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Abstract. The size of a genome graph — the space required to store the nodes, their labels and5

edges — affects the efficiency of operations performed on it. For example, the time complexity6

to align a sequence to a graph without a graph index depends on the total number of characters7

in the node labels and the number of edges in the graph. The size of the graph also affects8

the size of the graph index that is used to speed up the alignment. This raises the need for9

approaches to construct space-efficient genome graphs.10

We point out similarities in the string encoding approaches of genome graphs and the external11

pointer macro (EPM) compression model. Supported by these similarities, we present a pair12

of linear-time algorithms that transform between genome graphs and EPM-compressed forms.13

We show that the algorithms result in an upper bound on the size of the genome graph con-14

structed based on an optimal EPM compression. In addition to the transformation, we show15

that equivalent choices made by EPM compression algorithms may result in different sizes of16

genome graphs. To further optimize the size of the genome graph, we purpose the source as-17

signment problem that optimizes over the equivalent choices during compression and introduce18

an ILP formulation that solves that problem optimally. As a proof-of-concept, we introduce19

RLZ-Graph, a genome graph constructed based on the relative Lempel-Ziv EPM compression20

algorithm. We show that using RLZ-Graph, across all human chromosomes, we are able to21

reduce the disk space to store a genome graph on average by 40.7% compared to colored de22

Bruijn graphs constructed by Bifrost under the default settings.23

The RLZ-Graph software is available at https://github.com/Kingsford-Group/rlzgraph24

Keywords: Genome graph construction · String compression · Relative Lempel-Ziv.25
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2 Y. Qiu and C. Kingsford

1 Introduction26

The linear reference genome suffers from reference bias that results in discarding informative reads27

sequenced from non-reference alleles during alignment [Ballouz et al., 2019]. To reduce the reference28

bias, alternative read alignment approaches that use a set of genomes as the reference have been29

recently introduced [Chen et al., 2020, Novak et al., 2017]. Genome graphs, due to their compact30

structure to store the shared regions of highly similar strings, are widely used to represent and ana-31

lyze a collection of reference genomes compactly [Paten et al., 2017, Computational Pan-Genomics32

Consortium, 2018, Sherman and Salzberg, 2020, Sherman et al., 2019].33

A genome graph of a collection of sequences is a labeled directed graph such that each sequence34

is equal to the concatenation of node labels on a path. We call such path a reconstruction path.35

The size of a genome graph is the space to store the graph structure, which is the set of nodes,36

edges and the node labels.37

The size of a genome graph is crucial to the efficiency of operations such as mapping sequencing38

reads. Shown in Jain et al. [2019], the time complexity of mapping a string to a genome graph is39

directly correlated with the total number of characters in node labels and the number of edges. The40

speed of sequence-to-graph mapping can be further improved by a graph index, the size of which41

is also dependent on the size of the genome graphs. [Paten et al., 2017, Sirén et al., 2014, 2020].42

Most of the existing genome graph construction algorithms do not directly optimize the size of43

the genome graph. Some of these algorithms choose a type of graph in order to adapt to a specific44

type of input data, such as read alignment [Garrison et al., 2018, Li et al., 2020, Paten et al., 2011,45

Mäkinen et al., 2020], variant calls [Garrison et al., 2018, Rakocevic et al., 2019, Dilthey et al.,46

2015] or raw sequencing reads [Iqbal et al., 2012], and then optimize the chosen graph. The other47

only optimize the graph index that stores reconstruction paths based an assumed type of genome48

graphs, for example, the variation graphs [Sirén et al., 2020, Sirén, 2017] or the colored compacted49

de Bruijn graphs [Almodaresi et al., 2017, 2020, Holley and Melsted, 2020, Muggli et al., 2019,50

Minkin et al., 2017]. As a result, the graphs constructed can be large in terms of both the space51

taken by the graph structure or the lengths of the reconstruction paths.52
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Constructing smaller genome graphs via string compression 3

While a small genome graph is desirable, the smallest genome graph may be useless if each edge53

is allowed to be traversed multiple times. The smallest genome graph is a complete graph with54

four nodes, or K4, whose labels are A, T , C and G, respectively, and contains the reconstruction55

path for any genomic sequence. The strings stored in a genome graph are parsed into a sequence56

of nodes on the reconstruction path. However, the parsing of strings would have lengths equal to57

the lengths of the strings in K4, which undermines the goal of a genome graph to compactly store58

similar strings.59

In order to construct a small genome graph that balances the size of the graph and the lengths of60

the reconstruction paths, we introduce the definition of a restricted genome graph and formalize the61

restricted genome graph optimization problem, which seeks to build a smallest restricted genome62

graph given a collection of strings.63

We present a genome graph construction algorithm that directly addresses the restricted genome64

graph size optimization problem. Optimizing the size of a restricted genome graph is similar to65

optimizing the space taken by a set of strings, which echoes the external pointer macro (EPM)66

scheme. We introduce a pair of algorithms that transform between the EPM-compressed form and67

the restricted genome graphs, and prove an upper bound on the size of the restricted genome graph68

constructed given an optimized EPM-compressed form from a set of input sequences. We further69

reduce the number of nodes and edges in the constructed restricted genome graph by introducing70

and solving the source assignment problem via integer linear programming (ILP).71

As a proof-of-concept that compression-based genome graph construction algorithms produce72

small genome graphs efficiently, we build the RLZ-Graph, which is based on an EPM scheme73

compression heuristic known as the relative Lempel-Ziv (RLZ) algorithm. The EPM compression74

problem is NP-complete [Storer and Szymanski, 1982]. Among the approximation heuristics to solve75

the EPM compression problem, the relative Lempel-Ziv algorithm [Kuruppu et al., 2010] runs in76

linear time and achieves good compression ratios on human genomic sequences [Deorowicz et al.,77

2015, Deorowicz and Grabowski, 2011, Ferrada et al., 2014].78

We evaluate the performance of RLZ-Graph by comparing to the colored compacted de Bruijn79

graphs (ccdBG) [Iqbal et al., 2012]. CcdBG construction methods, similar to the compression-based80

genome graph construction algorithms, process the input sequences directly without intermediate81
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4 Y. Qiu and C. Kingsford

steps such as alignment or variant calling. In ccdBG, the input sequences are fragmented into82

preliminary nodes that represent unique strings of length k, or k-mers. Each edge represents the83

adjacency between two k-mers in the sequences stored. The preliminary nodes with in- and out-84

degrees equal to 1 on a path are further merged into a supernode. Still, the number of nodes and85

edges, as well as the number of characters in node labels, in a ccdBG can increase significantly as the86

number of sequences stored increases. The size of the graph also depends heavily on the parameter87

k. These factors may offset the effort to efficiently encode the reconstruction path information in the88

graph indices [Almodaresi et al., 2017, 2020, Holley and Melsted, 2020, Muggli et al., 2019, Minkin89

et al., 2017]. Despite the different approaches to build the ccdBG indices, ccdBG construction90

methods results in the same underlying de Bruijn graph structure. When we compare our algorithm91

with ccdBG construction algorithms, we only compare the graph structure, which includes nodes,92

edges and sequences stored in each node.93

To examine the performance of RLZ-Graph, we compare sizes of the RLZ-Graph with the ccdBG94

constructed by Bifrost [Holley and Melsted, 2020] on all human chromosome sequences from 10095

individuals from the 1000 Genome Project [1000 Genomes Project Consortium, 2015]. The number96

of nodes and edges produced by RLZ-Graph are reduced significantly compared with the ccdBG.97

Across all chromosomes, the disk space taken to store the graph representation of 100 sequences is98

on average reduced by 40.7% compared with the ccdBG built under the default settings.99

Additionally, we evaluate the performance of the ILP solution to the source assignment prob-100

lem on RLZ-Graphs constructed from E. coli genome sequences, for which many whole genome101

sequences are available. We show that the solutions to the source assignment problem reduces the102

number of nodes by around 8% on 300 E. coli genomes.103

2 Definitions104

2.1 Strings105

Let s be a string. s[b : e] denotes a substring starting from position b (inclusively) of s up to position106

e (inclusively). We assume 0-indexing throughout this article. The length of s is denoted by |s|.107

Concatenations of strings {s1, ..., sn} are denoted by s′ = s1 · s2 · ... · sn.108
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Constructing smaller genome graphs via string compression 5

2.2 Genome Graphs109

Definition 1 (Genome graph). A genome graph G = (V,E, `) of a collection of strings S =110

{s1, s2, ..., sn} is a directed graph with node set V , edge set E, and node labels `(u) for each node u.111

A genome graph of S contains a collection of paths P = {P1, P2, ..., Pn}, where pi = vi1, v
i
2, ..., v

i
|Pi|112

, such that si = `(vi1) · `(vi2) · . . . `(vi|Pi|) for all si ∈ S. Such paths are called reconstruction paths.113

The size of a genome graph G = (V,E, `) is denoted by size(G), which is the space to store114

the set of nodes, edges and node labels (Section 3.1). The number of nodes in node set V and the115

number of edges in edge set E are denoted as |V | and |E|, respectively.116

Definition 2 (Restricted genome graph). A restricted genome graph is a genome graph with117

a source and sink node and the restriction that each edge is allowed to be traversed at most once in118

all reconstruction paths.119

An example of a restricted genome graph is shown in Figure 1. Each edge is traversed only120

once in all reconstruction paths, and parallel edges are present. In a restricted genome graph, if121

we insert the source and sink nodes to the beginning and the end of each reconstruction path and122

add edges directing from sink to source, then the concatenation of reconstruction paths for all123

sequences forms an Eulerian tour. For a restricted genome graph G = (V,E, `) and a collection of124

all reconstruction paths P = {P1, P2, .., Pn}, we have |E| =
∑

Pi∈P(|Pi| − 1) + 2n, where 2n edges125

are the edges directing from source nodes and edges directing to sink nodes.126

Fig. 1. An example of a restricted
genome graph. The graph stores two
strings, S1 and S2. The color of the edges
denotes the origin of node adjacencies.

2.3 External Pointer Macro (EPM) Compression Scheme127

We review the definition of the external pointer macro (EPM) scheme for data compression [Storer128

and Szymanski, 1982].129
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6 Y. Qiu and C. Kingsford

Definition 3 (Pointers in EPM). Given a reference string R, a pointer pi = (posi, leni) repre-130

sents the substring R[posi : posi + leni − 1].131

We say that two pointers, pi = (posi, leni) and pj = (posj , lenj) are equivalent to each other if132

R[posi : posi + leni − 1] = R[posj : posj + lenj − 1].133

Definition 4 (External pointer macro (EPM) model ). Given an alphabet Σ and a string T ,134

a compressed form of string T adopts the EPM if the compressed data follows the form C = R#t,135

where R is a string over Σ, t = p1p2, ... is a sequence of pointers that represent substrings in R, #136

is a separator symbol that is not in Σ, and T is equal to the string produced by substituting pointers137

in t by their corresponding substrings.138

The string T may represent a set of strings S = {s1, s2, ..., sn} by concatenation, i.e. T =139

s1$s2...$sn, where $ 6= # and $ /∈ Σ, where Σ is the alphabet for S. In this case, the compressed140

form t will also contain the character $ that separates sequences of pointers that represent different141

strings.142

It is natural to consider optimizing the size of the compressed string C, size(C) (Section 3.2),143

which leads to:144

Problem 1 (EPM decision problem [Storer and Szymanski, 1982]). Given a string T145

and an integer m, determine if there is a compressed form C of T that follows EPM such that146

size(C) ≤ m.147

In Storer and Szymanski [1982], Problem 1 is shown to be NP-complete.148

In EPM, the substring represented by a pointer may occur several times in the reference string.149

We define such occurrences as sources of a pointer:150

Definition 5 (Source). A source, (pos1, len), of a pointer p = (pos2, len) is an occurrence of151

R[pos2 : pos2+len−1] in R. In other words, R[pos1 : pos1+len−1] = R[pos2 : pos2+len−1]. Each152

pointer p is associated with a source set Sp = {ss1, ss2, ...}, where R[ssi.pos : ssi.pos+ssi.len−1] =153

R[p.pos : p.pos+ p.len− 1] for all ssi ∈ Sp.154

Sources are used to refer to the occurrences of a substring on the reference string R, and pointers155

are used to refer to the pair of integers eventually stored in the compressed string t.156

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.08.430279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430279
http://creativecommons.org/licenses/by/4.0/


Constructing smaller genome graphs via string compression 7

Definition 6 (Boundaries of sources and pointers). The boundaries of a source s = (pos, len)157

are defined as (b, e), where b = pos and e = pos + len. b is the left boundary and e is the right158

boundary. The similar definition of boundaries applies to pointers.159

Two boundaries, (b1, e1) and (b2, e2), intersect if and only if b1 = b2 or b1 = e2 or e1 = b2 or160

e1 = e2.161

2.4 Relative Lempel-Ziv Algorithm162

Definition 7 (Right-maximal pointer). Given a reference string R and a string T , let pointer163

p = (pos, len) represent the substring R[pos : pos + len − 1] and T [pos′ : pos′ + len − 1]. p is164

right-maximal if R[pos : pos+ len] 6= T [pos′ : pos′ + len].165

Definition 8 (Phrase). Given a reference string R and a string T , a phrase, p = (pos, len), is a166

right-maximal pointer.167

The relative Lempel-Ziv (RLZ) algorithm, proposed by Kuruppu et al. [2010], runs in linear168

time and achieves good compression ratios with genomic sequences. RLZ takes a reference string R169

as input and parses the input string T greedily from left to right. At position i in T , RLZ substitutes170

the longest prefix of T [i : |T |−1] that matches a substring in R with a phrase. Let the length of the171

phrase be len. After substitution, RLZ skips to position i+ len in T and repeats the substitution172

process until T is exhausted. The process of phrase production is called RLZ factorization. In some173

analysis of RLZ, the reference string is generated from the set of input strings [Gagie et al., 2016].174

Nevertheless, the RLZ factorization algorithm given a reference string remains the same.175

The definitions introduced above are demonstrated in Figure 2, where R is the reference string176

and T is the input string to the RLZ algorithm. RLZ factors T into a sequence of three phrases,177

shown as t. The compressed form of the input string T is C = R#t. Each phrase is associated178

with some sources that are represented as line segments in the figure. For example, the last phrase,179

(7, 2), replaces the substring T [7 : 8]. It also corresponds to two sources in R: (3, 2) and (7, 2), which180

are represented by the green line segments in R. The left and right boundaries of phrase (7, 2) are181

(b = 7, e = 8) in T . Source (3, 2) intersects with sources (1, 4) and (3, 3). However, sources (1, 4)182

and (3, 3) do not intersect with each other.183
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0 1 2 3 4 5 6 7 8

A T C G A T A G A

T C G A G A T G A

(1,4) (3,3) (7,2)

R =

T =

t = 

sources

Fig. 2. An example of RLZ factorization. The top
row is the indices of characters in the strings. R is
the reference string, T is the input string and t is a
sequence of phrases resulted from RLZ factorization.
Colored line segments on the third row represent the
sources associated with phrases with the same color.

3 Size formulation of restricted genome graphs and EPM-compressed forms184

3.1 Size of a genome graph185

We adopt a natural formulation of the size of a labeled graph, which describes the space to store186

nodes, edges and the node labels. Given a restricted genome graph G = (V,E, `) over alphabet Σ,187

let L be a string that contains every node label as a substring and Σ be the alphabet. Each node188

can be represented as a pointer to L, i.e. v = (pos, len), such that `(v) = L[pos : pos + len − 1].189

Each node takes 2 log |L| bits to store. The graph structure is stored as pairs of adjacent nodes.190

Each edge takes space 2 log |V | bits. Therefore, the total space taken by a restricted genome graph,191

denoted by size(G), under this model is:192

size(G) = |L| · log |Σ|+ |V | · 2 log |L|+ |E| · 2 log |V |. (1)

We introduce the restricted genome graph optimization problem:193

Problem 2 (Restricted genome graph optimization problem). Given a set of sequences,194

build a restricted genome graph G such that size(G) is minimized.195

In the above formulation, note that |E| refers to the number of edges including the parallel196

edges. Solutions to Problem 2 avoid a trivial genome graph solution, that is a complete graph with197

four nodes, or K4, where each node has label A, T , C, and G, respectively. From K4, any sequence198

over the alphabet Σ = {A, T,C,G} can be reconstructed under the definition of a genome graph199

(Definition 1). However, the length of the reconstruction path would be equal to the length of the200

sequence, which undermines the purpose of the genome graph, part of which is to produce a short201

parsing of the input sequence.202

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.08.430279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430279
http://creativecommons.org/licenses/by/4.0/


Constructing smaller genome graphs via string compression 9

In a restricted genome graph, the number of edges grows as the lengths of reconstruction203

paths increase. Therefore, minimizing the size of the restricted genome graph achieves a combined204

objective of a small genome graph and short parsing of the input sequences.205

3.2 Size of an EPM-compressed form206

Next, we consider the space taken by an EPM-compressed form C = R#t. The space taken by207

C, size(C), is the space to store the total number of unique pointers in t, the sequence t and the208

reference string R. We first encode each unique pointer with a pair of integers, (pos, len), which209

takes space 2 log |R| bits. If there are n unique pointers, t can be stored as a sequence of identifiers210

of the unique pointers using |t| log n bits. Therefore, the total space taken by an EPM-compressed211

form is212

size(C) = |R| · log |Σ|+ |t| · log n+ n · 2 log |R|. (2)

From equations (1) and (2), both the restricted genome graph and the EPM-compressed form213

have a size formulation that has three terms, which are the space taken by a reference string, the214

space taken by the unique pointers and the space to store the adjacencies between pointers.215

In order to reduce the size of the restricted genome graphs (Definition 2), it is natural to216

borrow ideas from the field of string compression. We introduce two algorithms that transform217

between genome graphs and compressed strings produced by EPM compression scheme [Storer and218

Szymanski, 1982].219

4 Transformation between EPM-compressed forms and genome graphs220

4.1 EPM-compressed string to genome graph221

Given an EPM-compressed form C = R#t of the original string T , and an alphabet Σ, the genome222

graph construction algorithm produces a restricted genome graph that stores both R and T .223

A näıve algorithm to construct a genome graph is to create a node for each unique pointer in224

t and add an edge between nodes that represent each pair of pointers t[i] and t[i + 1]. However,225

in repetitive sequences such as the human genome, a substring may occur in several pointers and226

thus may be stored several times redundantly. In the example shown in Figure 3, the substring AAA227
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10 Y. Qiu and C. Kingsford

R = AAATCG

S = AAA AAAT AAATC

Fig. 3. String S is factored into three pointers
given the reference string R. Each underlined sub-
string is represented by a different pointer. Accord-
ing to the näıve algorithm to construct the genome
graph, three nodes are created from three pointers.

would be stored three times according to the näıve algorithm, which results in excess space spent228

on storing repetitive content.229

Our construction algorithm, introduced below as two-pass CtoG, merges the repetitive sub-230

strings shared by multiple pointers by grouping pointers by their positions on the reference. “Two-231

pass CtoG” creates nodes and edges of the genome graph in two passes through t. In the first pass,232

the algorithm creates nodes by cutting the reference string according to the boundaries of each233

pointer. In the second pass, the algorithm connects the nodes according to the adjacencies between234

pointers in the compressed string t.235

First pass. Create a bit vector, B. A bit set at B[i] indicates that a pointer boundary falls at236

position i on R. Process t from left to right. For each pointer p = (pos, len), mark its boundaries in237

B: B[pos] = 1 and B[pos+ len] = 1. After t is exhausted, transform B into an RRR data structure238

that supports rank operations in constant time [Raman et al., 2002], where rankB(i) returns the239

number of set bits at or before position i in B. We then cut reference string at positions where240

a bit is set in B. If B[i] and B[j] are the only set bits in the interval [i : j], we create a node241

v = (pos, len) = (i, j − i) with `(v) = R[i : j − 1]. Each node can be treated as a pointer whose left242

and right boundaries are i and j, respectively. Each node is identified using its left boundary, i.e.243

rankB(i).244

We define the ordering of nodes. vi = (posi, leni) ≺ vj = (posj , lenj) iff posi < posj , where245

i and j are the identifiers of vi and vj , and i < j. Add an edge between each vi and vi+1 for all246

i < |V | − 1. The path v1, v2, ..., v|V | represents the reference string R.247

Second pass. We process t from left to right again in the second pass. For each pair of pointers248

t[i] and t[i + 1], we need to connect the nodes that mark the right and left boundaries of t[i] and249

t[j], respectively. Let t[i] = (posi, leni) and t[i + 1] = (posi+1, leni+1). We need to find two nodes,250

vm = (posm, lenm) and vn = (posn, lenn), such that posm + lenm = posi + leni and posn = posi+1.251
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Constructing smaller genome graphs via string compression 11

Since each node is identified by their left boundary, two nodes can be identified by m = rankB(posi+252

leni−1) and n = rankB(posi+1). Edge (vm, vn) then represents the adjacency between t[i] and t[i+1]253

in t. Repeat the process until t is exhausted. Create a source and a sink node. Create an edge that254

connects the source to the first node of each compressed string and the last node of each compressed255

string to the sink. An example output of the algorithm is shown in Figure 4, where the compressed256

string is produced by the RLZ algorithm [Kuruppu et al., 2010].257

The running time of the construction algorithm is O(|t| + |R|), where |t| is the total number258

of pointers. In both passes, the algorithm iterates through all pointers in t exactly once. Since259

the nodes are created by splitting the reference, there are at most |R| nodes and adding an edge260

between each pair of (vi, vi+1) takes O(|R|) time.261

The constructed restricted genome graph stores the set of nodes, edges and the node labels.262

While storing the reconstruction paths is also important, it is a separate challenge from optimizing263

the graph structure. There has been a line of work that constructs small graph indices to store264

the reconstruction paths efficiently given any graph structure [Sirén et al., 2014, 2020, Sirén, 2017].265

These indices can also be applied to our genome graph.266

There are three types of edges in the produced restricted genome graph: the backward edges,267

the forward edges and the reference edges. We define the backward edges as edges that direct from268

vj to vi, where j ≥ i, which include self-loops. We define the forward edges as edges that direct269

from vi to vj , where i < j − 1. We define the reference edges as the edges that direct from vi to270

vi+1. In other words, reference edges (vi = (posi, leni), vj = (posj , lenj)) connect nodes where the271

first node’s right boundary intersects with the second node’s left boundary, i.e. posi + leni = posj .272

We show that the constructed graph is a restricted genome graph that contains reconstruction273

paths for R and T as in Theorem 1.274

Theorem 1. Given an EPM-compressed form of string T , C = R#t, the algorithm described above275

creates a genome graph G = (V,E, `) that contains reconstruction paths for R and T .276

Proof. In the second pass of the algorithm, edges are added between the nodes that are the suffix277

and the prefix of adjacent pointers. Therefore, all pointer adjacencies are represented as edges in278

the genome graph.279
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12 Y. Qiu and C. Kingsford

All substrings R[i : j] can be reconstructed from G. If R[i : j] is a substring of a node label,280

it can be reconstructed from G. If R[i : j] spans two nodes, it spans two nodes connected by a281

reference edge.282

Any substring T [i : j] can be reconstructed from G. Suppose position i lands in the middle of283

a pointer pk = (posk, lenk), which means that k ≤ i ≤ k + lenk − 1.284

1. If j ≤ k + lenk − 1, which means that T [i : j] is a substring of the string represented by a285

pointer. Since all pointers in t point to substrings in R and R can be reconstructed from G, a286

substring of a pointer can be reconstructed.287

2. If j > k + lenk − 1, which means that T [i : j] spans at least two pointers. From the previous288

case, we have that T [i : k + lenk − 1] can be reconstructed using nodes and edges in G. Since289

all adjacencies between two pointers are represented in G, we can apply the analysis to the rest290

of T [i : j]. Therefore T [i : j] can be reconstructed if it spans more than one pointer.291

292

4.2 Genome graph to EPM-compressed form293

Given a restricted genome graph G = (V,E, `) and a set of reconstruction paths P that represent294

strings in S, we present an algorithm, GtoC, that produces an EPM-compressed form C = R#t295

whose decompression equals string T , which is a concatenation of strings in S.296

Produce the reference string R by concatenating the node labels in an arbitrary order O.297

Each node can then be represented as a pointer to R and be denoted as vi = (posi, leni), where298

`(vi) = R[posi : posi + leni − 1]. Assign an identifier to each node such that for vi and vj , i < j if299

posi < posj .300

Process all P ∈ P by substituting nodes with their pointer representations. If two adjacent301

nodes vi and vj in P are connected by a reference edge, merge the two nodes into one pointer302

p = (posi, leni + lenj). Concatenate all processed P , which results in t. The converted sequence of303

pointers t is then p1, p2, ..., p|t|, where |t| ≤
∑

P∈P |P |.304

The converted C satisfies the EPM definition where R is a string over Σ and t is a sequence of305

pointers to substrings in R. Since the concatenation of paths in P spells out T by concatenating306
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all the labels of nodes on the path, substituting the pointers in t with corresponding substrings307

reconstructs T .308

The running time of the construction algorithm is O(|V |+
∑

P∈P |P |) = O(|V |+ |E|).309

The size of the produced EPM-compressed form can be further reduced if the reference string R310

is equal to the shortest superstring that contains all the node labels. However, finding the shortest311

superstring is a NP-hard problem when the number of nodes is greater than 2 and would be312

impractical in dealing with large genomes.313

5 Upper-bound on the size of the restricted genome graph and the314

EPM-compressed form315

We show that the size of a restricted genome graph G produced using the two-pass CtoG algorithm316

is bounded by the terms of the input EPM-compressed form C (Lemma 1).317

Lemma 1. Given an optimally compressed EPM form C = R#t, the size of the transformed318

restricted genome graph G = (V,E, `), size(G), according to two-pass CtoG in Section 4.1 has an319

upper bound:320

size(G) ≤ |R| · log |Σ|+ min(2n, |R|) · 2 log |R|

+ (min(2n, |R|) · |t| − 1) · 2 log(min(2n, |R|)) (3)

where n is the number of unique pointers in t.321

Proof. The algorithm introduced in Section 4.1 creates nodes by cutting the reference string R322

according to boundaries of pointers. Each node is stored as a pointer (pos, len) to R, which takes323

2 log |R| bits.324

The total number of nodes produced by cutting the reference is ≤ min(2n, |R|). The number of325

cuts introduced by each unique pointer is ≤ 2. The maximum number of nodes given a reference326

string R is |R|. Therefore, the space to store all the nodes is ≤ min(2n, |R|) · 2 log |R|.327

The total number of edges, including reference and non-reference edges, in a restricted genome328

graph is ≤ min(2n, |R|) · |t| − 1. After the first pass of two-pass CtoG, the interval corresponding329

to each pointer may be cut into several nodes. Let the average number of nodes contained in each330
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14 Y. Qiu and C. Kingsford

pointer’s interval be a ≤ |V | ≤ min(2n, |R|). The average number of reference edges within each331

pointer is then a− 1. The total number of edges between pointers is |t| − 1, and the total number332

of edges within pointers is (a− 1) · |t|. Together, the number of edges in the reconstruction path is333

a · |t| − 1 ≤ min(2n, |R|) · |t| − 1.334

The size of the genome graph is then:335

size(G) = |R| · log |Σ|+ |V | · 2 log |R|+ |E| · 2 log |V |

≤ |R| · log |Σ|+ min(2n, |R|) · 2 log |R|+ (min(2n, |R|) · |t| − 1) · 2 log(min(2n, |R|)).

336

In practice, the graphs are stored such that the parallel edges are merged. We show that the337

size of the genome graph G′ produced by merging the parallel edges in G can also be bounded by338

the terms of the EPM-compressed form C (Lemma 2).339

Lemma 2. Given a restricted genome graph, G = (V,E, `), constructed from an optimally com-340

pressed EPM form C = R#t, the size of the genome graph, G′ = (V,E′, `), produced by merging341

parallel edges in G has an upper bound:342

size(G′) ≤ |R| · log |Σ|+ min(2n, |R|) · 2 log |R|+ (min(2n, |R|) + |t|) · 2 log(min(2n, |R|)), (4)

where n is the number of unique pointers in t.343

Proof. Merging parallel edges does not change the number of nodes and the concatenation of node344

labels.345

The number of reference edges in G′ is equal to |V | − 1, as the nodes are produced by cutting346

the reference string.347

The number of forward and backward edges in G is equal to |t| − 1, and the number of forward348

and backward edges in G′ is ≤ |t| − 1 due to parallel edge merging. According to two-pass CtoG,349

since C is optimal, only a forward or a backward edge can be added for each pair of adjacent pointers350

in t during the second pass. Suppose two adjacent pointers, p1 = (pos1, len1) and p2 = (pos2, len2),351

result in a reference edge, which means that pos2 = pos1 + len1, the two pointers can be merged352
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Constructing smaller genome graphs via string compression 15

into p3 = (pos1, len1 + len2). Merging two pointers reduces the size of C, which contradicts the353

assumption that the size of C is optimal.354

Together, the space to store all the edges inG′ is≤ |V |+|t| ≤ (min(2n, |R|)+|t|)·2 log min(2n, |R|).355

Therefore, the size of the genome graph G′ after merging the parallel edges in G is:356

|G′| = |R| · log |Σ|+ |V | · 2 log |R|+ |E′| · 2 log |V |

≤ |R| · log |Σ|+ min(2n, |R|) · 2 log |R|+ (min(2n, |R|) + |t|) · 2 log(min(2n, |R|)).

357

We show in Lemma 3 that the size of the EPM-compressed form produced by GtoC algorithm358

(Section 4.2) is upper-bounded by the terms of the size of a restricted genome graph.359

Lemma 3. Given a restricted genome graph G = (V,E, `) of a collection of strings S, the size of360

the transformed EPM-compressed form of the concatenated strings in S, C = R#t according to361

GtoC described in Section 4.2 has an upper bound:362

size(C) ≤ |R| · log |Σ|+ |E| · log

(
|V |+ 1

2

)
+ 2

(
|V |+ 1

2

)
log |R|, (5)

where R is a string formed by concatenating all node labels.363

Proof. Let the set of paths corresponding to the set of strings S be P = {P1, P2, ..., Pm}, where m364

is the number of strings in S. Since G has an optimal size, the number of edges in G is exactly365

|E| =
∑

i∈[1,m](|Pi|−1)+2m =
∑

i∈[1,m] |Pi|+m, where E includes reference, forward and backward366

edges. Note that if an edge does not belong to any path in P, it can be eliminated in the graph,367

which results in a smaller restricted genome graph.368

According to GtoC, the pointers are created by either directly converting a node or merging two369

nodes connected by a reference edge in a path P ∈ P. Let the number of reference edges be r. The370

number of pointers in t, or |t|, is equal to
∑

i∈[1,m] |Pi| − r = |E| −m− r < |E|.371

Given |V | nodes, the reference constructed by concatenating all node labels contains |V | + 1372

cut positions including the positions before R[0] and after R[|R| − 1]. From these cut positions, we373
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16 Y. Qiu and C. Kingsford

can produce at most
(|V |+1

2

)
pointers by selecting two positions as boundaries of a pointer. Let the374

total number of unique pointers be n. Then n ≤
(|V |+1

2

)
.375

Together, the size of the EPM-compressed form is:376

size(C) = |R| · log |Σ|+ |t| · log n+ n · 2 log |R| (6)

≤ |R| · log |Σ|+ |E| · log

(
|V |+ 1

2

)
+

(
|V |+ 1

2

)
· 2 log |R|. (7)

377

The pair of algorithms do not produce an optimal genome graph or optimal EPM-compressed378

form. Still, given an optimal input, the pair of algorithms achieve results that are bounded by the379

original terms in the input. We further improve the transformation from EPM-compressed form to380

genome graph by addressing the source assignment problem introduced below.381

6 Source assignment problem382

In an EPM-compressed form C = R#t, each pointer may be associated with a substring that383

occurs several times in R. We name such occurrences as sources. A source (posi, leni) is assigned384

to a pointer p if p = (posi, leni).385

In the EPM formulation, assigning different sources to a pointer does not change the size of the386

compressed string. However, the assignment of sources may affect the number of nodes significantly.387

According to the two-pass CtoG algorithm, the number of cuts made in the reference is equal to388

the number of distinct pointer boundaries. Therefore, the choice of sources is directly related to389

the number of nodes in the graph. An example is illustrated in Figures 2 and 4. The last phrase,390

(7, 2), is associated with two sources, (3, 2) and (7, 2). If we assign (3, 2) to the phrase, which is391

different from the case in Figure 2, the number of nodes created will be 5. Otherwise, 6 nodes will392

be created as in Figure 4.393

Given an EPM-compressed form and the set of sources corresponding to each pointer, if we394

can assign sources such that the total number of unique pointer boundaries is minimized, we can395

reduce the size of the created graph. We formulate the source assignment problem and present396
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an integer linear programming (ILP) solution for the optimal source assignment in genome graph397

construction.398

Problem 3 (Source assignment problem). Given a collection of sources sets S = {S1, S2, ..., Sn},399

where Si denotes the set of sources for a unique pointer i, find a set of sources S′ such that for all400

Si, Si ∩ S′ 6= ∅ and |
⋃

sm∈S′{bm, em}| is minimized, where bm, em are boundaries of source m.401

In this problem, we choose one source for each pointer such that the union of boundaries402

{bm, em} of each chosen source sm = (posm, lenm) is minimized. As a reminder, bm = posm and403

em = posm + lenm.404

For convenience, we denote the union of boundaries in a source set S by
⋃

B{S}, which is405

equivalent to
⋃

sm∈S{bm, em}.406

The formulation of the source assignment problem is similar to the hitting set problem in that it407

chooses the minimum number of positions to hit every pointer. However, the objective is indirectly408

related to the number of the chosen sources, and the sources and pointers are defined in a string409

context. The hardness of the source assignment problem is open due to these differences from the410

setting of the hitting set problem. Still, the similarities to the hitting set problem lead to the411

formulation of an integer linear programming solution.412

6.1 Integer linear programming formulation413

The objective of the ILP is to minimize the number of cuts made in the reference, where each cut414

is made at the boundaries of chosen sources. For each chosen source s = (posi, leni), a cut is placed415

at positions posi and posi + leni, which are left and right boundaries of s.416

We first construct a set of integers I that is the union of all source boundaries. Create a binary417

variable xp for each p ∈ I. xp is set to one if a cut is made at position p.418

We create a binary variable ysi for each source si = (posi, leni) that indicates whether the419

source is chosen. We create a constraint (Inequality 9) that at least one source is chosen from each420

set. We create another set of constraints (Inequalities 10,11) that ensures that if a source is chosen,421
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18 Y. Qiu and C. Kingsford

two cuts are made at its left (posi) and right (posi + leni) boundaries. This leads to the ILP:422

min
∑
p∈I

xp (8)

subjects to ∑
sj∈Si

ysj ≥ 1 ∀Si ∈ S (9)

ysj ≤ xposj (10)

ysj ≤ xposj+lenj
(11)

xp, ysj ∈ {0, 1} (12)

6.2 Pruning to reduce the number of sources423

In practice, a pointer with a short length may correspond to a large number of sources. For example,424

a pointer with length one may correspond to |R|/4 sources, where R is the reference string when425

the alphabet size is 4. This could result in a huge number of variables in the ILP formulation and426

would hinder its practicality significantly.427

To address this, we preprocess the sources as follows. If a source does not intersect with any428

other sources of different pointers, we eliminate the source from the source set unless it is the only429

source of a pointer. We name the eliminated sources isolated sources. Removing such sources does430

not affect the optimality of the solution.431

Lemma 4. If a set of sources, S, that satisfies the constraints of the source assignment problem,432

includes an isolated source s, it is possible to find a set of sources S′ with equal or lower objective433

value that does not include s.434

Proof. Let the pointer for the isolated source be p and the source set of p be Sp. Since s is an435

isolated source, there must be at least another source s′ in Sp. If s′ also does not intersect with436

any other sources in S, S′ = |
⋃

B{(S \ s) ∪ s′}| = |
⋃

B{S}|. Otherwise, if s′ intersects with some437

sources in S, this means that the union of source boundaries is reduced by at least 1 if we replace438

s with s′, i.e. S′ = |
⋃

B{(S \ s′) ∪ s}| ≤ |
⋃

B{S}| − 1. Therefore, excluding all isolating sources439

during preprocessing does not affect the optimality of the solution.440

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.08.430279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430279
http://creativecommons.org/licenses/by/4.0/


Constructing smaller genome graphs via string compression 19

7 Relative Lempel-Ziv Graph441

As a proof-of-concept that constructing a genome graph using a compression scheme results in small442

graphs, we implement the graph construction algorithm based on an EPM compression scheme443

algorithm, relative Lempel-Ziv. Given a reference string R, the relative Lempel-Ziv (RLZ) algo-444

rithm [Kuruppu et al., 2010], introduced in Section 2.4, seeks to greedily produce a compressed445

form of R where all pointers in R are right-maximal. We name the right-maximal pointers phrases.446

RLZ factorization in this manuscript is done on the compressed suffix array in the SDSL C++447

library [Gog et al., 2014].448

We apply the two-pass CtoG algorithm described in Section 4.1 to construct a RLZ-Graph.449

We merge the parallel edges in the implementation as it is the common practice in genome graph450

storage.451

An example of RLZ-Graph is shown in Figure 4. The RLZ-Graph is constructed based on the452

RLZ factorization in Figure 2, where the reference string is R = ATCGATAGA, the input string453

is T = TCGAGATGA and the factored phrase sequence is t = (1, 4), (3, 3), (7, 2). The nodes are454

produced by segmenting R according to the boundaries of sources assigned to phrases in t.455

Fig. 4. The RLZ-Graph of reference R =
ATCGATAGA and input string T =
TCGAGATGA (Figure 2). The black path
0, 1, 2, 3, 4, 5 encodes R, the orange path
1, 2, 2, 3, 5 encodes T . The parallel edges are
shown for the purpose of illustration and
are merged in the final graph.

In the implementation of RLZ-Graph, we build a bi-directed graph where each node can be456

traversed in forward and reverse directions, which is a commonly applied technique in other genome457

graph construction algorithms. For each node v = (pos, len), pos is referred to as the head of the458

node and pos+ len is referred to as the tail. If a node is traversed in reverse direction, its label is459

denoted as ˆ̀(v), which is equal to the reverse complement of `(v). This technique is useful in genomic460

sequences that underwent structural variations such as inversions, where the entire genomic segment461

is replaced by its reverse complement due to a double-strand break. During the construction of the462

RLZ-Graph, we use a modified reference sequence R by concatenating the reference genome of the463
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20 Y. Qiu and C. Kingsford

organism of interest with its reverse complement. Before the source assignment step, we mark each464

source as reversed if it is located on the reverse complement half of R and translate its boundary465

positions to the forward half. After the source assignment step, we mark a pointer as reversed if it466

is assigned a reversed source. When we add edges, if we encounter a reverse pointer p = (pos, len),467

we add an edge directing to the tail of the node vi = (posi, leni) and an edge directing from the468

head of the node vj = (posj , lenj), where posi = pos and posj + lenj = pos+ len.469

We ran all our experiments on a server with 24 cores (48 threads) of two Intel Xeon E5 2690470

v3 @ 2.60GHz and 377 GB of memory. The system was running Ubuntu 18.04 with Linux kernel471

4.15.0.472

7.1 Performance of RLZ-Graph compared to the colored compacted de Bruijn473

graphs474

We compare the size of the colored compacted de Bruijn graphs [Iqbal et al., 2012] with that of RLZ-475

Graphs on human genomic sequences. While there have been many graph construction algorithms476

for building colored de Bruijn graphs, the graph structure of ccdBG remains the same in these477

algorithms despite the different approaches to store the reconstruction paths as identifiers in each478

node. The comparisons made in this section only concern the graph structure, which includes the479

nodes, edges and the node labels.480

8 Experimental results481

We use Bifrost [Holley and Melsted, 2020] to construct the ccdBG. The genome graphs constructed482

include nodes, labels of nodes and edges, are stored in graphical fragment assembly (GFA) for-483

mat [Li, 2016]. In GFA file, the nodes of a graph are stored as a list of pairs of node identifiers and484

labels, and edges are stored as a list of pairs of node identifiers. Same as the RLZ-Graph, the graph485

constructed by Bifrost is bi-directed and does not contain parallel edges. The RLZ-Graph produced486

in this section does not use the ILP solution to assign sources due to the time and memory concern.487

Instead, we adopt the leftmost heuristic, where the leftmost source is assigned to each pointer. A488

source si = (posi, leni) is to the left of source sj = (posj , lenj) if posi < posj .489
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Fig. 5. Comparison between RLZ-Graph and ccDBG constructed by Bifrost with k = 31, 63 and 127 on
human chromosome 1 sequences. (a) Total number of characters in the node labels. (b) Number of nodes.
(c) Number of edges. (d) Size of the GFA file that stores the graph structure and node labels.

We build the graphs on all human chromosomes and show the results on chromosome 1 here (see490

Supplementary Figure S1-S3 for the rest of the chromosomes). The genomes we use are from the491

1000 Genome Project phase 3 [1000 Genomes Project Consortium, 2015]. For each chromosome,492

we randomly choose 5, 25, 50, 75 and 100 samples and generate their genomic sequences using the493

consensus command from bcftools [Li, 2011]. We construct both graphs using the sample sequences494

and the reference hg37. Hg37 is also used as the reference string in RLZ factorization. We vary the495

k-mer sizes used for Bifrost and report the sizes of graphs with k = 31, 63 and 127. The default496

choice of k of Bifrost is 31. We repeat each experiment 5 times.497

Shown in Figure 5, we compare the graph size in different aspects. From 5 sequences up to 100498

sequences, the graph produced by RLZ-Graph is smaller than the graph produced by Bifrost with499

different choices of k under all measures in the figure. At 100 sequences, the GFA file that stores500

the RLZ-Graph is 37% smaller than the GFA file storing the colored de Bruijn graph produced by501

Bifrost with k = 63 and is 42.2% smaller when k = 31 (Figure 5(d)). The number of total characters502

in the concatenated node labels are constant in the RLZ-Graph regardless of the increase of the503

number of sequences because nodes are produced by cutting a reference string.504
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Table 1. Average wall-clock running time of RLZ-Graph and Bifrost with different k values on chromosome
1 sequences.

Number of sequences 5 25 50 75 100

RLZ-Graph time (s) 1031 2707 4758 6872 9136
Bifrost k=31 time (s) 396 656 986 1542 1852
Bifrost k=63 time (s) 280 510 793 1126 1332
Bifrost k=127 time (s) 412 733 1098 1443 1744

The average running time of RLZ-Graph and Bifrost with k = 31, 63 and 127 on chromosome 1505

is reported in Table 1. It takes RLZ-Graph around 2.5 hours to build a graph with 100 chromo-506

some 1 sequences. The running time includes the time to do RLZ factorization. In all experiments,507

Bifrost is run in parallel in 20 threads while RLZ-Graph is run in a single thread. The RLZ-Graph508

implementation is not optimized and not parallelized compared to implementation of Bifrost. Still,509

the running time is on the similar scale compared to Bifrost.510

When k = 15, the size of the GFA file that stores the ccdBG is 15 gigabytes for 5 chromosome 1511

sequences and the running time is around 8 hours. Both the size of the graph and the running time512

is impractical compared to other k values. When k = 3, the size of the GFA file is 4.2 kilobytes for513

5 chromosome 1 sequences with 32 nodes and 127 edges and the running time is around 2.5 hours.514

Although the graph is small, it is similar to the K4 solution to the genome graph size optimization515

problem, where the length of the reconstruction path is approximately the same as the original516

string. With small k-mers, the ccdBG becomes impractical for human chromosomes. Therefore, we517

do not include the results of graphs constructed with smaller k values in Figure 5.518

8.1 Performance of various source assignment heuristics519

Aside from the ILP solution to the source assignment problem, sources are chosen by other heuristics520

in literature regarding RLZ factorization [Kuruppu et al., 2011]. Specifically, the leftmost source on521

the reference string is chosen (Left), or the lexicographically smallest source is chosen (Lex). The522

lexicographical order of sources of the same source set is defined such that si = (posi, leni) < sj =523

(posj , lenj) if R[posi : |R|−1] < R[posj : |R|−1] given a reference string R. In our implementation,524

a phrase is assigned to its lexicographically smallest source by default. In this section, we compare525
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the performance of different source assignment heuristics in terms of the number of RLZ-Graph526

nodes in Figure 6(c).527

We obtain 300 genomic sequences of E. coli O157 strain from Genbank [Clark et al., 2016],528

from which we randomly permute the genomic sequences and construct the RLZ-Graph on varying529

number of sequences. The first sequence in the randomly permuted 300 sequences is used as the530

reference string. We repeat each experiment 5 times.531

In Figure 6(a), we show the rate at which the number of phrases produced by the RLZ factor-532

ization increases as the number of sequences increases. In Figure 6(b), we show the number of nodes533

produced due to different source assignment strategies. The ILP solution has the best performance534

and results in the fewest nodes. The percentage of reduced nodes is around 8% for 300 E. coli535

sequences. As the number of sequences increases, the ILP solution is able to eliminate more nodes536

compared to the heuristic that always chooses the leftmost source. The percentage of reduced nodes537

is calculated as 1− (|V |ILP /|V |Left) and 1− (|V |Left/|V |Lex), respectively.538
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Fig. 6. Performance of heuristics solving the source assignment problem. (a) The number of phrases. (b)
The number of nodes. (c) Percentage of nodes reduced using the leftmost heuristic and the ILP solution
during the source assignment step. The shaded area in the plots represents the standard deviation across 5
experiments and each data point in the figure represents the mean across 5 experiments. Lex: lexicographical
heuristic. Left: leftmost heuristic. ILP: ILP solution.

9 Discussion539

We define the restricted genome graph and formalize the restricted genome graph size optimization540

problem. The optimization problem balances both the size of the graph structure and the length of541

the reconstruction paths of sequences stored in the graph, which is similar to the string compression542

problem. Inspired by the similarity, we present a pair of algorithms that bridge genome graph543
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construction and the external pointer macro model. We prove an upper bound on the size of the544

genome graph that is constructed based on an optimal compressed string from the EPM model. One545

key advantage of our graph construction algorithm is that the total number of characters stored in546

the graph remains the constant regardless of the number of sequences stored in the graph, which547

helps reduce the space taken by a genome graph. Further, since the number of nodes and edges are548

derived from an already compressed representation of strings, the number of nodes and the number549

of edges remain small.550

We show that equivalent choices made by data compression algorithms may affect the size of the551

genome graph differently. To address this challenge, we introduce the source assignment problem,552

and present an ILP solution to it. We show that solving the source assignment problem prior to553

graph construction reduces the number of nodes by around 8%. Although it is a relatively small554

percentage, when dealing with very large genome graphs, it translates into substantial space saving.555

The application of solutions to the source assignment problem is not limited to the relative Lempel-556

Ziv algorithm, but can be applied to any EPM-compressed form to reduce the number of nodes557

and edges. The NP-completeness of the source assignment problem is still open.558

As a proof-of-concept that compressed-based genome graph construction algorithms can produce559

small genome graphs, we implement RLZ-Graph based on the relative Lempel-Ziv algorithm [Ku-560

ruppu et al., 2010]. We show that using RLZ-Graph, we are able to reduce the size of the graph561

significantly on disk compared to the colored compacted de Bruijn graph. The choice of k-mer sizes562

is important in de Bruijn graph construction as it significantly affects the size of the graph. RLZ-563

Graph removes this dependence on the choice of k and produces practical graphs with a smaller564

size, which is scalable to the entire human genome. Although the implementation of RLZ-Graph565

is not optimized, its running time is comparable to the parallelized and optimized ccdBG con-566

struction method, Bifrost [Holley and Melsted, 2020]. A future direction would be to improve the567

implementation of RLZ-Graph by parallelizing the RLZ factorization step.568

This work is an initial investigation into the connection between genome graph construction and569

string compression. We show that using compression algorithms, we can build small genome graphs570

efficiently, which opens up the possibilities in future research in adapting other data compression571

schemes to genome graph construction.572
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Supplementary results677

1 Comparison between ccdBGs and RLZ-Graphs on human chromosomes678

2–22679

We compare the sizes of genome graphs constructed on human chromosomes 2–22 by RLZ-Graph680

and Bifrost in Figures S1-S3. The experiment settings are the same as in Section 7.1 of the main681

text. Bifrost is run with k = 31, which is the default setting.682
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Fig. S1. Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31 on human chro-
mosomes 2–8. (a) Total number of characters in the node labels. (b) Number of nodes. (c) Number of edges.
(d) Size of GFA file that stores the graph structure and node labels.
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Fig. S2. Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31 on human chro-
mosomes 9–15. (a) Total number of characters in the node labels. (b) Number of nodes. (c) Number of edges.
(d) Size of GFA file that stores the graph structure and node labels.
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Fig. S3. Comparison between RLZ-Graph and ccdBG constructed by Bifrost with k = 31 on human chro-
mosomes 16–22. (a) Total number of characters in the node labels. (b) Number of nodes. (c) Number of
edges. (d) Size of GFA file that stores the graph structure and node labels.
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