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Abstract 

Transposable elements (TEs) are major genomic components in most eukaryotic genomes 
and play an important role in genome evolution. However, despite their relevance the 
identification of TEs is not an easy task and a number of tools were developed to tackle this 
problem. To better understand how they perform, we tested several widely used tools for de 

novo TE detection and compared their performance on both simulated data and well curated 

genomic sequences. The results will be helpful for identifying common issues associated 
with TE-annotation and for evaluating how comparable are the results obtained with different 
tools. 
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Introduction 

The vast majority of eukaryotic genomes contain a high number of repetitive DNA 
sequences. These sequences can be broadly classified as tandem repeats or interspersed 
repeats. Tandem repeats are short sequences with a length up to a few dozen bases that lie 
adjacent one to another and are approximate copies of the same pattern of nucleotides. 
Similarly, interspersed repeats are homologous DNA sequences that can be found in 
multiple copies scattered throughout a genome and their lengths can vary immensely from a 
hundred nucleotides up to more than twenty-thousand nucleotides. Most of these 
interspersed repetitive sequences found in genomes originated from the proliferation of 
transposable elements.  

Transposable elements (TEs) are mobile genetic sequences possibly related to viral 
components that have evolved the ability to increase their abundance in a genome by 
making copies of themselves. The fraction of TEs in a genome can vary widely and can 
represent more than 80% of plant genomes [1]. To put into perspective how common they 
are, if we consider a well-studied case, such as the human genome, the annotated protein-
coding genes represent only a very small fraction of approximately 5% of all the sequences, 
meanwhile TEs can make up to about 68% of the sequences [2]. 

Genomes and TEs have coevolved similarly to a host-parasite relationship and this led 
the genomes to develop multiple mechanisms to suppress TE activity as they can 
compromise the integrity of the genome and can cause deleterious mutations. 
Consequently, there is a constant evolutionary arms race between transposon activity and 
the host genome trying to suppress their proliferation [3]. Despite the parasitic nature of TEs, 
they play a fundamental role in genome evolution, contributing to plasticity, shaping, and 
altering the architecture of the genome. TEs contribute to gene regulatory networks as their 
activity can disrupt regulatory sequences modifying gene expression by altering chromatin 
structure, behaving as enhancers or promoters, or, when transcribed as part of a larger 
transcript, creating new transcript isoforms altering splicing and mRNA stability [4]. There are 
multiple examples of TEs that have been domesticated and proteins derived from them 
which were co-opted, such as the RAG1 gene from the somatic V(D)J recombination in 
humans and the retrotransposons that maintain the telomeres in Drosophila. RNA-mediated 
retrotransposition of transcribed genes is also a source for gene duplications that can lead to 
novel traits [5]. 

Historically, TEs were considered useless selfish sequences and their influence on 
genes and genomes was often dismissed [6]. It was not until the last two decades that they 
started to be considered as major components of genomes and important players of genome 
evolution, but due to the difficulties posed by their repetitive nature their annotation and role 
in genetic studies still continues to be neglected [7]. 
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The correct identification of TEs is an important step in any genome project since their 
repetitive nature can create difficulties during de novo genome assemblies, breaking the 
continuity of contigs as a result of the same reads mapping to multiple loci [8]. They can also 
hinder annotation by creating conflicts with gene prediction programs if they can be found 
inside a host gene, carry part of a host gene when replicating, become pseudogenes, or 
contain spurious ORFs. 

There are multiple tools for TE-detection but there are no clearly defined pipelines or 
software tools that could be considered as standard, as there are no clear metrics to 
compare the results obtained from each software [9]. Most tools also rely on a high copy 
number of elements for correct identification and are usually tested in organisms that have 
large genomes and a high abundance of TEs. 

The identification of TEs can be a real daunting and a time-consuming endeavor for the 
amount of data that needs to be processed and compared and the challenges inherent to 
their complex nature. TEs are extremely diverse, they comprise multiple classes of elements 
that can vary immensely in sequence, length, structure, and distribution [10]. Some TEs 
families found in eukaryotic genomes can be very old with a majority of inactive copies due 
to accumulation of mutations or fragmentation during the insertion process. This means that 
remains of antique copies from a family can be very divergent from active TEs, making the 
detection of the remnants of decayed copies or the definition of consensus sequences a real 
challenge that is hindered by the great variability of TEs within the same family. The 
proliferation of TEs can also result in the generation of nested TEs and some families show  
a clear preference for jumping into other TEs that act as hotspots for insertion [11], making 
the detection and correct annotation of them even more difficult. 

There are well curated TE databases, such as RepBase [12] or Dfam [13], with libraries 
of consensus sequences. A homology-based approach relies on the TE sequences from 
these libraries which are then mapped against the studied genome. To identify new TEs a de 

novo approach is used and there are abundant software alternatives which rely on different 

strategies ranging from structural information, periodicity, k-mer counting, or repetitiveness, 
among others [14]. When a new species is sequenced, a strategy which uses only 
information from curated databases is not enough and it is necessary to use a de novo 
strategy to identify novel families and species-specific TEs.  

In this work we compare TE detection software which are widely used by researchers 
and we assess their performances on genomes with well curated TE annotations. We ran a 

number of de novo TE detection software packages on simulated sequences and genome 

sequences and then compared and evaluated their performance in detecting a wide variety 
of divergent TE families. A particular scenario that we tried to consider is the detection of 
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transposons in smaller genomes of around a hundred million bases. In all cases the 
software for identification of TE rely on the presence of a large number of the same family of 
elements and that is usually not common in smaller genomes where a lower number of 
copies of TEs is expected.  

 
Methods 

Datasets 
Genomic data with annotated TEs were downloaded from the UCSC Genome Browser 
database [15]. The TE annotation provided by UCSC Genomes was obtained from mapping 
TEs from the RepBase database [12] against each genome using RepeatMasker [16]. The 
sequence data sets we used varied from 46.7 Mb for the human chromosome 21 and 137.5 
Mb for the zebrafish chromosome 1 (see Table 1). 

Table 1. Datasets used for testing the TE de novo detection tools. 

Simulated data 

We used a Python script to simulate an ideal scenario where the composition, coordinates, 
and divergence of all the TEs are already known. This script takes input from a configuration 
file for GC content, TE sequences, number of copies, expected divergence (mutations and 
indels), percent of fragments, and nesting. The script starts by simulating a random 
sequence of a predefined length and a GC content that constitutes the base sequence 
where TEs are going to be inserted. Then it obtains the name of each TE and the number of 
copies from the configuration file and random positions are chosen and assigned to each 
TE. In the next step, TE sequences are loaded from a library and the information about 
divergence and fragmentation is taken into account to generate random mutations and 
fragments that are inserted into the base sequences. The last step takes all of this 
information to generate a fasta file with the whole new sequence with TEs and a GFF file 
with all the coordinates and relevant information. For the simulated dataset we used a base 
sequence of 40 MB and inserted 60 MB from 20 different families downloaded from the 
Dfam database [13]. 

Dataset Sequences Length TE-
fraction

Human genome Chromosome 21 46.7 Mb 42.92%

Zebrafish Chromosome 1 137.5 Mb 56.81%

Fruit fly Whole genome 137.6 Mb 17.65%

Simulated data Simulation 100.1 Mb 60.00%
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Software 

In this work we compared strategies for de novo detection of TEs using k-mer based tools 
and self-comparison tools. We tested three k-mer counting tools: Red, P-Clouds, and 
phRaider. Due to the nature of the algorithms employed by k-mer counting software, these 

tools are extremely fast and usually don’t require much computational power. Nevertheless, 

they usually require a big amount of RAM to store data structures, so they may not scale up 
well with large genomes. Red identifies candidate repetitive regions giving them a score, 
then processes these results using signal processing and the second derivative. These 
filtered data are used  to train a Hidden Markov Model that scans the genome for candidate 
TEs. As described by the author, it is a novel repeat discovery system that trains itself 
automatically on an input genome [17]. P-Clouds counts oligonucleotides, then arranges 

them into clusters of “probability clouds” that are related oligonucleotides that occur as a 

group more often than expected by chance. Then it annotates the genome by finding 
stretches with a high density of oligos present in these “probability clouds” [18]. The premise 
of phRAIDER is to use spaced seeds to specify match patterns, i.e., to permit the search of 
substrings allowing mismatches in certain positions. Then it scans the genome searching for 
highly frequent seeds and how they overlap [19]. The limitation of these tools is the fact that 
they don’t make any attempt to classify found repeats. Moreover, there is no information 
provided on relation between the detected individual elements.  

We also compared three self-comparison tools: RepeatScout, REPET (TEdenovo 
pipeline), and RepeatModeler. RepeatScout uses high frequency seeds and extends each 
seed to a progressively longer consensus sequence, following the dynamically inferred 
alignments between the consensus sequence and its occurrences in the genome. The 
alignment score encourages boundaries shared by some but not necessarily all alignments; 
it uses a standard SW-algorithm to extend until n-iterations fail to improve the score [20]. 
REPET is a package consisting of two pipelines, one for detection of TE: TEdenovo, and 
another for their annotation: TEannot [21, 22]. Both of these pipelines are fully configurable 
and each step can be parametrized. The TEdenovo pipeline by default starts self-
comparison of the input genome with BLASTER, a modified version of BLAST. Then it 
clusters the high scoring pairs using three tools: RECON, GROUPER, and PILER, grouping 
closely related TE sequences. Finally it performs a multiple alignment using MAFFT or MAP 
with the aim of having a consensus sequence for each TE family. Here, we are interested in 
the ability of the software to detect TEs, so we used only the TEdenovo pipeline. Finally, 
RepeatModeler is a pipeline that uses as an input the outputs of three other software, 
namely RECON, RepeatScout, and Tandem Repeats Finder. Additionally, it uses 
LTRHarvest or LTRretriever for LTR-TE detection [23]. RepeatScout, RepeatModeler, and 
REPET all give as a final result a fasta file with a consensus sequence for each type of TEs 
they could identify. Afterwords, we need to map back these consensus sequences to the 
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genome to identify individual copies of TEs and get their coordinates. For this step we used 
the popular tool RepeatMasker, version 4.0.9 [16], using the three tools’ outputs as libraries 
to screen the genomes for TEs. 

Another tool used for detecting simple repeats is Tandem Repeat Finder (TRF) [24], a 
software which models tandem repeats using a probabilistic model. We used it to filter out 
simple repeats obtained by the k-mer counting tools and also to assess the ability of self-
comparison software to cope with simple sequence repeats. TRF was run with default 
parameters on all the sequences analyzed and the results obtained were merged when an 
adjacent or overlapping annotation was reported. These results were converted into a GFF 
file for easing further analysis. 

Pipeline 

All the software were tested with default parameters as we intended to compare the average 
performance of each tool without tuning their optional parameters (see Figure 1). K-mer 
counting methods are expected to find all the high frequency k-mer, including simple repeats 
and interspersed repeats. For k-mer counting software after getting the results we ran 
Tandem Repeat Finder (TRF) with default parameters to filter out tandem repeats. The self-
comparison tools usually include some steps for filtering simple repeats and frequently make 
use of TRF, so this step was not replicated with these software. 

The type of results produced by each set of tools is also quite different due to the 
different strategies used. K-mer counting tools return the coordinates in the  genome with 
the regions where high frequency k-mers were found, meanwhile self-comparison software 
returns the consensus sequences of the TE candidates found as a fasta file. So for the latter 
set of tools we mapped back the consensus against the original sequences using 
RepeatMasker, running it with default parameters. The results obtained from all the different 
tools were transformed to GFF format for further processing. 

Then GFF files were sorted by coordinates and immediately adjacent, overlapped, or 
internal coordinates were merged as one, as the main idea is only the identification of 
transposon sequences. This step is necessary particularly in k-mer counting software which 
have the tendency to annotate many overlapping and fragmented repeats. For all the 
datasets tested we have as a reference the annotations downloaded from the UCSC 
Genomes database. 

TE-models’ comparison 

TE-models generated by self-comparison software on simulated data were compared to 
original TE-families using blastn with default paramters.  
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Figure 1. Pipeline used for testing and comparing the performance of de novo detection tools. 

Analysis 

With the results of TE detection obtained from each software we created GFF files that were 
then compared against the original files from UCSC database with RepeatMasker mapping 
results. A custom Python script was used to obtain the overlapping regions of two GFF files 
and where there are differences in the annotation, it allowed us to compare the coordinates 

of the reference and the ones obtained by the TE de novo software. This way of evaluating 

the data is useful in order to create a confusion matrix that can be used as input for a binary 
classifier test that allows us to compare the performance of different software against a 
reference. When the reference annotation and the new annotation agree on the coordinates, 
these bases are counted as true positives, or if nothing is annotated in both, these bases 
count as true negatives (Figure 2). If the new annotation has bases not covered by the 
reference annotation, we consider them as false positives, and similarly if annotations in the 
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reference are missing in the new annotation, these are counted as false negatives (Figure 
2). 

 

Figure 2. Classification of the results obtained after comparing the reference annotation and the 
predicted TEs. We have TEs in the reference genome annotation and TE candidates as a prediction. 
Then comparing both they can be classified as false negatives (FN), true positives (TP), false 
positives (FP), or true negatives (TN). 

With this kind of data we have a binary classification problem, where each category can 
be classified using a confusion matrix. There are multiple tests to evaluate and compare the 
results obtained by a binary classifier which make use of a confusion matrix data and one of 
the most commonly used methods is the Matthews Correlation Coefficient (MCC). The MCC 
has the advantage that it uses all four quadrants of a confusion matrix considering the 
proportions of each class and requires that in both classes negative and positive elements 
are correctly classified, performing well even when using imbalanced data and when one 
class is underrepresented [25]. The MCC evaluates the results obtained from a prediction, 

as in this case the TE de novo software TE candidates, against the known annotated data. 

The values of MCC range from -1 to +1, where a value of -1 is obtained when all the 
predictions are wrong, 0 when results are not better than random guessing, and 1 where all 
predictions are correct. In this work we used the MCC as a measure of the performance 
obtained from the different software tools. Additionally, we developed several R scripts for 
plotting GFF coordinates which visually compare the annotations obtained from each tool. 

Results 

As mentioned above, the two groups of programs provide different types of results. While k-
mer counting software provided a list of regions that are occupied by repetitive sequences, 
self-comparison software analyzed here returned sets of repeats’ models. These models can 
be next used to scan a genome and annotate individual repeats, including TEs. For this 
step, we used a popular program, namely RepeatMasker (see Methods section). 
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Model building 

Three self-comparison based programs were used to create TE-models for both real 
genomic data and simulated sequences. The results of the latter are the most informative as 
we knew the exact number of expected TE-families. Interestingly, all three programs 
generated more TE-models than we used for the simulation (see Table 2). REPET created 
the highest number of models even though it failed to report a model based on 730 Alu 
insertions in the simulated sequence. 

Table 2. Number of TE models generated by each software from a simulated sequence containing 
TEs of twenty different families. Please note that REPET failed to generate an Alu model.  

 RepeatScout generated the smallest number of TE-models (30) and only in few 
cases more than two models for a given TE-family: three for L1 and four for Polinton. 
However, it has a tendency to create homo-dimeric elements, for instance Copia, DIRS, 
HERVL (see Table S1). On the other extremum lies REPET. It not only generated the highest 
number of models but some of them were dimeric and hybrid. The latter were caused by a 
few nested repeats, for instance a Jockey nested in a Ngaro or a Tc1-Mariner nested in a 
HERVL. In general, longer elements tend to give rise to several models by both 
RepeatModeler and REPET. For instance, 5.5 kb long L1 element is a source of six models 
in RepeatModeler analysis and nine models in the case of REPET. Polinton, which is 18.5 
kb, resulted in eight models in both RepeatModeler and REPET and four models in the case 
of RepeatScout (see Table S1). Interestingly, some of these models overlap each other, 
suggesting that they could be merged during manual curation.  

 In our simulation, we “mutated” individual TE-copies up to twenty percent divergence 
from the reference sequence and many of the individual copies were truncated at the 5’ end. 
In general, a consensus sequence recovery at the nucleotide level was very good, with the 
average sequence identity of models to their respective reference sequences at 97.3% 
(stdev = 3.76). However, many of TEs were broken by a given software into several models. 
Probably the best example is Polinton, based on which RepeatModeler and REPET created 
nine models each and none of these covered the whole Polinton sequence that was used in 
the simulation (see Figure 4). The shortest transposon inserted into the simulated data was 
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Software Number	of	models	
generated

RepeatScout 30

RepeatModeler 80

REPET 82
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the 311 nucleotide long AluY element. The individual sequences were “mutated” to average 
13% divergence from the reference sequence and 67 of them were truncated at their 5’ end 
up to 30% of the sequence length. RepeatScout performed the best, returning a 208 nt long 
model with the sequence identical to the reference and just 3 nt missing from the 5’ end. 
Surprisingly, REPET didn’t report any models based on these sequences. Finally, 
RepeatModeler created three different models: one almost ideal with just a 5’ terminal 
guanosine missing and two others, a bit shorter but with extra eight and thirty-five 
nucleotides added to their 5’ end (see Table S1).  

 When analyzing the simulated data, one trend became clear, namely that on 
occasions multiple models are generated for the same TE and there are common patterns 
observed for each software. A characteristic of RepeatModeler is that it tends to generate 
redundant models, with up to six to eight models for the longest TEs. This is also a common 
behavior observed with REPET, where many fragments were generated. Another interesting 
observation that only occurs with REPET is that in some models part of a nested TE was 
included into a model resulting in chimeric models. With RepeatScout there is much less 
redundancy with the number of models, but again something unique happens and some of 
the reported models are total or partial duplicates of the original TE. 

Figure 3. Consensus sequences generated by each software for a single TE from the DIRS family. 
The length and position reflect the mapping to the TE, black dotted lines show the continuation of the 
same model, the orange segment represents a fragment coming from another TE (TRANSIB). 

  

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.08.430290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430290
http://creativecommons.org/licenses/by-nc-nd/4.0/


An example of different models generated for a DIRS TE of 5.6 kb which were particularly 
difficult to resolve is shown in Figure 3. This particular TE RepeatModeler generated six 
different models of different lengths. These models are on average fifteen percent diverged 
at the sequence level. There were two models calculated by RepeatScout, one almost 
identical to the reference and another one almost twice the length of the original and 
consisting of a duplication leading to erroneous homodimer. Interestingly, the two copies of 
this homodimer are complementary to each other as they lie on opposite strands compared 
to the reference sequence.  REPET reported four models in total. Two are relatively short, 
encompassing about one-third of the reference sequence and partially overlapping in a 
head-to-tail orientation. Another model is a hybrid TE consisting of two overlapping 
fragments of DIRS element in a head-to-tail orientation with a fragment of TRANSIB 
transposon. The fourth model closely resembles the original TE but is truncated by about 
240 nucleotides at its 5’ end (see Figure 3).  

In Figure 4 we present models generated for another TE, namely Polinton-1_DR [26]. 
The full-length transposon is 18.5 kb, including 350 bp terminal inverted repeats. All three 
software compared in our study reported few models for this TE but none of the models 
recovered the full length TE (see Figure 4 and Table S1). Interestingly, both REPET and 
RepeatModeler generated similar close-to-full-length models that are missing one of the 
inverted repeats, while RepeatScout’s longest model misses both inverted repeats. 
However, inverted repeats were reported as separate models by each of the program. 

Figure 4. Different models created for Polinton-1_DR transposon aligned against Dfam model 
DF0002823.2. 

 In the real data from model organisms, RepeatScout created the highest number of 
models with almost three-thousand consensus for zebrafish chromosome 1 (see Table 3). 
This is in contrast to the simulated data where RepeatScout generated the least number of 
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models. REPET lies on the other extreme of the spectrum with just 65 TE models for human 
chromosome 21. The smaller number of models generated for human data might be linked 
to the smaller sequence data compared to the two other datasets. However, based on the 
TE-annotation, the total length of TEs in the fruit fly genome is comparable to the total length 
of TEs in human chromosome 21, 24 MB versus 20 Mb, respectively. In general, the real 
data seem to harbor more versatile repertoire of TEs than our simulated data resulting in 
many more TE models (compare Table 2 and Table 3). However, it is quite difficult to realize 
any general pattern of TE-discovery using these programs, simply there is none. 

Table 3. Number of models generated by three software in real sequence analysis. 

  

 Based on our simulated data analysis it is clear that none of the analyzed software is 
able to compute a repeat consensus sequence accurately. While the sequence of a repeat 
can be calculated with confidence, the structure of the repeat should be inspected manually 
and edited accordingly. This is especially important for longer transposons. 

Individual repeats annotation  

To get a better idea of the different results of the de novo  annotation obtained by the six 

tools used, we plotted the coordinates of each one in tracks along with the reference 
annotation, as shown in Figure 5. Simply by visualizing the results it is quite evident that 
there is a tendency to get a fragmented annotation when using k-mer counting tools, 
particularly Pclouds and phRaider. Red uses a smoothing function to merge nearby high 
frequency k-mers, giving less fragmented results, as shown in Figure 5 and 6. As it was 
expected due to the methodology used, the best results for detecting transposons were 
obtained by self-comparison software, but as it is shown more in detail in Figure 6, most of 
the predictions are fragmented TEs, annotations without clear borders, or missing some 
smaller or incomplete elements. 

Software
Number	of	models	generated

Zebra;ish	
chromosome	1 Fruit	;ly	genome Human	

chromosome	21

RepeatScout 2919 2593 464

RepeatModeler 1779 686 428

REPET 342 557 65
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Figure 5. Different tracks of the coordinates obtained from a de novo identification of transposons 
using six different software tools for detecting interspersed repeats. In the reference track, green 
blocks are transposons.
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Figure 6. Comparison of the fragmentation of results in a region of the human chromosome 21. In 
each track are the predictions obtained from each tool and in green the reference. Notice how most of 
the results are usually incomplete or fragmented. 

For self-comparison software, in most cases RepeatModeler got the best results, but 
RepeatScout obtained also comparable results. REPET failed in some scenarios and 
particularly with short divergent fragments, one of the reasons could be that this software 
was developed with the idea to be used with large genomes and here all the tests were run 
with sequences of around 100 MB. We compared the annotation results obtained using 
simulated sequences with known identities between TEs ranging from 60% to 100% and 
then compared the coverage of the annotation in relation to it, as is shown in Figure 5. It is 
expected that TEs with higher identities are detected more precisely. Indeed TEs with a 
higher identity are better detected by all software and the differences seen are inherent to 
the performance of each tool. For k-mer counting software, Red performs significantly better 
than the rest, e.g at 70% identity, Red detects approximately 85% of the TE regions. 
Meanwhile, Pclouds detects about 60% and phRaider 25% (Figure 7). The self-comparison 
software display a much better and uniform performance and are less affected by more 
divergent TEs (Figure 7). 
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When we also consider the different TE orders annotated and the proportion of coverage 
for the TEs of each order, we observe that there's no significant difference between them 
and all the software have a consistent performance (supplementary material, Figure S1). 

 

Figure 7. Coverage of TEs in simulated sequence in relation to their average identity. In k-mer 
counting software there's a great drop in the detection of more divergent TEs, this behavior is not 
seen when using self-comparison tools. RepeatModeler and RepeatScout results are almost identical 

and they are overlapped in this plot.  

Finally we evaluated the performance of each tool against the datasets using the 
Matthews Correlation Coefficient (Figure 8). To evaluate the results it is important to consider 
not only the raw performance of each tool but also the difficulty to run, configurability, and 
speed. K-mer counting software usually only accept a few parameters such as k-mer length, 
minimum frequency, and length; but these tools are usually very easy to run and require little 
computing power while being incredibly fast. However, one of the performance downsides 
can be the requirement to store large data structures in memory. In this category, with 
defaults parameters Red outperformed pClouds and phRaider and this can be explained by 
the fact that Red merges nearby k-mers more frequently than the others, giving less 
fragmented results. Self-comparison software employ a strategy that requires much more 
computational resources. They are also more time consuming and can be more complex to 
install, configure, and run. In our tests RepeatModeler obtained the best results, but it is 
interesting to notice that RepeatScout is part of RepeatModeler and also quite fast 
compared to the latter also obtained good results. REPET on the other hand was probably 
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not the best tool for this type of analysis. REPET has a default configuration but also 
different tools can be added to the pipeline and each step is highly configurable, but one of 
the downsides is that it can be very complex to configure and run for an unexperienced user. 

 

Figure 8. Matthews Correlation Coefficient values showing the performance of each tool tested with the datasets 
tested. 

In general, for a fast assessment of interspersed repeats, Red can be useful, 
acknowledging of course its limitations when it comes to low complexity sequences. For 
more in depth studies with small genomes, RepeatModeler seems to be the best option. It is 
also interesting to note that RepeatScout has a really good performance if we take into 
consideration speed and computational requirements.  

Nevertheless, for de novo detection of TEs, extensive manual curation and using 
multiple tools for confirmation of the results obtained is necessary. We also found that MCC 
can be used as a fast and reliable test to compare the performance of these software and 
can give a general idea of which tool is best suited for each task. 

Conclusions 

We tested a number of tools for de novo detection of TEs. The results were compared using 
the MCC against a reference of annotated TEs. As expected, self-comparison tools 
performed better than k-mer counting ones, with RepeatModeler beating competitors in most 
datasets. However, even for RepeatModeler, the results are far from satisfactory based on 
the reference annotation. There is a tendency for most tools to identify TE-regions in a 
fragmented manner and it is also frequent that small TEs or fragmented TEs are not 
detected. We recognize that some of the results obtained may be improved by fine tuning of 
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parameters; some tools like REPET are fully customizable and more tools can be added to 
the pipeline, although this can be challenging for an average user. In conclusion, most of the 
contemporary tools for de novo detection of TEs are far from being perfect and the 
identification of TEs is still a challenging endeavor as it requires a significant manual 
curation by an experienced expert. 
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Supplementary materials 

Table S1. Comparison of the consensus models obtained for each single TE inserted in the simulated 
sequence. With * are indicated models were the models include a duplication or an extension of the 
same TE and with # are indicated models that are the combination of two TEs which originated from 
nested TEs. 

TE_id Coun
t

Averag
e 
identit
y

Standar
d 
deviatio
n

Numbe
r  of 
indels

Target 
site 
duplicatio
n

Lengt
h

Number of 
truncated 
elements 

Number 
of 
nested 
element

AluY 730 87 12 16 y 311 67 11

BEL12-I_DR 550 89 12 10 y 7730 80 12

Copia1_DM 680 87 14 10 y 4530 65 10

DIRS-1_DR 710 85 15 12 n 5634 70 5

G5_DM-
Jockey

590 91 10 15 y 4856 75 16

GYPSY8_DM 470 84 10 15 y 4955 74 12

hAT-9_DR 480 82 12 11 y 2386 65 13

Helitron-1N3_
DR

550 83 10 11 n 1843 65 10

HERVL 590 88 14 14 y 6542 50 7

L1-4_DR 620 78 9 16 y 5548 72 13

Merlin1_HS 580 80 11 13 y 1175 60 18

Ngaro1_DR 560 86 12 11 n 6578 73 9

Penelope-1_D
R

810 85 11 20 y 4446 60 11

piggyBac-
N1_DR 610 80 10 19 y 1005 64 20

Polinton-1_DR 420 81 11 20 n 18485 70 10

RTE1 570 90 13 18 y 3291 71 11

SINE3-1 580 85 13 10 y 590 70 7

TC1-2_DM 590 83 14 12 y 1644 70 16

TRANSIB1 670 81 10 12 y 3014 68 9

Turmoil2 650 79 9 10 y 6999 69 15

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.08.430290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2. TEs inserted into simulated data. Transposon ids after Dfam. 

Original TE-families Length of the models created

TE Length RepeatScout RepeatModeler REPET

AluY 311 308 345  
320  
310 

-

BEL12 7730 7724 7751  
7730  
6413 

11148* 
7750  
2769 

Copia 4530 8843* 4532  
4514 
4326 
4076 

4652  
4314 

DIRS 5654 5644 
9385*

5672  
5653  
5610  
5445  
4633  
4062 

7134# 
5401  
1824  
1727 

G5 4856 4854 4851  
4843  
4836  
3151 

7502 * 
5232  
5197  
4904  
3967  
2359 

GYPSY 4955 4360 
3920

4938  
4012  
3951  
3373 

5068  
4682  
2061  
1445  
1256 

hAT 2386 2380 2380  
2380 

2426

Helitron 1843 1839 
1472

1832 
1823 
1234 

1907 
1906 
1744 
871  
633 

HERVL 6542 12634* 6549  
6523  
6094 

11495# 
6553 
3886  
3169 
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L1 5548 4460 
3379 
2415

5496  
5488  
3386  
2588  
2478  
1289 

5784 
5605 
5443 
2855 
2142 
1794 
1639 
1179  
667 

Merlin 1175 1168 1172 
1167 
744  

1231 
1216 
1089 
629 

Ngaro 6578 6571 
6020

6568 
6566  
6563 
6156 

7798# 
6652 
6379 
2487  
2445 

Penelope 4446 4437 
2276

4432  
4407  
4189  
3910 
3198  
3908 

5077 
3251  
812 

piggyBac 1005 997 1002  
990  
840 

1067 
1055 
966 
641  
477 

Polinton 18485 14288 
10127 
4536 
1513

17626 
13482 
11066 
9356 
8330 
6655  
372  
169

16912 
16015 
15368 
10418 
6631 
2793 
1690 
1216 

RTE1 3291 3287 3286  
3270  
3212 

3343 
3200 
3128  
1222 

SINE3 590 587 587 
581 
578

624  
559 

Original TE-families Length of the models created

TE Length RepeatScout RepeatModeler REPET
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TC1 1644 1634 1636  
1627  
1472 

1689 
771 

TRANSIB 3014 3002 2995 
2546  
2378

3094 
2858  
1166 

Turmoil 6999 6676 7016  
6985  
6974  
6970  
4201 

7113  
6598  
5956  
5834# 
1757  
1381  
1100 

Original TE-families Length of the models created

TE Length RepeatScout RepeatModeler REPET
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a)

 
b) 

 
Figure S1. Coverage of each TE order in the human (a) and zebrafish (b) dataset.

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.08.430290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430290
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Bibliography

