordinates (to be multiplied by 100 kb); 
5 FDR-corrected p-value obtained using Fisher’s exact test on counts of CNV features in the two groups compared, as specified in the ‘Ratio’ column; 
6 % base pairs in 6 replication phases; the % in genomic regions with unknown replication timing are not shown. 
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Table 2. Representative pathways enriched in 100-kb frequency-based CNV features. 

No. 
Group1 

CNV2 KEGG pathway3 Chromosome4 
Gene distribution in replication phases5 Proportion 

(%)6 p-value7 
H L G1b S1 S2 S3 S4 G2 

1 C P G Steroid hormone biosynthesis 2 - - ++++++ - - - > 0 - 100 [5.7E-04, 1.5E-09] 
2 C VG G Steroid hormone biosynthesis 2 - - ++++++ - - - > 0 - 100 [2.7E-04, 9.3E-10] 
3 C VL G Steroid hormone biosynthesis 2 - - ++++++ - - - > 0 - 100 [2.7E-04, 1.3E-09] 
4 C DG G Steroid hormone biosynthesis 2,7 - ++ ++++ - - - > 0 - 100 [5.6E-05, 1.4E-11] 
5 C DL G Steroid hormone biosynthesis 2,7 - ++ ++++ - - - > 0 - 100 [3.1E-05, 7.6E-12] 
6 VL DL L Steroid hormone biosynthesis 2,15 + - +++++ - - - > 0 - 100 [4.8E-02, 6.7E-05] 
7 VL DL G Steroid hormone biosynthesis 7,8,1 - +++ ++ - - - 60 [4.9E-02, 4.9E-02] 
8 DG VG L Ovarian steroidogenesis 15,10,14,16,7 +++ + + + - - 40 [4.8E-02, 4.8E-02] 
9 C DG L Nicotine addiction 6,11,12,15,16,17,5 - + ++ + ++ + > 0 - 20 [3.2E-02, 1.9E-02] 

10 C DL L Nicotine addiction 6,11,12,15,16,17,5 - + ++ + ++ + > 0 - 20 [4.9E-02, 1.2E-02] 
11 C DG L Circadian entrainment 11,17,12,16,20,5,8 + + - + ++++ + 20 [2.9E-02, 2.9E-02] 
12 VG DG L Serotonergic synapse 1,11,15,12,17,20,21,5,6,7 + + + +++ - + > 0 - 30 [3.8E-02, 1.2E-02] 
13 VG DG L Glutamatergic synapse 11,15,17,1,12,16,20,5,6 + ++ + + ++ + > 0, 10 [4.6E-02, 3.6E-02] 
14 VG DG L Nicotine addiction 15,11,12,16,17,5 - + - ++ +++ + 10 [4.6E-02, 4.6E-02] 
15 VG DG L Dopaminergic synapse 1,11,12,16,17,2,20,21,4,5,7,8 + - ++ ++ ++ + > 0 - 20 [4.4E-02, 3.0E-02] 
16 VG DG L Circadian entrainment 1,11,17,12,16,20,21,4,5 + + ++ + ++ + > 0 - 20 [3.0E-02, 1.7E-02] 
17 VG DG L cAMP signaling pathway 1,11,5,10,12,16,17,3,4,6,7 + + + ++ ++ - 20 [3.3E-02, 3.3E-02] 

1 Significant difference in CNV frequencies between compared groups, with ‘H’ and ‘L’ indicating higher- and lower-frequency group respectively. The 
subscripts ‘G’ and ‘L’ indicate sample groups clustered based on CNVG and CNVL respectively; 
2 ‘G’ indicates copy-number-gains and ‘L’ indicates copy-number-losses; 
3 KEGG pathway IDs are, in order of appearance in table, hsa00140, hsa04913, hsa05033, hsa04713, hsa04726, hsa04724, hsa04728 and hsa04024; 
4 Chromosomes where pathway genes overlapped with CNV feature(s); 
5 Approximate distribution of pathway genes in different replication phases, with ‘-’ indicating 0%, and one ‘+’ indicating 0-20%, up to six ‘+’ indicating 
100%; 
6 Proportion of gene sequence overlapping with the CNV feature(s) ranging from > 0% to 100%; 
7 Range of Benjamini-adjusted p-values of pathway enrichment pertaining to bottom and top figures referred to in footnote 6. 

 

 

  

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 9, 2021. 

; 
https://doi.org/10.1101/2021.02.08.430168

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.02.08.430168
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36

Table 3. Selected genomic features in 100-kb frequency-based diagnostic CNV features with fold-change greater than 1 in at least one replication phase(s). 

Group1 CNV2 Fold-change in different replication phases3  Group1 CNV2 Fold-change in different replication phases3 
H L G1b S1 S2 S3 S4 G2  H L G1b S1 S2 S3 S4 G2 
CpGi (CpG island)       LINC (Large intergenic non-coding RNA)    
C P G -0.32 0.06 -0.06 1.62 -0.18 1.15  Continued       
C P L -0.18 0.05 0.39 0.46 1.10 2.20  C P G -0.97 -0.52 18.30 4.23 0.32 -0.11 
C DL G -0.45 0.02 -0.08 0.59 1.18 0.57  C P L -0.99 1.05 0.17 1.02 -0.73 0.92 
C VG L 0.14 0.06 0.69 0.71 0.47 1.42  C VL G 0.11 -0.96 0.03 1.75 -0.55 2.42 
P C L -0.34 0.12 -0.02 0.38 -0.23 1.08  C VG L -1.00 -0.77 -0.79 -0.93 -0.47 1.59 

Me450 (Methylation status using HumanMethylation450)    C VL L -0.98 -0.74 -0.72 -0.87 -0.50 1.06 
C P G -0.51 0.54 1.04 0.88 -0.01 0.43  VG C L 0.48 -0.70 0.32 2.14 1.61 1.36 
C P L -0.29 0.23 -0.02 0.33 1.16 1.05  VL C L 0.31 -0.75 -0.02 1.80 1.01 0.74 
C VL G 1.00 0.04 -0.02 -0.35 -0.48 -0.25  VG DG L 0.37 -0.67 1.19 0.52 0.33 1.34 

MeBS (cytosine methylation using bisulfite sequencing)    RecD (Sex-averaged rates of recombination)   
C P L -0.12 0.45 0.12 0.49 1.53 1.55  P C L 1.31 0.39 0.26 0.44 0.36 0.97 
C DL G -0.53 0.10 0.06 0.64 1.65 0.59  DG C L 0.23 0.16 0.43 0.42 0.35 1.24 
C VG L 0.27 0.26 0.69 0.94 1.51 0.29  DL C L 0.40 0.30 0.52 0.50 0.51 1.56 

DG C L 1.03 0.54 0.35 0.24 1.20 -0.39  DL VL L 0.25 0.13 0.24 0.22 0.45 1.06 
DL C L 1.38 0.20 0.25 0.37 0.13 -0.34  GWAS (GWAS-identified SNPs)     
DG VG L 1.15 0.41 0.37 0.46 1.69 -0.24  C VG L 2.08 -0.01 -0.02 -0.35 0.18 0.60 
DL VL L 0.82 0.45 0.53 0.59 1.47 -0.15  C VL L 1.63 -0.13 -0.01 -0.23 0.10 0.38 
VL DL G 0.15 -0.17 -0.14 0.45 1.35 1.21  P C G -0.26 5.48 -0.38 0.27 -0.26 -0.34 
MeMRE (Methylation using MRE-
seq) 

     DG C G -0.16 1.61 -0.13 -0.28 -0.05 -0.01 
C P G -0.26 0.23 -0.30 2.00 -0.12 -0.19  DL C G -0.08 1.78 -0.17 -0.22 -0.03 -0.16 
C P L -0.23 -0.06 0.31 0.47 1.44 0.90  VG C L -0.34 -0.20 -0.22 -0.23 2.78 -0.14 
P C L -0.13 0.10 0.10 0.33 -0.22 1.70  VL C L -0.28 -0.37 -0.29 -0.17 2.00 0.01 

DNase (DNase I hypersensitive sites)      DG VG G -0.16 1.25 -0.02 0.33 -0.28 -0.25 
C P L -0.12 0.02 0.11 0.55 0.46 1.02  DL VL G -0.08 1.27 -0.03 0.24 -0.24 -0.11 
C VL G 0.22 -0.30 0.25 -0.55 0.04 1.14  GV hotspot (Density-based genetic-variant hotspot)   
P C L -0.10 0.08 0.51 0.38 1.80 -0.13  C VG G 1.97 -0.34 -0.21 -0.27 -0.15 1.22 

DG C L 0.28 0.27 0.24 -0.05 1.37 -0.52  C VL G 1.63 0.01 -0.27 -0.09 -0.28 0.69 
DL C L 0.47 0.22 0.39 -0.12 1.77 -0.14  P C L 0.12 -0.01 -0.11 0.70 1.58 0.29 
VG C L -0.16 0.22 0.05 0.00 1.38 -0.57  DG VG G -0.03 -0.23 -0.44 0.14 0.20 1.03 
VL C L -0.15 0.14 0.25 0.09 1.08 -0.66  DL VL G 0.01 -0.31 -0.43 0.28 0.00 1.06 
FAIRE (Formaldehyde-assisted isolation of regulatory elements)   DG VG L 0.30 0.27 0.09 0.42 0.61 1.22 
C P L -0.18 0.17 -0.10 0.15 0.71 2.69  Cluster (Cluster of genetic-variant hotspots)    
C VG L -0.23 0.12 0.03 0.14 0.46 2.97  C DL L 0.03 -0.84 0.38 -0.87 -0.30 2.42 
C VL L 0.02 0.08 -0.04 0.04 0.33 2.54  C VG G 3.68 -1.00 -1.00 0.42 -0.15 -0.29 
P C L -0.09 0.16 0.53 -0.03 0.86 1.56  C VL G 2.90 -1.00 -1.00 0.37 -0.21 -0.52 

DG C L 0.32 0.28 0.16 -0.17 1.55 0.14  C VG L -0.23 1.42 0.03 0.24 0.26 0.83 
DL C L 0.34 0.29 0.33 -0.24 2.11 1.25  P C L -1.00 -1.00 -0.27 4.33 4.26 -1.00 
DG VG L 0.22 0.17 0.11 0.11 1.15 0.92  DG C L 2.15 0.73 -0.05 0.57 1.34 -1.00 
DL VL L 0.20 0.21 0.02 0.03 0.77 2.08  DL C L 2.46 0.90 0.07 0.73 1.11 -1.00 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 9, 2021. 

; 
https://doi.org/10.1101/2021.02.08.430168

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.02.08.430168
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37

LINC (Large intergenic non-coding RNA)     VG C G -1.00 -0.26 1.48 0.46 0.12 -0.83 
C DG G 0.50 -0.64 7.56 1.38 1.46 0.11  VL C G -1.00 1.45 0.72 0.19 -0.08 -0.38 
C DL G -0.98 -0.76 8.90 1.53 1.51 0.16  VG C L -0.41 -0.72 -0.70 1.68 0.46 -0.97 
C DG L -0.86 0.44 0.46 -0.79 -0.88 3.10  VL C L -0.21 -0.78 -0.41 1.20 0.27 -0.89 

DG C G 1.84 -0.92 -0.68 0.21 -0.99 -0.80  DG VG G 0.02 -0.65 -0.55 -0.50 1.52 0.89 
DG C L -0.85 -0.84 -0.95 1.89 -1.00 -1.00  DL VL G -0.05 -0.64 -0.55 -0.53 1.41 0.95 
DL C L -0.81 -0.82 -0.95 1.85 -1.00 -1.00  DG VG L 0.91 0.42 0.43 0.64 1.71 1.25 
VG DG G 0.87 -0.74 4.34 -0.66 0.81 0.16  VG DG L -0.64 -0.36 3.00 0.50 0.12 0.20 
VL DL G 0.76 -0.75 3.45 -0.69 0.65 -0.08   VL DL L -0.44 -0.52 -0.15 0.41 -0.38 1.07 
1 Significant difference in CNV frequencies between compared groups, with ‘H’ and ‘L’ indicating higher- and lower-frequency group respectively. The 
subscripts ‘G’ and ‘L’ indicate sample groups clustered based on CNVG and CNVL respectively; 
2 ‘G’ indicates copy-number-gains and ‘L’ indicates copy-number-losses; 
3 Fold-change (> 1-fold in bold) of genomic feature density or intensity in diagnostic CNV features relative to non-diagnostic-CNV regions in replication 
phase.  
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