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Abstract 
Acquisition of new skills has the potential to disturb existing network function.  To directly 
assess whether previously acquired cortical function is altered during learning, mice were 
trained in an abstract task in which selected activity patterns were rewarded using an optical 
brain-computer interface device coupled to primary visual cortex (V1) neurons.  Excitatory 
neurons were longitudinally recorded using 2-photon calcium imaging.  Despite significant 
changes in local neural activity during task performance, tuning properties and stimulus 
encoding assessed outside of the trained context were not perturbed.  Similarly, stimulus tuning 
was stable in neurons that remained responsive following a different, visual discrimination 
training task.  However, visual discrimination training increased the rate of representational drift.  
Our results indicate that while some forms of perceptual learning may modify the contribution of 
individual neurons to stimulus encoding, new skill learning is not inherently disruptive to the 
quality of stimulus representation in adult V1.        
 

 
Introduction 

Successful integration of new skills into an existing network requires balancing the 
maintenance of perception and action with the acquisition of new function.  New skill learning, 
whether it is perceptual, motor, or abstract, involves changes in cellular physiology that are 
distributed across the brain1–4.  Locally, up to 50% of the neurons within a circuit are recruited 
during task-specific behaviors, and it is observed that synaptic plasticity is pervasive among the 
activated neurons, particularly in the early phases of training3,5.  The extent to which these 
widespread adaptive changes disrupt or otherwise impact existing circuit function is an area of 
active investigation6,7.  Although addressing this issue is fundamental to understanding the 
biological constraints on learning, it is challenging to investigate because it requires identifying 
the neurons responsible for improved performance and monitoring these same neurons 
longitudinally throughout learning, as well as monitoring existing network function before and 
after new skill acquisition.  We met these challenges by combining 2-photon calcium imaging 
with a brain computer interface (BCI) behavioral paradigm.  We chose to train animals on an 
abstract task using a BCI so that we could reinforce a pattern of neural activity that was distinct 
from neural patterns associated with salience in the animals’ home-cage conditions.  As such, 
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training was a unique experience, different from previously learned relationships, and therefore 
allowed us to unambiguously test whether perturbation of existing function is inherent to sensory 
learning.  The use of a genetically encoded calcium indicator allowed neural activity of the same 
neurons to be tracked before and after training.  Mice were trained to perform a de novo task 
wherein they earned a reward by modulating the activity of a selected set of primary visual 
cortex (V1) neurons in a user-defined pattern.  Stimulus tuning and discriminability were 
quantified before and after skill acquisition to assess maintenance of visual function. 

It is well-established that similar to monkeys8, adult mice can learn to control BCIs using 
neurons in primary sensory cortex as well as motor cortex, in a goal-oriented manner that relies 
on the same plasticity mechanisms that are engaged during perceptual and motor learning2,4,9–

13.  To implement BCIs, neural activity is generally recorded electrically (e.g. using intracortical 
electrodes, surface EEGs, or EcoG), or more recently from optical signals using genetically 
encoded calcium sensors14. In all cases, neural activity is directly coupled to the movement of a 
device such as a cursor or robotic arm and is typically coupled to an effector that provides 
feedback regarding the neural trajectory generated by the subject. Here we used a one-
dimensional auditory cursor to provide sensory feedback.  Our implementation of BCI can be 
considered a multimodal, non-matched sensory task, given that an auditory feedback cue was 
associated with reward, and the reward was earned by modulating the activity of neurons in the 
visual cortex.       

We focused our study on V1 because the functional output of this circuit is well-
characterized, and therefore training-induced alterations can be readily detected.  For example 
in adult animals, enhancing eye-specific input by transiently closing one eye destabilizes 
orientation preference in single neurons as well as signal correlation between pairs of 
neurons15.  Modification is not limited to deprivation paradigms. Sensory representations are 
persistently altered by reinforced behavioral training under conditions in which specific visual 
cues are associated with salience16–20, and learning impacts the representation of non-trained 
stimuli as well21.  These studies raise the possibility that every time new associations are made, 
existing function is altered.  On the other hand, recruitment of new neurons selective for task-
relevant stimuli has been shown to be context-dependent in training paradigms that cue reward 
contingencies16 or carry context-specific information22.  These observations are an indication 
that new associations can be learned without perturbing existing function, in situations where 
the task goals are recognized by the subject to be distinct from previously learned behaviors 
and associations. 

We found that de novo skill training induced plasticity in the majority of V1 neurons in our 
imaging field of view.  In addition, pairwise noise correlation was altered in a manner that 
persisted outside of the trained context.  Despite these changes, stability of neural tuning to 
visual stimuli presented outside of the task context was not perturbed.  Furthermore, response 
amplitude of individual neurons during vision remained stable, and decoding analysis revealed 
that the estimated amount of information carried in V1 was unchanged.  Thus, stimulus 
representation was robust to new skill learning. Our results directly demonstrate that a new, 
non-matched sensory skill can be integrated into existing sensory networks without disrupting 
previously developed function.   

Given that the BCI task was designed to be multimodal in nature, we sought to 
determine whether our results apply to a sensory-matched perceptual task.  In a second cohort 
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of mice the stability of stimulus representation, outside of the trained context, was assessed 
before and after learning a visual discrimination task.  Similar to BCI training, neural tuning to 
visual stimuli and the estimated amount of information in V1 was largely unperturbed.  However, 
in contrast to BCI training, we found that stimulus representation at the population level was 
altered.  These results indicate new skill learning is not inherently destabilizing, and that some 
forms of perceptual learning may alter the contribution of individual neurons to stimulus 
encoding. 
     
Results  
V1 neurons are capable of driving an optical BCI 

Our goal was to assess the stability of stimulus representation before and after learning. 
Therefore prior to BCI training, 2 baseline visual stimulation sessions were recorded, referred to 
here as visual stimulation (VS) baseline 1 and VS baseline 2, respectively.  The acquisition of 
two VS baseline sessions allowed the stability of tuning to grating stimuli of varying orientation 
and spatial frequency to be assessed before BCI training was initiated.  A third visual stimulation 
session was recorded after successful BCI learning, and is referred to as VS post-learning.  The 
third session allowed the impact of training on the stability of tuning to be assessed by 
comparing stimulus responses in the VS baseline 2 and VS post-learning sessions. The reward 
delivery device was not visible during the passive viewing VS imaging sessions, nor was 
auditory feedback engaged.  As such, multiple cues were present that distinguished the VS 
sessions from the BCI training sessions.   

To facilitate BCI learning, mice were first conditioned to associate a tone with a reward, 
prior to being introduced to the BCI task. Mice were subjected to a Go/No-go pitch association 
task in which a 15 kHz pitch was associated with a water reward, and a 5 kHz pitch was 
associated with the absence of reward.  Animals were required to actively lick before a reward 
was released.  We considered a mouse to have successfully learned the task when mice had 
80% performance while performing at least 75 trials in a session.  Six out of seven mice learned 
the task (Supplementary Fig.1).  Four of the mice that learned the task completed BCI training, 
one mouse was trained on a BCI control experiment where the auditory pitches were not driven 
by neural activity, and one mouse was removed due to a procedural issue which prevented 
cross-session alignment of direct neurons. Both the BCI training and the BCI control experiment 
started within 8 days of learning the pitch association.   

In the BCI paradigm, the activity of six V1 glutamatergic excitatory neurons was directly 
coupled to a one-dimensional auditory feedback cursor (Fig. 1a-c, Supplementary Figs. 2-5).  
Expression of the calcium sensor was directed by the Vglut1 or EMX1 promoter (Supplementary 
Table 1).  The one-dimensional control signal used to drive the device was computed in the 
following manner: Three of the six neurons were assigned a positive value such that increases 
in their summed Z-scored activity drove the cursor closer to a target threshold (direct positive 
neurons, DP 1-3), and three neurons were assigned a negative value such that increases in 
their summed Z-scored activity moved the cursor farther away from a target threshold (direct 
negative neurons, DN 1-3).  The target threshold was determined separately for each mouse at 
the start of BCI training, so that pre-learning success rates would be in the range of 20-30% 
(Supplementary Fig. 6a,b).  The same six neurons were used to drive the BCI throughout the 
experiment and their corresponding threshold was held constant (Supplementary Fig. 6c, 
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Supplementary Movies 1-4).  See Methods for details on the selection of direct neurons and 
target threshold.  When the control signal reached the target threshold, the auditory cursor pitch 
was set to 15 kHz and a water reward was released, if the animal licked.  The animal had 10 
seconds to reach the target.  If the target was not reached within that time period, the trial was 
scored as a failure.  Mice were required to be still at the beginning of each trial (see Methods for 
trial structure details).  The BCI task was performed in the dark, and locomotion was monitored 
(Supplementary Movie 5).  

All mice exhibited significant improvement in performance, defined as the frequency of 
trials in which the target was reached, within 4-8 days of training.  Performance of a given 
session was considered significantly improved from the first session using a 2-sample 
proportions Z-test, corrected for multiple comparisons (see Methods for analysis details). The 
rate of learning varied across mice. Therefore, to examine the changes in direct neurons that 
were associated with improved performance, we defined a learning state that could be 
compared across mice.  We identified the earliest session in which linear regression of 
performance against session number was significant (α < 0.05).  This session was referred to as 
the learning point (LP) session and was used to assess learning-associated changes in the 
direct neurons.  All mice maintained the skill after the LP session; task performance was 
significantly higher in the last BCI session relative to the first BCI session in all mice (Fig. 1d).  
We also found that the latency to reach target threshold was reduced on the LP session 
compared to the first session (average median latency across mice, session 1: 4.03 ± 0.15 
seconds, LP session: 2.88±0.27 seconds, paired t-test p = 0.011). 

In BCI task design used here, although there was learning pressure to keep the activity 
of the three DN neurons low, there were no additional constraints placed on the indirect 
neurons.  Thus, maximum performance could be achieved without  fully solving the credit 
assignment problem23,24 at the time of the LP session, i.e. subjects were not required to identify 
and selectively alter the activity of the direct neurons to improve performance.  Nonetheless, the 
subjects can be considered to have gained volitional control of the device, given the significant 
improvement in the frequency of threshold crossings (Fig. 1d).  

To exclude the possibility that instrument noise or random fluctuations in the activity of 
the direct neurons contributed to improved performance, we verified that the coefficient of 
determination, R2 of the linear regression, was significantly higher than chance in all 4 mice (Fig. 
1e).  Chance was defined post-hoc; the activity of indirect neurons was used to generate a null 
distribution.  Random sets of six neurons were selected from the tracked pool of indirect 
neurons, and the control signal that each of the random sets would have generated was 
computed. This was repeated 1,000 times to generate the null distribution.  Performance across 
sessions was calculated and linear regression fits were made.  Chance was defined as the 95th 
percentile of this distribution.  Importantly, this analysis serves as a control to established that 
selecting combinations of neurons not coupled to the device did not result in the same 
improvement in performance across training sessions.    

An additional control was performed to control for any systematic increases in neural 
activity that may spontaneously occur with exposure to elements of the BCI task, such as 
repeated head fixation and reward delivery.  We played back the auditory sequences generated 
by BCI-trained mouse #1 to a different control mouse.  Three ‘fictive’ direct positive and three 
fictive direct negative neurons were selected following the procedure described above, and 
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tracked across 14 sessions; the six fictive neurons were not directly coupled to reward delivery 
or auditory feedback.  The calculated performance of the six fictive neurons remained below 0.5 
for all sessions, and the R2 of the linear regression was below chance (Supplementary Fig. 
7a,b).  The same control animal was used to generate additional null distributions matched to 
the experimental conditions of each of the 4 BCI-trained mice.  Consistent with the results in 
Fig. 1E, the R2 of the linear regressions generated from the experimental mice were above 
chance (Supplementary Fig. 7c). 

We characterized the activity of the 6 direct neurons at the time of success and noted 
that most of the drive to cross the target threshold in BCI session 1 came from the DP neurons, 
and this was also true in the LP session.  Often one DP neuron dominated in a given trial, 
although there were cases of coordination among DP neurons (Fig. 2, Supplementary Figs. 8a-
11a).  Because DP neurons were the primary drivers of threshold crossing, next we examined 
the extent to which activity among the DP neurons varied between session 1 and the LP 
session.  In each of the 4 mice, the number of trials that a given DP neuron contributed to 
threshold crossing shifted between session 1 and the LP session (two-sample proportions Z-
test, Supplementary Figs. 8a-11a), thus there was cross-session flexibility in how the target 
threshold was reached.  In addition, the activity level at the time of threshold crossing changed. 
For example, in mouse #1, DP neuron #2 had increased activity levels at the time of success.  
In each mouse, at least one DP neuron had a significant change in activity level at the time of 
success between session 1 and the LP session (Fig. 2b, Supplementary Table 2).  Given that in 
many trials a single DP neuron was responsible for driving the control signal to target threshold, 
we confirmed that even in the lowest amplitude control-signal crossings, neural activity, and not 
noise, was responsible for threshold crossing by visually inspecting the minimum control signal 
trial for the first session and the LP session in all 4 mice (Supplementary Figs. 8b-11b). 

It is well established that locomotion during visual stimulation increases response gain in 
V1 excitatory neurons25–33.  Therefore, a potential concern is that locomotion or general arousal 
could drive the DP neurons to target threshold.  In our conditions, this is unlikely for the 
following three reasons.   First, in baseline conditions of darkness such as experienced during 
the BCI task, in contrast to visual stimulation, only a small fraction of excitatory neurons is 
modulated by locomotion. The mechanism of this modulation is distinct from the mechanism 
that mediates the wide-spread locomotion-induced response gain, and a similar number of 
neurons decrease activity levels as increase34.  Consistent with this previous report, the activity 
of direct neurons was weakly modulated by locomotion, and the amount of modulation was 
similar between DP and DN neurons (Supplementary Fig. 12a,b).   Second, including the DN 
neurons ensured that there must be differential modulation of activity among the DP and DN 
neurons at the time the neural trajectory successfully crossed the target threshold, i.e. to reach 
the target threshold, the DP neurons were required to be more active than the DN neurons. 
Thus, the animal could not solve the task by uniformly applying an increase in activity level 
across all neurons in the imaging region, as might happen during states of high arousal, 
including but not limited to locomotion.  Finally, we found no evidence that locomotion was 
correlated with performance (r= 0.139, p=0.432; Supplementary Fig. 12c,d). 
 To determine whether increased sensitivity to auditory cues contributed to improved 
performance, in three of the four mice we examined whether V1 neurons gained sensitivity to 
the auditory pitches used in the BCI paradigm.  V1 neurons can be modulated by auditory 
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stimuli that co-occur with visual stimuli; however, in the absence of training, it is well established 
that auditory stimuli do not drive V1 neurons to spike threshold35–40.   We found that after BCI 
learning, V1 neurons were not significantly modulated by any of the 6 auditory pitches used in 
the training paradigm (Supplementary Fig. 13).  Thus, it is unlikely that BCI performance was 
improved due to an increased sensitivity to the auditory pitches used here. 
 
BCI training induced changes in the majority of V1 indirect neurons  

At the time of any given threshold crossing, it is likely that some indirect neurons were 
also active.  To determine the extent to which individual indirect neurons were consistently co-
active with one of the DP neurons at the time of success, we measured the correlation of 
indirect neurons with direct neurons across all trials within a given session.  Out of the 653 
indirect neurons imaged in BCI session 1 and the last BCI session, 76% were significantly 
correlated with at least one DP neuron on BCI session 1.  Similarly, out of the 675 neurons 
imaged on the last session, 69% were significantly correlated with at least one DP neuron on 
the last BCI session (Fig. 3a).  We noted that there was no correlation between the distance and 
strength of correlation among indirect-direct neurons pairs (Supplementary Fig. 14). 

Given that a substantial fraction of indirect neurons were correlated with at least one DP 
neuron, and this relationship was maintained throughout training, we next asked whether 
indirect neurons might exhibit training-induced plasticity.  We found that on the last BCI session, 
the majority of tracked V1 neurons exhibited a change in activity at the time of target threshold-
crossing.  Seventy-nine percent of the indirect neurons tracked in both sessions, pooled across 
all 4 animals, had a significant change in their level of activity at the time of success (Wilcoxon 
rank-sum test, p<0.05). The majority of these neurons (77%) increased their activity, and the 
remaining 23% neurons decreased their activity (Fig. 3b).  Taken together, the direct and 
indirect neuron analysis demonstrates that BCI training induced modifications within V1 such 
that the pattern of network activity produced at the time of success was distinct between the 
naive and trained state, similar to observations made in motor cortex41. 

These within-task changes were associated with a change in noise correlation outside of 
the BCI task context.  Pairwise noise correlation among indirect V1 neurons significantly 
increased after BCI learning (Wilcoxon rank-sum test, p= 0.0015; Fig. 3c, see Supplementary 
Table 3 for direct neuron values).  This is an indication that BCI training drove an increase in 
functional connectivity among V1 neurons that persisted outside of the BCI task context.  In 
contrast, there was no difference in noise correlation detected between the two baseline visual 
stimulation sessions, VS baseline 1 and VS baseline 2 (Wilcoxon rank-sum test, p=0.573, n= 
885 and 753 neuron pairs, respectively).  
 
BCI training did not enhance stimulus responses 

BCI-induced plasticity within V1 could influence visual function in three ways: vision 
could be enhanced, disrupted, or maintained.  As an example of how BCI might enhance vision, 
first we considered whether visual responses in the subset of indirect neurons that were 
similarly tuned to the direct neurons prior to BCI training were increased.  Pairs of neurons that 
share orientation preference are preferentially connected at the synaptic level and exhibit 
correlated activity42–44, therefore it is possible that BCI training could induce Hebbian plasticity in 
indirect-direct neuron pairs.  Indeed, other paradigms in which user-defined de novo correlations 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2021.02.08.430302doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430302
http://creativecommons.org/licenses/by-nd/4.0/


are introduced, Hebbian plasticity is evoked45.  In our case, Hebbian plasticity would be 
revealed as a strengthening of responsiveness to the preferred visual stimulus of the direct 
neuron. 

To assess whether this was the case, we examined response reliability in the subset of 
indirect neurons that initially were matched in stimulus preference to a direct neuron.  Tuning to 
randomly presented static grating stimuli was assessed by fitting the deconvolved responses of 
neurons that were determined to be responsive (see Methods) to a two-dimensional Gaussian 
function46 (Fig. 4a,b, Supplementary Fig. 15).  The stimulus set consisted of 12 orientations and 
15 spatial frequencies spanning a range of 0.02-0.30 cycles/°, resulting in a total of 180 stimuli.  
Out of the 292 neurons that were tracked in both visual stimulation episodes across the 4 BCI 
mice, 95 neurons, excluding direct neurons, were tuned to grating stimuli.  Out of these 95 
tuned neurons, 39 had similar orientation tuning preference to a DP neuron in the VS baseline 2 
imaging session (Fig. 4c).  BCI learning did not increase the trial-by-trial reliability of these 39 
indirect neurons (Fig. 4d), nor was the response amplitude increased after removing failure trials 
for these same neurons (Fig. 4e).  In addition, the fraction of tuned neurons that were similarly 
tuned to a direct neuron was not significantly increased after BCI learning (paired t-test p = 
0.699); prior to BCI training; 34±13% (±S.E.M. across animals) neurons were similarly tuned to 
a direct neuron, and after BCI learning 35±12% neurons were similarly tuned. 
 
Stimulus representation was not disrupted after learning the BCI task 

To determine whether BCI training perturbed stimulus representation, four key aspects 
of visual processing were assessed in both indirect and direct neurons: (1) stability of tuning, (2) 
pairwise correlation of neural activity during vision, (3) response amplitude, and (4) 
discriminability of visual features using decoding methods.  Previously, we and others have 
characterized the stability of orientation and spatial frequency tuning.  Despite high trial-to-trial 
variability in response amplitude in awake conditions, orientation and spatial frequency are 
stable across days15,46,47. The majority of tuned V1 neurons shift their preferred orientation five 
degrees or less over the course of two weeks, and similarly, preferred spatial frequency 
changes less than 0.006 cycles/° over the same period46.   

First we assessed the stability of tuning in response to grating stimuli before and after 
BCI learning.  Stability in control conditions was assessed by characterizing the changes in 
tuning between VS baseline 1 and VS baseline 2.  To assess stability after learning, referred to 
here as the BCI condition, changes in tuning were characterized between the VS baseline 2 and 
VS post-learning imaging sessions.  353 neurons were tracked on VS baseline 1 and VS 
baseline 2, 292 neurons were tracked on VS baseline 2 and VS post-learning (Fig. 5a,b).  The 
two pools of tracked neurons include both indirect and direct neurons.  The stability of 
orientation and spatial frequency preference, as well as bandwidth for both of these features 
was compared between baseline and BCI conditions for tuned neurons (i.e. well-fit by the two-
dimensional Gaussian function; Fig. 5c-d, Supplementary Fig. 16).  VS baseline 2 was collected 
within 4 days of the completion of the auditory Go/No-Go task prior to the initiation of BCI 
training, and VS post-learning was collected after the learning point in all 4 mice.  This design 
ensured that the number of days spanning the baseline and BCI condition were matched within 
subjects and accounted for individual differences in the learning rate of both the auditory pitch 
association task as well as the BCI task.  The median change in orientation preference during 
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the baseline condition was 4.6° (interquartile range = 2.0 – 12.5°).  Similarly, the median change 
was 4.6° (interquartile range = 1.8 – 10.2° in the BCI condition (Fig. 5c). Thus, the distribution of 
changes in orientation preference in the BCI condition was indistinguishable from that of the 
baseline condition.  Analysis of the distributions on an animal-by-animal basis confirmed that 
orientation preference was not destabilized by BCI learning (Fig. 5d).  This was the case for the 
other parameters as well (Supplementary Fig. 16, see Supplementary Table 4 for direct neuron 
values).  We noted that the median change in orientation preference during the initial baseline 
condition was slightly higher than previously reported.   Considering that the time span was 
slightly longer than the previously published work46, this was expected.   

The stability of individual tuning features within a given neuron is independently 
regulated46.  For example, a neuron with stable orientation preference could exhibit drift in 
spatial frequency preference.  Therefore, although when assessed separately individual tuning 
parameters appeared stable across the population of V1 neurons during BCI acquisition, it is 
possible that if all parameters, including orientation preference, orientation bandwidth, spatial 
frequent preference, and spatial frequency bandwidth, were considered simultaneously, 
neurons would appear more unstable.  To address this possibility, we examined pairwise signal 
correlation among the neurons that were responsive and tuned.  Signal correlation is the 
correlation of the average responses to the presented stimuli between a pair of neurons; as 
such, it is a measurement that is independent of the Gaussian model of tuning and is non-
parametric.  To assess the stability of signal correlation, we computed the change in signal 
correlation between baseline and BCI conditions.  The distribution of changes in signal 
correlation was not statistically different between the two conditions (Fig. 5e, see 
Supplementary Table 5 for direct neuron values). Both distributions were centered on zero; the 
standard deviation of the baseline condition was 0.103, and the standard deviation of the BCI 
condition was 0.111. 

Next we considered whether BCI training may have altered the strength of 
responsiveness.  Changes in the response amplitude for all responsive neurons, including 
neurons that were not well-fit by the Gaussian function, in other words not necessarily tuned by 
classic metrics, were considered48.  The average amplitude of the stimulus response that 
elicited the maximum response was compared between the two conditions.  The median 
change in amplitude was -0.35 events/bin in the baseline condition, and was slightly lower in the 
BCI condition, -0.92 events/bin (Fig. 5f see Supplementary Table 6 for direct neuron values).  
The distributions of change in response amplitude in the baseline and BCI conditions were 
largely overlapping, however, we did detect a significant difference between the two conditions 
(Wilcoxon rank-sum test p = 0.002).  Approximately one-third of the neurons in the BCI 
condition had a greater decrease in amplitude compared to the baseline condition (Fig. 5f, 
right). 

Given that a small but significant change in response amplitude, as well as a persistent 
change in noise correlation were observed outside of the trained context, it is possible that BCI 
training could have modified the amount of visual information contained within V1.  To address 
this possibility, we utilized decoding methods to estimate the amount of information encoded by 
a population of V1 neurons.  We used a k-nearest neighbor (KNN) classifier to decode stimulus 
orientation at a spatial frequency of 0.04 cycles/°, the preferred spatial frequency of the majority 
of V1 neurons49.  We found that decoding accuracy was not different after BCI acquisition 
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compared to before BCI training in the same mice (Fig. 5g).  In addition, decoding accuracy 
after BCI acquisition was indistinguishable from that of 6 control mice that never experienced 
BCI training. These results indicate that despite a BCI-induced change in pairwise noise 
correlation, the amount of information encoded by the V1 population was not altered by BCI 
learning. 
 
Stimulus information was maintained after learning a visual discrimination task, but population 
coding was disrupted 

The BCI task used in this study was multimodal in nature.  To determine whether our 
results generalize to a single-modality task, we trained mice in a visual discrimination task in 
which it was previously established that V1 activity is required for improved behavioral 
performance16,50,51.  Converging evidence indicates visual discrimination training enhances the 
neural representation of rewarded stimuli by increasing selectivity for the stimuli experienced 
during training16,21 and in some cases improving response reliability16, and at the same time 
suppresses responses to non-relevant stimuli16.  Enhanced responses to rewarded stimuli are 
known to generalize across task variations experienced in the training environment.  However, 
selectivity for features such as orientation dissipates when reward contingencies are 
recognizably altered. As such, reward-induced changes in selectivity are considered to be 
context-specific.  Furthermore, in many instances long-lasting changes observed in the training 
environment are restricted to stimulus-specific assemblies, and enhancement to more than one 
rewarded stimulus is possible due to assembly-specific plasticity20,21.  Based on these previous 
observations, we hypothesized that similar to our non-matched sensory task, reward training-
induced changes are context specific, and tuning to visual stimuli remains largely undisturbed 
outside of the training environment.  Conceptually, this would be consistent with the idea that 
reward-induced enhancement of responses is transient and must be actively recruited during 
cued episodes, such as would occur in the training environment when the reward-delivery 
device is present.  

Six mice were trained to discriminate two visual patterns while running past a virtual wall, 
where one pattern was rewarded.  Locomotion was directly coupled to changes in visual stimuli 
presented on a screen such that the animals’ running controlled their position along a wall (Fig. 
6a, Supplementary Movie 6).  After running past a virtual approach wall composed of black and 
white circles overlaid on a gray background, mice were abruptly presented with either a vertical 
(0°) or angled (135°) grating.  Mice received a water reward for licking in response to the vertical 
grating.  Trials were scored as a hit if a lick was detected when the animal was in the in the 
reward zone.  No punishment was given for licking in response to the angled grating (false 
alarm trial).  Mice learned to lick preferentially on the vertical grating within 10 days.  
Performance on the visual discrimination task was quantified by calculating the behavioral d-
prime for each training session, which is a measure of the difference in the proportion of hit and 
false alarm trials (Fig. 6b).  For the first 14 days, mice were trained every day, thereafter the 
training sessions occurred every 2-3 days.  One day prior to visual discrimination training, a 
baseline visual stimulation imaging session was acquired, a second visual stimulation imaging 
session was acquired 15 days after the first training session (15-days training), and a third 
visual stimulation imaging session was acquired 30 days after the first training session (30-days 
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training).  As in the BCI task, the reward delivery device was not visible during the passive 
viewing visual stimulation imaging sessions. 

Tuning stability between the baseline and 30-day training visual stimulation sessions 
was computed for orientation preference and bandwidth, as well as spatial frequency preference 
and bandwidth.  All neurons that were tracked and tuned on both sessions were included in the 
analysis.  The median change in orientation preference, pooled across mice, was 5.7±0.9°.  
Mice trained in the visual discrimination task were compared to a separate cohort of control 
mice that did not receive visual discrimination training (see Supplementary Table 1 for details).  
No difference in stability in any of the 4 tuning parameters (orientation preference, orientation 
bandwidth, spatial frequency preference, and spatial frequency bandwidth) was detected (Fig. 
6c, Supplementary Fig. 17a,b). 

However, when considering all responsive neurons (tuned and untuned) for a given 
session, there was a significant change in the distribution of orientation preference.  Under 
baseline conditions, cardinal orientations are over-represented52–54 (Fig. 6d).  We found that the 
preference for 90° orientated grating stimuli decreased after 15 days of visual discrimination 
training.  With extended training the decreased preference for 90° orientated stimuli was 
maintained, and trended towards being enhanced (Fig. 6d).  The shift in preference was due to 
a loss of responsiveness to the 90° stimulus, rather than an increase in responsiveness to the 
trained stimuli (Supplementary Fig. 17c).  A suppression of responses to the non-trained 
stimulus outside of the task context may be related to the observation that non-relevant stimuli 
are suppressed when assayed within the training environment21, and raises the possibility that 
changes during training are consolidated. 

Next we assessed whether the training-induced shift in orientation preference was 
associated with a loss of information encoded in V1.  A KNN classifier was used to decode 
stimulus orientation at a spatial frequency of 0.04 cycles/�, for the neural activity imaged on the 
baseline and 30-day training imaging sessions.  No difference in decoding accuracy was 
detected (Fig. 6e,f).  Closer examination of the confusion matrices in which the accuracy of 
each of the 12 stimulus orientations can be considered separately, revealed that the decoding 
accuracy of the 90° stimulus was not impacted (paired t-test, p= 0.54, n= 6 animals), despite the 
shift in preference shown in Figure 6d. This is an indication that there is sufficient redundancy in 
the representation of orientation that small changes in the preference distribution did not 
degrade the information content encoded in V1.  Nor was discriminability of either of the two 
orientations experienced during training enhanced outside of the training environment (paired t-
test, 135°: p= 0.69, 0°= 0.72, n= 6 animals). Thus, consistent with the hypotheses stated above, 
and similar to the non-sensory matched BCI task, stimulus discriminability at the level of V1 was 
maintained after learning the visual task; we found no evidence of either enhancement or 
degradation outside of the task context. 

However, given that a shift in orientation preference was observed across the 
population, the manner in which stimuli were encoded may have been altered.  To address this 
possibility, the rate of representational drift was assessed in control conditions, and after 
discrimination training.  KNN classifiers were trained on neural activity recorded on one imaging 
session, and tested using the neural activity from the same tracked neurons acquired on a 
second imaging session, 30 days later (cross-session, fixed classifier55).  When using the fixed 
classifier, cross-session decoding accuracy significantly decreased after 30 days of visual 
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discrimination training, and the magnitude of decrease was significantly greater than control 
conditions (Fig. 6g,h).  Thus, although the preferential loss of responsiveness to 90°-oriented 
stimuli did not impact the accuracy of decoding per se, when all responsive neurons were 
available to train the classifier, the contribution of individual neurons appears to have been 
altered by visual discrimination training. 

To address whether the rate representational drift was similarly increased by BCI 
training, KNN fixed classifiers were used to assess decoding accuracy after BCI training.  In 
contrast to visual discrimination training, the rate of drift did not appear to be impacted. The drift 
values of the 4 mice trained in the BCI task were within range of the control conditions shown in 
Figure 6h, and qualitatively lower than the drift assessed after visual discrimination training (BCI 
mice 1-4, Δ accuracy, respectively: 0.14, 0.02, 0.1, and 0.05; mean: 0.076).  Thus, in this 
regard, the non-matched sensory task was less disruptive to stimulus encoding compared to the 
visual discrimination task.  
 
Discussion  

Theoretically, learning new skills could result in changes to neural activity that minimally 
impact previously acquired behaviors and function56,57.  For example, synaptic plasticity could 
be restricted to updating activity patterns that occupy the null space of skilled action plans58.  
Experimental evidence establishing that new skills can be acquired without altering the neural 
activity that underlies previously developed computations and function is an area of active 
investigation6,7.  Furthermore, learning in artificial network simulations often leads to 
catastrophic forgetting59,60, raising the possibility that networks cannot integrate new information 
without disrupting previously learned functions61.  Here we directly demonstrated that integration 
of a new, non-matched sensory skill does not perturb previously developed function.  We were 
able to address this issue by designing a learning task that associated a user-defined pattern of 
activity with a rewarding outcome, in combination with tracking the activity of the same neurons 
across skill learning. The original functional properties of the network were assessed before and 
after the new skill was acquired.   

In principle there are 3 ways in which vision would not be disrupted by BCI training.    
One, a small number of neurons in V1 change their activity during task performance.  In this 
scenario, it would be highly unlikely that training would in any way influence the cortex’s ability 
to process visual stimuli.  We can rule out this possibility because we found that approximately 
80% of the neurons in V1 exhibited plasticity during BCI.  Two, a substantial number of V1 
neurons change their activity during BCI, and these changes persist outside of the BCI context 
and impact visual stimulus tuning.  However, at the population level the changes are in the null 
space of the downstream readout.  For example, the neurons that changed do not project to V2, 
and there is sufficient redundancy such that it is the non-relevant neurons that changed.  This 
second possibility can be ruled out because we did not observe an impact of training on visual 
stimulus tuning.  Three, a large number of neurons show plasticity during BCI, but tuning to 
visual stimuli in V1 remains stable. In other words, the changes are specific to the BCI context.  
This is the outcome that we observed.  An implication of our findings is that the ability to 
distinguish contexts may be fundamental to the maintenance of stable perception while 
acquiring new skills.  
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Our results have implications for the clinical use of BCIs. Many quadriplegic patients, 
including those engaged in ongoing intracortical BCI clinical trials, have residual sensory and/or 
motor function62–64. For clinical use, microelectrode arrays are often implanted into both the 
primary motor (M1) and primary somatosensory (S1) cortices of those patients, to enable bi-
directional communication of motor and sensory function. Intriguingly, motor actions can be 
decoded out of S165–67. A reasonable question is whether leveraging the information in S1 for 
motor decoding with a BCI would degrade residual sensory function. Our work suggests that it 
would not.  

Similar to BCI training, a substantial fraction of V1 neurons retained their tuning 
preference after visual discrimination training, when probed outside of the training environment.  
It was previously observed that during a similar implementation of the visual discrimination task 
used here, activity during task execution was slightly depressed50, selectivity for the stimuli used 
during training increased in a context-dependent manner16, and selective suppression 
dominated when the animals were engaged in the task51.  Our results are consistent with these 
previous observations, considering our measurements were made outside of the training 
environment and therefore can also be considered a different context.  In addition, we show that 
preferential suppression of responses to non-trained stimuli are observed outside of the task 
context shortly after learning, and that this feature-specific suppression is maintained throughout 
extended training.  Despite the persistent impact on vision outside of the task context, similar to 
non-matched sensory BCI learning, reliable decoding of visual stimulus features was intact.  
This is an indication that there is sufficient redundancy such that information is not lost in the 
case a fraction of neurons is repurposed or their contribution to stimulus representation is 
altered.  However, cross–session fixed classifiers degraded after visual discrimination learning.  
Whether this degradation has an impact on the ability of downstream regions in the visual 
hierarchy to read out stimulus information contained in V1 will depend on the extent to which 
these changes are orthogonal to the latent space through which information is transferred.  For 
example, low-dimensional latent dynamics transferred through the space could remain stable55 
during learning.  Alternatively, adaptation could be coordinated across the hierarchy.  In future 
studies it will be of interest to examine whether recurrent connectivity between V1 and higher 
visual areas, such as LM68–70, is a substrate for low-dimensional latent dynamics to rapidly 
adjust during learning and thereby facilitate stable perception.         

 
 

 
 
 
Methods 
Animal preparation 

All experimental procedures were compliant with the guidelines established by the 
Institutional Animal Care and Use Committee of Carnegie Mellon University and the National 
Institutes of Health, and all experimental protocols were approved by the Institutional Animal 
Care and Use Committee of Carnegie Mellon University (protocol # PROTO201600014). To 
express the calcium indicator GCaMP6f selectively in excitatory neurons, either homozygous 
Emx1cre mice (Jackson Laboratories, stock number 005628) or homozygous SLC17a7cre mice 
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(Jackson Laboratories, stock number 023527) were crossed with homozygous 
Ai93/heterozygous Camk2a-tTA mice (Jackson Laboratories, stock number 024108).  
Experimental mice were heterozygous for all three alleles.  Mice were housed in groups of 2-3 
per cage, in a 12-hour light/12-hour dark cycle; all imaging sessions started at Zeitgeber time 
(ZT) 14.5±1, where ZT0 is lights on, and ZT12 is lights off.  The same enrichment materials 
were provided in all cages including a Plexiglas hut and nesting material.  See Supplementary 
Table 1 for information on animal sex and genotype.  None of the mice used in this study 
exhibited aberrant, interictal events71,72 in V1 or adjacent regions.  The ambient temperature 
range was, 68-75°F, and the humidity range was 18-65%. 

Mice (29-39 days old) were anesthetized with isoflurane (3% induction, 1-2% 
maintenance).  A 3-mm diameter craniotomy was made over the primary visual cortex in the left 
hemisphere, see also73.  A stainless-steel bar, used to immobilize the head for recordings, was 
glued to the right side of the skull and secured with dental cement. The craniotomy was then 
covered with a double glass assembly in which the diameter of the inner glass was fitted to the 
craniotomy and sealed with dental cement. Mice were allowed to recover for a minimum of 3 
days with ad libitum access to food and water. 
 
Data acquisition, neuron segmentation, and neuron tracking 

Two-photon calcium imaging was performed in awake head-fixed mice mounted atop a 
floating spherical treadmill or a single-axel foam wheel using a resonant scanning microscope 
(Neurolabware) outfitted with a 16x Nikon objective (0.80 NA) and 8 kHz resonant scanning 
mirror.  Treadmill motion was recorded using a camera (Dalsa Genie M640-1/3) for off-line 
analysis of locomotion, wheel motion was recorded with an optical quadrature rotary encoder 
(US Digital, Vancouver, WA) coupled to an Arduino Mega, and eye blinks were captured using a 
second camera (Dalsa Genie M1280)72.  During BCI sessions, a separate tracking laser sensor 
(Keyence LV-N11MN) was used to sample the motion of the treadmill at a rapid sampling rate of 
194 ms 74, in order to restrict BCI trials from starting if the mouse was moving.  The sensor was 
calibrated to detect locomotion greater than 7 cm/s.  We noted that locomotion speed exceeded 
this value in most bouts of activity (e.g. Supplementary Fig. 12d and Supplementary Movie 5). 

A laser excitation wavelength of 920 nm was used (Coherent, Inc.); green emissions 
were filtered (Semrock 510/84-50), amplified (Edmund Optics 59-179), and detected with a PMT 
(Hamamatsu H1 0770B-40).  The imaged field of view was 620 x 504 microns, pixel dimensions 
were 0.85 X 0.98 µm, and the acquisition rate was 15.5 Hz.  The acquired image time series 
were motion-corrected by computing the horizontal and vertical translation of each frame using 
phase correlation72, and individual neurons segmented using the Matlab version of Suite2p 
toolbox75, see also72. 

To identify neurons that were tracked across imaging sessions, we registered repeat 
imaging sessions using the mean intensity image of each session.  The mean intensity image 
for a session was computed by averaging the intensity of each pixel in the aligned calcium 
image series across time for the entire imaging session (roughly 50000 frames).  Then, the 
mean intensity images of the two sessions were registered using an affine transform with one-
plus-one evolutionary optimizer.  Once the sessions were registered, the percentage of pixel 
overlap between the neurons from two sessions was computed.  Neurons were accepted to be 
the same neuron across sessions, if the percentage of overlapping pixels across the two 
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sessions was larger than 75%.  On average, there were 160 pixels in a given neuron.  The 
median proportion of neurons that were tracked from the available neurons was 40%. 
 
Auditory Go/No-go pitch association task 

Mice learned to discriminate between a 15 kHz ‘Go’ stimulus and a 5 kHz ‘No-go’ 
stimulus prior to BCI training.  After recovery from surgery, mice were placed on water 
restriction.  During water restriction, ad libitum access to water was removed.  Each day, mice 
were provided with 750 μL of water placed in a dish, and the dish was available for up to 30 
minutes.   The weights of the mice were closely monitored, and weight loss was observed 
during the early days of water restriction.  Training started when the weight of the mice 
stabilized.  We considered the weight of mice to be stabilized when the weight of the mice 
reached 80% of the weight at the start of water restriction, and the day-to-day change in weight 
was less than 0.1 grams for a minimum of 3 days. 

Mice were head-fixed atop a spherical treadmill, with a custom-built lick port positioned 
near their mouth.  The auditory stimuli were generated in Matlab (Mathworks, Inc.) by 
generating a 200 ms sinusoidal waveform of either 5 kHz or 15 kHz frequency with a Gaussian 
mask, thus creating a 200 ms pulse.  The sampling rate of a pulse was 44.1 kHz.  The 
generated pulses were repeated during the duration of a trial at 5 Hz.  The stimulus was 
presented through a speaker positioned 50 degrees to the left of the mouse with respect to the 
midline at a distance of 30 cm. Each trial started when the stimulus sounded through the 
speaker.  Lick port was armed with reward after a 200 ms sensory delay period only on Go 
trials. Trials lasted between 2-4 seconds, which remained fixed within a given session.  The 
stimulus lasted for the duration of the trial, and the reward was available for retrieval while the 
Go stimulus was on.  A single duration was used per experimental session.  Licking was 
detected by a photodiode sensor positioned at the end of the lick port tube. One reward was 
delivered per trial, and each reward was about 8 μL in size. Trials in which animals correctly 
licked during Go trials and withheld licks during No-go trials were counted as successful trials.  
When a mouse licked on a No-go trial (false alarm trials), a timeout was enforced.  During the 
timeout, there was no auditory stimulus, and the animal had to withhold the lick for a minimum 
duration selected by the experimenter to exit the timeout period.  Each time the animal licked 
during a timeout, the timeout timer was restarted.  Upon exiting the timeout period, the mice 
immediately entered the next trial.  The range of timeout used was between 3 and 8 seconds.  
Performance in each session was quantified as the maximum percentage of successful trials in 
100 consecutive trials.  Mice were trained 1 session per day and each session was 30 to 60 
minutes long, during which the mice completed 200 to 500 total trials.  After reaching 80% 
performance, mice were advanced to BCI training. 
 
Brain computer interface task 

Mice were trained on a brain-computer interface task in which they could earn rewards 
by modulating the activity of six neurons to control an auditory pitch.  We refer to these neurons 
as the direct neurons. The six neurons were randomly selected from a pool of neurons that were 
tracked and well isolated from other neurons, as such not all neurons were visually responsive 
to grating stimuli.  The neural activity of the direct neurons was transformed into an auditory 
pitch using the following method:  At the beginning of each BCI session, we measured the 
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spontaneous activity of the direct neurons for 3 minutes in the dark (3000 frames).  The mean 
and standard deviation of this BCI baseline activity was then used to normalize the real-time raw 
activity into Z-scores.   During BCI control, the real-time Z-scored activity was binned by three 
frames (194 ms).  Then, the activities of the six neurons were transformed into a one-
dimensional control signal. The control signal at every time bin t was calculated according to the 
equation below. 

Control signal �  � ��
�

���
� � ��

�

���
 

(1) 
In the equation above, Z is the Z-scored activity of a given neuron and i and j is the index of the 
neuron.   We define neurons that positively contribute to the control signal as direct positive 
neurons (DPs) and neurons that negatively contribute to the control signal as direct negative 
neurons (DNs). Control signal values were mapped to discrete pitches as follows: control values 
< 20% of the target threshold (defined separately for each mouse below) were mapped to 5 
kHz, values between 20% and 40% were mapped to 6.23 kHz; values between 40% and 60% 
were mapped to 7.76 kHz; values between 60% and 80% were mapped to 9.67 kHz; values 
between 80% and 100% were mapped to 12.04 kHz; and values greater than or equal to the 
target threshold were mapped to 15.00 kHz.  Once BCI training was initiated, no more than 2-3 
consecutive days occurred between BCI training sessions.  For three sessions after the LP 
session, failure trials (trials that lasted 10 seconds) were not properly saved due to a real-time 
synchronization issues, performance was not reported for those sessions (Fig. 1d, mouse #2 
session 10 and 14, mouse #3 session 11) 
 
Selection of direct neurons and target threshold 

Prior to BCI training, we recorded a 10-minute baseline activity session, in the dark, 
without auditory stimuli or reward. Selection of direct neurons and threshold was then 
determined from this baseline recording. We first selected a pool of 3 DP and 3 DN neurons 
randomly from the segmented population.  We then ran an algorithm to determine the threshold 
for those neurons. That algorithm proceeded as follows.  First, we only considered thresholds in 
the range of 6-15 (Z-score normalized), in an attempt to ensure we were neither too close to the 
noise floor nor potentially including large, outlier transients. Second, we searched for thresholds 
that would result in somewhere between 12 and 18 threshold crossings within 10 minutes. This 
corresponds to our target non-learning success rate of 20-30%.  We initialized our search at a 
threshold of 10, and adjusted the threshold in step size of 1 to explore the space to determine 
the threshold value that resulted in the desired success rate. If 10 resulted in the right number of 
threshold crossings, we stopped, but if it was too many we increased the threshold by 1 and if 
too few we decreased the threshold by 1, continuing until we first found a threshold that resulted 
in the 12-18 threshold crossings or until we were out of range. If we were out of range, we 
selected another group of 6 neurons at random, and repeated. Once a threshold was found that 
resulted in a success rate of 20-30%, the search was stopped.  On each iteration, all neurons 
were sampled form the entire available pool, including neurons that were selected from previous 
iterations. 
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Trial structure 
Time of success was defined as the bin in which the auditory pitch reached 15 kHz. Mice 

had up to 10 seconds to reach the target once the trial started.  Mice then had up to 4 seconds 
to retrieve the water reward by licking the lick port.  Water was released only if the animal licked. 
Only a single drop (~8µL) was delivered per success.  Prior to trial start, we enforced an inter-
trial-interval where the mice had to satisfy two conditions in order to start a trial.  First, mice 
could not move.  Second, the control signal had to be lower than the target threshold. When 
both of these conditions had been met for 5 consecutive time bins (1 second), the trial was 
started.  The trial start was cued to the animal by the onset of auditory feedback. The target for 
each mouse was determined so that the mouse would have succeeded in about 30% of the 
trials during a 10-minute recording of spontaneous activity in the dark, recorded before mice 
were ever exposed to BCI training. In all BCI sessions within a mouse, the same six neurons 
were used, and the same target was used across the sessions. 

 
Assessment of baseline drift 

Neural activity was normalized by Z-scoring to allow for the assessment of performance 
across sessions. However, a decrease across sessions in the standard deviation of DP neuron 
raw fluorescence signal during the 3-minute spontaneous baseline recording would lead to an 
inflation of DP neuron activity that could increase the frequency of threshold crossings.  
Likewise, an increase in the standard deviation of DN neuron raw fluorescence signal across 
sessions during the 3-minute baseline could result in an increase in the frequency of threshold 
crossings.  To examine whether this was an issue for any one of the four mice, we assessed the 
correlation between the standard deviation of the 3-minute bassline and session number.  None 
of the DP neurons had a significant negative correlation (R <0 and p<0.05) between standard 
deviation and session number, nor did any of the DN neurons have a significant positive 
correlation (R> 0 and p<0.05) between standard deviation and session number (Supplementary 
Fig. 18a, Supplementary Table 7).  Thus, drift across sessions in the standard deviation of 
baseline fluorescence did not contribute to increased threshold crossings.  Within-session 
change in the standard deviation of the residual signal after calcium events were removed was 
similar for all sessions in each of the 4 mice (Supplementary Fig. 18b, Supplementary Table 7). 

 
Visual discrimination task 

Water restricted mice were trained on a self-paced, closed loop orientation 
discrimination task16,50.  Wheel speed was coupled to a virtual wall presented on a single 
screen, positioned at a 50° angle with respect to the midline of the mouse.  Prior to the 
discrimination task, mice were trained on a shaping task in which they were rewarded a drop of 
water for every 30 cm traversed while viewing a gray screen.  When mice drank at least 80 
drops within 45 minutes (on average 53.3 cm/min), they were transitioned into the discrimination 
task (typically 3-4 sessions). 

Within the visual discrimination task, the motion of the visual stimulus was calibrated to 
the locomotion of the mice so that 1 cm locomotion on the wheel caused a 1 cm displacement of 
the visual stimulus consistent with the direction of locomotion.  A trial started when the mouse 
was positioned at the beginning of an approach wall.  The approach wall had black and white 
circles between 10 to 30 degrees in size placed randomly on the screen.  The length of the 
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approach corridor was between 20 cm to 100 cm for different sessions but was kept constant 
within a given session.  Once the mouse completed running through the approach wall, a 
grating was encountered.  Either a vertical grating (0°) or a diagonal grating (135°) with a spatial 
frequency of 0.04 cycles/° was presented.  The vertical grating was the Go stimulus and the 
diagonal grating was the No-go stimulus.  The length of the grating wall was 50 cm, and the 
reward zone included the last 41.7 cm.  Licks in the reward zone during the presentation of a Go 
grating were rewarded; no reward was given for licks during a No-go grating.  No punishment 
was given for licks during a No-go grating.  Mice could earn one drop of water per presentation 
of the Go stimulus.  The probability of a Go stimulus for any given session was set between 40 
– 50%.  When the end of the grating wall was reached the trial was considered complete.  A 2-
second inter-trial interval was included to reset synchronization of the system. During the inter-
trial interval, a gray screen was presented and the locomotion of the wheel was not coupled to 
the motion of visual presentation.  Mice completed between 38 to 220 trials.  Prior to 
discrimination training, one baseline visual stimulation session was recorded, and two more 
imaging sessions were performed 15 and 30 days after training was initiated. 

Performance on the visual discrimination task was quantified as d-prime (d’).  d’ for a 
given session was calculated as 

 �� � ��Hit rate� � ��False alarm� 
(2) 

where z was the Z-transform.  Hit rate was defined as the proportion of go trials in which the 
mice licked at least once, and false alarm was defined as the proportion of no-go trials in which 
the mice licked at least once. 
 
Locomotion modulation index 
Locomotion modulation index was computed for direct neurons using the same method as in 
Dipoppa et al. 201834.  We divided the spontaneous dark activity of a given direct neuron 
recorded during visual stimulation sessions before the first BCI training session into 
approximately 1 second bins (16 consecutive frames).  To extract locomotion information, we 
computed speed of locomotion from ball-tracking camera as in our previous study46.  The 
computed speed was smoothed with a moving window of 5 frames (323 ms) and was down-
sampled to match the binning of the spontaneous dark activity (1 Hz).  Locomotion threshold 
was set to 1 cm/s. The modulation index, M, for a given direct neuron was computed as below. 
 

� � ��	
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�
� � ���
�
�
����
�����	
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�
�� � �����
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����� 

(3) 
Visual stimulation 

Static sinusoidal grating stimuli were generated using psychophysics toolbox 
(http://psychtoolbox.org/) in Matlab (Mathworks, Boston, MA). The stimulus was presented on a 
screen positioned 25 cm away from the right eye angled at 50° with respect to the midline of the 
animal. The size of the screen was 64 cm by 40 cm, thereby subtending 142° × 96° of visual 
angle. The spatial frequency range of the stimulus set was 0.02 cycles/° to 0.3 cycles/° at 0.02 
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cycles/° interval.  The orientations ranged from 0° to 180° at 15° spacing interval, yielding a total 
of 180 different sinusoidal gratings with 12 different orientations and 15 different spatial 
frequencies.  Each grating was presented for 250 ms consecutively in a random order without 
interleaved gray screen.  Each stimulus was shown at least 20 times. 
 
Quantification of visual responses 

Reverse correlation was used to determine the response window of a given stimulus76.  
The peak in the stimulus-averaged events was observed 194 ms to 320 ms after the stimulus 
was presented on the screen.  Therefore, for each stimulus, the corresponding event activity 
was computed by averaging the number of events between 194 ms and 320 ms window.  We 
defined this period as the response window for a given stimulus. 

A neuron was defined as responsive to visual stimuli when the number of events 
following a presentation of a visual stimulus was modulated by the stimuli presented.  To test for 
modulation, we performed a one-way analysis of variance (ANOVA, α= 0.01) on the observed 
events during the response window using stimuli as the factor for each neuron.  

GCaMP6f expressed in neurons had longer decay than the presentation rate of our 
stimuli77.  Therefore, we used deconvolution to remove the effects of decay in calcium 
fluorescence in quantifying responses of each neuron to our visual stimuli as in46.  Briefly, 
amplitude of calcium transients was expressed in units of inferred events. For each segment n, 
inferred events s� were estimated from fluorescence using the following model: 

 f� � s� � k �  ��p� � b�  

(4) 
where k is the temporal kernel and b� is the baseline fluorescence.  Neuropil fluorescence, 
which is a contamination of the fluorescence signal f� from out of focus cell bodies and nearby 
axons and dendrites, is modeled by p�, the time course of the neuropil contamination, and, �� 
the scaling coefficients. * denotes convolution.  Using this model, s�, k, ��, and b� were 
estimated by a matching pursuit algorithm with L0 constraint, in which spikes were iteratively 
added and refined until the threshold determined by the variance of the signal was met. 
 Trials containing locomotion or eye blinks were removed.  Pupil location was estimated 
from eye-tracking videos using a circular Hough Transform algorithm; the algorithm failed to find 
the pupil on frames during which the mice were blinking.  These frames were marked as eye 
blink frames and removed from further analysis.  Trials with locomotion were identified as in46.  
Briefly, after applying a threshold on the luminance intensity of the treadmill motion images, 
phase correlation was computed between consecutive frames to estimate the translation 
between the frames.  To define a motion threshold, the data were smoothed using a 1s sliding 
window.  Any continuous non-zero movement periods during which the animal’s instantaneous 
running speed exceeded 10 cm/s threshold for at least one frame were marked as running 
epochs.  
 
Estimation of preferred stimulus and tuning bandwidth (Figures 4, 5, 6, Supplementary Figures 
15-17)  

Orientation and spatial frequency preference were determined using a two-dimensional 
Gaussian model, fit to single trial responses.  For neurons that were responsive to grating 
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stimuli, a two-dimensional Gaussian model was fit using nonlinear least-squared regression 
such that the number of events R as a function of the orientation θ and the spatial frequency φ 
of the stimulus was 

"�#, %� � &2(����)1 � +� ,�� �������������������  ! "����#����  � ��������"����#���� $% � - 

(5) 
where μθ was the preferred orientation and μφ was the preferred spatial frequency of the 
stimulus, and the σθ and σφ described the widths of respective tuning.  The covariance of 
responses for orientation and spatial frequency was captured by the correlation term ρ.  A was a 
parameter accounting for the amplitude of the responses in number of events, while B was the 
baseline event activity of the cell.  For fitting, the lower and the upper bound of allowed values 
for μφ was set by the range of the presented stimuli, which was 0.02 to 0.30 cycles/°.  The lower 
bound for σθ and σφ was set at 1 degree and 0.001 cycles/° respectively to prevent fits with zero 
or negative widths. Prior to fitting, the preferred orientation was initialized by estimating the 
preferred orientation by averaging the response, R across all spatial frequencies for a given 
stimulus orientation, θ and calculating half the complex phase of the value  
 

. � ∑ "�#�,���
∑ "�#�  

(6) 
49,78.  The preferred spatial frequency was initialized by selecting the spatial frequency that 
generated the maximal significant response at the estimated preferred orientation. 

For the model above, R2 of the fit was used to find neurons with significant tuning.  The 
chance distribution of R2 was calculated from fitting the above model with permuted stimulus 
labels on individual trials 1000 times for each neuron.  Neurons whose R2 exceeded the 95th 
percentile of the chance R2 distribution were accepted as tuned to grating stimuli. 

The bandwidths of the Gaussian tuning were described using half-width at half-
maximum (HWHM).  The HWHM bandwidths for both orientation and spatial frequency were 
calculated as  

BW � )2 � ln �2� � � 
(7) 

where � was the width parameter of the Gaussian fit.   
 
Trial reliability and failure quantification (Figure 4) 

Trial-by-trial reliability79 of a given stimulus was computed by generating a null 
distribution of spontaneous activity (deconvolved events) for each neuron with the screen turned 
off.  Trials in which the number of events was larger than the 95th percentile of the null 
distribution were labeled as significant responses, those less than the 95th percentile were 
considered failures.  Spontaneous event activity was binned into same size bins as the stimulus 
response window (2 calcium imaging frames).  The number of samples for the null distributions 
was matched across all imaging sessions as the minimum number of bins available across the 
sessions.  The minimum number of samples was 776.  For sessions with more than the 
minimum samples, 776 were randomly selected from the available samples.   
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Decoding (Figures 5 and 6)  

K-nearest-neighbor (KNN) classifiers were used to decode orientations from vectors of 
single trial population responses to grating stimuli presentation72,79.  In our case, the k-nearest-
neighbor classifier estimated the stimulus identity for a given response vector by identifying the 
most frequent stimulus identity of its k closest response vectors.  To identify the nearest 
neighbors for a given response vector, we computed the Euclidean distance to other response 
vectors.  For each session, data was divided so that a single set of response vectors consisted 
of one trial of each stimulus.  This resulted in the number of sets being equal to the number of 
trials that each stimulus was shown.  During decoding, the possible neighbors for a test 
response vector consisted of all response vectors not belonging to the test set. This ensures an 
unbiased representation of possible nearest neighbors across stimuli. This process was 
repeated across each response vector and each set.  We reported the performance of this 
decoding process as accuracy across all response vector tested.  Only the neurons that were 
responsive to grating stimuli were included in decoding.  To compare accuracies across 
sessions, we matched the number of neurons used in classification to the minimum number of 
neurons across the session pair.  To ensure that the computed accuracies were not biased by 
subsampling of neurons, each session was decoded 10 times using a randomly selected set of 
neurons, and we computed the average accuracy for each session.  To determine the optimal 
value of k, the number of neighbors, we performed decoding on the first session of each of the 4 
BCI mice (4 out of 15 total mice used for decoding), sweeping k from 3 to 15. Three of four mice 
had accuracy ranges greater than 5% across different values of k.  For the three mice that had 
accuracy ranges greater than 5% across different values of k, we ranked the values of k that 
yielded the highest accuracy for each mouse.  We found k = 4 had the best average rank across 
mice.  Therefore, we used k = 4 to decode orientations for sessions that were compared in the 
main results. The chance performance of the decoder was 8.33%. 
 To quantify the change in orientation discriminability of the same neurons (the tracked 
population) across sessions, we modified the KNN classifier described above.  We trained a 
KNN classifier on the neuronal responses from the initial session and decoded held-out 
responses from the initial session and responses from the 30-day session.  Only the responses 
from neurons that were tracked in the initial session and the 30-day session was used train and 
test the classification algorithm.  The number of trials was matched to the minimum number of 
available trials across the two sessions.  When the number of trials available was larger than the 
minimum number of trials, trials were randomly subsampled from the available trials.  The value 
of k was fixed at 4.  Each session was decoded 10 times and the average accuracy across 
averaged across the repetitions.  The difference in the accuracy between the held-out 
responses from the initial session and the 30-day session was considered to be the 
representational drift.   
 
Computation of signal correlations (Figure 5) 

Signal correlation ρsig between a pair of neurons is defined as Pearson’s correlation 
between the average responses to stimuli80.  Therefore, we computed pairwise signal 
correlation between neuron i and neuron j as 
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ρi,jsig �  corr�34 � , 34�� 

(8) 
where 34 is a vector of average response in number of spikes to 180 sinusoidal gratings for the 
respective neuron. 
 
BCI data analysis 
Two-sample proportions Z-test (Figure 1) 
 We computed the Z-statistic for the hypothesis that two performances came from two 
separate binomial distributions against the null hypothesis that they came from the same 
distribution.  The Z-statistic for the difference in performance between the first session and the 
ith session was computed by the following equation. 
 

� � 5� � 5�SE  

(9) 
SE was the standard error of the sampling distribution difference between the two performances 
and p1 and pi were the performance of the first session and the ith session respectively. SE of 
the first session and the ith session was computed by the equation below,  
 

SE � 85 � �1 � 5� � � 19� � 19�� 

(10) 
where p is the pooled performance between session 1 and session i, weighted by the number of 
trials, n, of the respective session. 
 

5 � 5� � 9� � 5� � 9�9� � 9�  

(11) 
P-values were computed from the Z-statistic and corrected for multiple comparisons (the 
number of sessions) by controlling for the false discovery rate using the Benjamini-Hochberg 
procedure independently in each mouse.   
 
Quantification of DP activity at the time of success (Figure 2b, Supplementary Table 2) 

The normalized real-time fluorescence signal of DP neurons was corrected for slow drifts 
in fluorescence for each direct neuron, to ensure that any learning induced changes were not 
over-estimated.  We removed events larger than 3 scaled median absolute deviations using the 
Matlab function ‘rmoutlier’. The signal trend was estimated by computing the median with a 
3000-frame moving window and subtracted from the raw fluorescence, and the resulting signal 
was re-centered using the median of the BCI baseline. The average fluorescence over a 387 ms 
window (6 frames) centered at the time of target threshold crossing was compared between 
session 1 and the LP session. 
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Statistics and reproducibility 
We conducted experiments independently across the animals listed in Supplementary Table 1; 
in the the case neurons were tracked across sessions, this is noted in the legend.  Error is 
reported as standard error of the mean (S.E.M.), unless noted.  In the case data were not 
normally distributed, non-parametric tests were used. Alpha was set to 0.05 unless noted.  Two-
sided tests were used unless noted.  P values were not adjusted for multiple comparisons, 
unless noted. 
 
Data Availability 
The neural response data (Figs. 1-6) generated in this study have been deposited in the GIN 
database, available at at https://gin.g-node.org/bjeon/V1_BCI.git. Source data are provided with 
this paper. 
 
Code Availability 
The code used for analysis is available on GitHub (https://github.com/bjjeon5111/BCI_V1).  
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Figure Legends 
Figure 1.  Mice gained volitional control of the BCI within 10 days. 
(a) Schematic of BCI set-up in awake mice. Six neurons were selected to drive a one-dimensional 

auditory cursor.  In all cases, three direct positive (DP, purple), and three direct negative (DN, brown) 
neurons were selected.  

(b) The control signal was mapped to 6 auditory feedback pitch frequencies; the target pitch frequency 
was 15 kHz.  Example trial in a trained mouse.  The calcium signal of individual direct neurons was 
acquired at 15.5 Hz and accumulated for 3 frames prior to updating the pitch frequency. Pre-trial start 
epoch (1-second minimum, gray shading) ended when no running was detected and the control 
signal was less than the target threshold.  The time of success was defined as the time at which the 
target threshold was reached, 2.6 seconds in this case. 

(c) Example activity of 6 direct neurons (200 seconds for each condition).  The same direct neurons were 
selected across sessions (insets).  The total number of success (green) and failure (gray) trials in the 
session is indicated below. 

(d) Fraction of trials in which the target was reached. The first BCI session ID in which the linear 
regression was significant is referred to as the ‘learning point’ (arrow; mouse #1, p=0.013, n=10 
sessions; mouse #2, p=0.023, n=6 sessions; mouse #3, p=0.005, n=8 sessions; mouse #4, p=0.005, 
n=10 sessions). Sessions in which performance was significantly higher than session 1 are indicated 
in black (2-sample proportions Z-test, corrected for 12,13,16 or 11 multiple comparisons for mouse 
#1-4 respectively). 

(e) Null distributions used to calculate chance performance, for each mouse (n=1000).  The target 
threshold and session numbers for each distribution was matched to the threshold used in the 
corresponding experimental conditions.  In all 4 mice, the actual R2 value (red solid line) was greater 
than the 95th percentile (one-sided) of the null distribution (dashed line).   
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Figure 2. Contribution of direct neurons to threshold crossing varied between session 1 and the 
LP session. 
(a) Neural activity of the direct neurons at the time of success was categorized into 8 strategies.  The 8 

strategies accounted for 94.7% of all successful trials across the 4 mice (Figs. S8-11).  Trial 
strategies were defined as follows: a single DP or DN neuron contributed to 70% or more of the 
control signal generated at the time of success, or either the summed activity of the 3 DP or the 3 DN 
neurons coordinated to contribute to 70% or more of the control signal at the time of success.  In a 
minority of cases the strategy did not fall into one of these categories, such trials are referred to as 
unclassified.   

(b) The normalized real-time fluorescence at the time of success was significantly higher (K-S test) in the 
LP session (n=150 trials) compared to session 1 (n=216 trials) in DP neurons #2 and #3 (DP neuron 
#2, p=2.26E-16; DP neuron #3, p=1.92E-05) and lower in DP neuron #1 (p=5.31E, Supplementary 
Table 2) in mouse #1.  See Supplementary Table 2 for the change in mean values in all 4 mice. 

(c) Activity of the 6 direct neurons during successful trials, aligned to the time of success, in session 1 and 
the LP session for mouse #1.  Some trials were shorter than 2 seconds (gray background).  Note, DP 
neuron #2 was the dominant contributor to threshold crossings in the LP session. 

 
Figure 3. The majority of V1 indirect neurons exhibited plasticity during BCI training. 
(a) A substantial number of indirect neurons were correlated with at least one DP neuron.  Pairwise 

correlations were computed across all indirect-DP pairs across trials for a given session, at the time 
of success; pairs with a significant correlation (Pearson’s correlation, α=0.05) are shown. The number 
of indirect neurons significantly correlated with at least one DP neuron is indicated (pie chart, session 
1: 653 and last session: 675 neurons). 

(b) Left, imaging field of view of an example animal.  Indirect neurons that were tracked in Session 1 and 
the last session are indicated by overlays (54 neurons).  The direction of change in activity level at the 
time of success is indicated.  Right, the distribution of the median change in activity amplitude for the 
neurons that exhibited a significant difference across trials (Wilcoxon rank-sum test, α=0.05, n= 207 
neurons) between Session 1 and the last session.  The distribution was skewed in the positive 
direction (one-sample K-S test, p=7.9E-38(***), n=207 neurons). 

(c) Pairwise noise correlation between V1 neurons, including both direct and indirect neurons, 
significantly increased after BCI training (Wilcoxon rank-sum test, p= 0.0015).  The visual stimulation 
imaging session immediately preceding BCI training onset (VS baseline2, n=599 neuron pairs) and 
after BCI learning (VS post-learning, n= 609 neuron pairs) were compared. Trials with locomotion 
were removed prior to this analysis. 

 
Figure 4. BCI training did not enhance stimulus responses in the subset of indirect neurons that 
matched their stimulus preference with one of the direct neurons. 
(a) Example indirect neuron responses to 12 orientations at the preferred spatial frequency (0.04 

cycles/°), before (VS baseline 2) and after BCI learning (VS post-learning). The mean across trials is 
shown in gray scale at the bottom (scale limits: 0 to 9 events).  Scale bar: 10 μm. 

(b) Example 2-dimensional tuning profile of one DP neuron, and one indirect before and after BCI 
learning.  Labeled contours of the Gaussian fit are 75%, 50%, and 25% of the peak response. 

(c) Spatial position of the subset of indirect neurons that were similarly tuned to DP#2 (red circle) in 
Mouse #2 before BCI training was initiated.  Neurons were considered to be similarly tuned if their 
preferred orientation was within 30° and their spatial frequency within 0.03 cycles/° of a direct neuron, 
prior to BCI training.    

(d) The trial-by-trial response reliability to the preferred stimulus was the same before (VS baseline 2) and 
after BCI training (VS post-learning), the median Δ reliability = -0.06; Wilcoxon signed-rank test, p = 
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0.093, n = 39 neurons.  The kernel density estimate (gray), median (white circle), and interquartile 
range of the distribution (black bar) are indicated.   

(e) Change in response amplitude at the preferred stimulus between VS baseline 2 and VS post-learning, 
same pool of indirect neurons as ‘d’.  The response amplitude (failure trials removed) was the same 
before and after BCI training, the median Δ amplitude = 1.02 events/bin; Wilcoxon signed-rank test, p 
= 0.382, n = 25 neurons. 

 
Figure 5. Acquisition of BCI control did not disrupt stimulus representation in V1. 
(a) Venn diagrams depicting the total number of imaged neurons in each of the thee imaging sessions.  

The overlap represents the number of tracked neurons in the baseline (left) and BCI conditions (right). 
(b) Imaging field of view of an example animal.  The change in orientation preference of the tracked and 

tuned neurons for both conditions indicated by overlays.  Note that the tracked pools, although contain 
some of the same neurons, were different. 

(c) The distribution of change (Δ) in orientation preference in the baseline condition was similar to that of 
the BCI condition (K-S test, p=0.680, n=93 neurons baseline, 75 neurons BCI). 

(d) Stability of orientation preference in the baseline condition and BCI condition.  Labels as in Fig. 3d.  
Distributions were overlapping in all 4 mice (Wilcoxon rank-sum test, p-values for mouse #1-4 
respectively: p=0.633, p=0.308, p=0.089, p=0.338; number of neurons in the baseline and BCI 
conditions for mouse #1-4: n=8, 10; n=26, 19; n=12, 21; n=47, 25). 

(e) Left, example signal correlation matrices, for the BCI condition. Right, stability of signal correlation was 
similar between baseline and BCI conditions (Wilcoxon rank-sum test p=0.538, n=1500 pairs baseline, 
726 pairs BCI). 

(f) Left, the change (Δ) in response amplitude for the stimulus that elicited the maximum response in the 
baseline and BCI conditions was different (Wilcoxon rank-sum test, p=0.002(**), n=99 neurons 
baseline, 77 neurons BCI.  Failure trials were included; data were pooled across the 4 mice.  Right, 
approximately one-third of the population in the BCI condition had a greater decrease in amplitude 
compared to the baseline condition (dashed line). 

(g) Decoding accuracy of orientation at a spatial frequency of 0.04 cycles/° was similar before (VS 
baseline 2) and after BCI training (VS post-learning), Wilcoxon signed-rank test, p=0.375, n=4 animals.  
The number of neurons used to classify orientation was matched across condition for each animal (1-
4, respectively): 69,33,57,47.  A second control group (5 animals) is plotted on the left, 69 neurons 
were used.  Chance probability was 0.083 (dashed line).  

 
Figure 6.  Visual discrimination impacted the stability but not the accuracy of stimulus 
representation.  
(a) Schematic of visual discrimination task. 
(b) Six of six mice (m) learned the visual discrimination task.  All mice achieved a behavioral d-prime 

above 1.5 within 10 days. 
(c) Tuning stability of all tracked, visual responsive and tuned neurons (n= 320 neurons), pooled across 

the 5 of 6 mice.  Neurons were required to be tuned on both imaging sessions (baseline and 30-days 
training) to be included.  

(d) Distribution of orientation preference for all visually responsive neurons in two cohorts of mice. Six 
naive mice were imaged 15 days apart.  The distributions were not different (Chi-square test, p= 
0.863; n= 1178 and 689 neurons). The 6 mice in ‘b’ were imaged before, during, and after training.  
The distributions after 15 and 30 days of training were significantly different from baseline (Chi-square 
test, p<0.001 both conditions; baseline, 15-days, 30 days: n= 1311, 804, and 762 neurons).  Data 
were pooled across animals. 

(e) Decoding accuracy of orientation (spatial frequency of 0.04 cycles/°) was similar before and after 
training (Wilcoxon signed-rank test, p=0.999, n=6 animals).  The number of neurons used to classify 
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orientation was matched across conditions for each animal: 167,144,122,150,101,110.   Chance 
probability was 0.083 (dashed line). 

(f) Example confusion matrices before and after visual discrimination training, mouse #1.  
(g) Cross-session classification of orientation at a spatial frequency of 0.04 cycles/° after visual 

discrimination training was significantly lower compared to baseline (paired t-test, p= 1.6E-3, n=5 
animals).  All tracked neurons were included, including those not visually responsive (number of 
neurons for each mouse, respectively: 272, 292, 329, 264, 248).  Mouse IDs as in ‘e’.  Mouse #2 was 
not included due to a neuron tracking error.  Chance probability was 0.083 (dashed line).  **p<0.001 

(h) The difference in cross-session decoding accuracy of orientation at a spatial frequency of 0.04 
cycles/° was significantly lower (t-test, p=0.035, n=5 animals in each condition) after visual 
discrimination training (data from ‘g’) compared to control animals (number of neurons for control 
mice: 133, 64, 49, 191, 232).  *p<0.05 

 
 
Supplementary Information 
Supplementary Figures 1-18 and Supplementary Tables 1-7. 
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