
Body size dependent dispersal in�uences stability in
heterogeneous metacommunities

Kurt E. Anderson1,* and Ashkaan K. Fahimipour2,3

1University of California Riverside, Department of Evolution, Ecology, & Organismal Biology
2National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center

3University of California Davis, Department of Computer Science

Abstract

Body size a�ects key biological processes across the tree of life, with particular importance for
food web dynamics and stability. Traits in�uencing movement capabilities depend strongly on
body size, yet the e�ects of allometrically-structured dispersal on food web stability are less well
understood than other demographic processes. Here we study the stability properties of spatially-
arranged model food webs in which larger bodied species occupy higher trophic positions, while
species’ body sizes also determine the rates at which they traverse spatial networks of hetero-
geneous habitat patches. Our analysis shows an apparent stabilizing e�ect of positive disper-
sal rate scaling with body size compared to negative scaling relationships or uniform dispersal.
However, as the global coupling strength among patches increases, the bene�ts of positive body
size-dispersal scaling disappear. A permutational analysis shows that breaking allometric dis-
persal hierarchies while preserving dispersal rate distributions rarely alters qualitative aspects of
metacommunity stability. Taken together, these results suggest that the oft-predicted stabilizing
e�ects of large mobile predators may, for some dimensions of ecological stability, be attributed to
increased patch coupling per se, and not necessarily coupling by top trophic levels in particular.

Introduction

What allows large, complex ecosystems to be stable? May’s analysis of randomly arranged com-
munities of self-limiting populations challenged previous ecological thinking on this issue, showing
that greater species richness and interaction connectivity tended to destabilize random communities
rather than stabilize them [1, 2]. This and subsequent theory set the stage for decades of work analyz-
ing the complicated relationship between diversity and dynamics that continues today [3, 4, 5, 6, 7].
In contrast to randomly-assembled communities, an emerging focus in modern biodiversity theory is

∗To whom correspondence should be addressed: kurt.anderson@ucr.edu Page 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430322doi: bioRxiv preprint 

mailto:kurt.anderson@ucr.edu
https://doi.org/10.1101/2021.02.08.430322
http://creativecommons.org/licenses/by/4.0/


on the non-random structural features of ecological systems that impart stability [4, 8, 9]. For com-
munities organized around feeding relationships (i.e., food webs), two types of structure receiving
extensive attention are allometric hierarchies, where larger species mostly eat smaller ones and pop-
ulations experience other demographic rates dependent on body size [5, 10, 11]; and dispersal among
spatially discrete habitats [12, 13, 14, 15].

Body size-based food web topologies and allometric scaling of population demographic rates have
both shown to be stabilizing for models of trophic interactions [5, 6, 10, 16, 17]. Simple mass-based
hierarchical feeding rules — where species high in the feeding hierarchy are interpreted as large-
bodied predators — can successfully reproduce realistic food web topologies [4, 5, 11, 18, 19, 20, 21]
that are more likely to be dynamically stable than random network con�gurations [16, 17]. Likewise,
allometric scaling of species’ demographic rates such as handling times, conversion e�ciencies, and
biomass turnover, are predicted to stabilize food webs [5, 10, 22, 23, 24, 25]. This is particularly the
case when the ratio of body masses between resources and consumers is large and consistent with
values observed in natural food webs [5, 10, 26].

At larger scales, dispersal generates structure by linking spatially distinct food webs through the
movement of individuals. The role of dispersal in population dynamics and community composition
is a central focus in ecology, with early work emphasizing the colonization of islands by mainland
species [27, 28] and the “rescue” of small populations in sink habitats [29]. Colonization-extinction
dynamics in spatially subdivided habitats, originally examined in a population context [30, 31], ex-
tended these results and have been shown to promote higher regional food web diversity than can be
supported in isolated well-mixed systems [15]. Dispersal can also stabilize species interactions locally
by mimicking density-dependence in per capita growth rates [32, 33, 34, 35]. More recent work has
linked metacommunity dynamics to May’s original examination of species richness and connectance,
showing that dispersal among spatially distinct subpopulations can be strongly stabilizing [36, 37].
Complexity-stability relationships in these cases are relaxed or even reversed relative to results seen
in linear stability analyses of random matrices.

Much like trophic interaction rates, many traits that in�uence animal locomotion, movement
speed, and potentially dispersal also vary with body size [38, 39, 40]. Spatial patterns of resource use,
home ranges, and geographic range size also exhibit strong allometric relationships [24, 41, 42, 43, 44].
These patterns in turn create the potential for spatial coupling of habitat patches [45] and hence local
food webs [16, 46, 47] that depends on body size. While many studies emphasize faster movements of
large consumers, suggesting positive body size dispersal relationships, large-bodied species many face
greater dispersal limitation in some habitats [48, 49, 50], suggesting a range of potential relationships
between body size and dispersal across ecosystems [15].

Theoretical and empirical evidence suggests an important role for body size-dispersal scaling in
ecosystem dynamics, yet the full e�ects of dispersal variation among species in food webs have so far
been di�cult to systematize [15]. Some mathematical models indicate that the coupling of distinct
food webs by consumer movement can be stabilizing when those webs represent di�erent energy
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Figure 1: Model metacommunities are composed of local food webs connected to one another by dispersal. A. Each
local web inhabits a habitat patch that is part of a spatial network, generated as a random geometric graph. Species in each
web have a body size that is larger at higher trophic levels. Food webs have the same number of species and topology in
all patches, but interaction rates and other ecological parameters vary among habitats mimicking spatial environmental
heterogeneity. B. Dispersal varies as either an increasing or decreasing function of body size.

channels or environmental conditions [12, 16, 47]. In other models, greater mobility of consumers is
a key requirement for instability [51, 52, 53, 54]. Yet other examples have identi�ed dispersal-driven
instabilities for communities in which primary producers traverse space more rapidly than other
species [13]. Overall, the e�ects of dispersal are complicated in ecological networks and a general
understanding of how dispersal rules in�uence food web stability is lacking [13, 15].

Here, we examine how body size scaling of species’ dispersal rates in�uences stability in model
trophic metacommunities (Fig. 1). In particular, we ask whether body size-dependent variation in
dispersal rates in�uences trophic metacommunity stability relative to rates that are either uniform
or randomly varying among species. We examine landscapes of discrete habitat patches that include
variation in local abiotic conditions, generating spatial heterogeneity in rates of primary production
and trophic interactions among species. Clearly, the stability of such heterogeneous metacommuni-
ties will depend on the proportion of patches in the landscape with locally favorable conditions for
stability. We show how the body size scaling of species’ dispersal rates alters this relationship. Be-
cause general rules describing the dependence of dispersal on body size are lacking and likely vary
among ecosystems [15], we consider both positive and negative relationships between dispersal rates
and body sizes. Our results show strong e�ects of dispersal-body size scaling on metacommunity
stability, largely due to increased connectivity among local webs with di�erent stability properties.

Model formulation

We model trophic metacommunities as copies of food webs consisting of S species, embedded in a set
of N patches. We chose to represent spatial networks as random geometric graphs, which provide a
reasonable approximation for real networks [15] of habitats and the dispersal connections between
them (Fig. 1).

Food web topologies were generated using the niche model [18], which recapitulates realistic yet
variable feeding relationships with only two input parameters, species richness S and connectance C
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[18]. Brie�y, species are assigned a position on a 1-dimensional niche axis and feed on species over a
range determined by C . The feeding range is centered below the species’ niche positions, creating a
trophic hierarchy where each species i has trophic position Ti de�ned by the path length to any basal
producer.

Following [5, 7, 10, 11], we assigned body sizes assuming that the normalized mass Mi of each
species i scales with their trophic position Ti , as Mi = RTi . For reported results, normalized producer
body sizes are uniformly set to one while R = 42. This value of R represents the average predator-prey
body mass ratio reported by [26], although our qualitative results are consistent across a wide range
of realistic ratios.

Dynamics on the links de�ned by each niche model topology were represented as the set of ordi-
nary di�erential equations of the form

dBki
dt = GBki (B

k
i ) + FBki (B

k) − XBki (B
k
i ) −∑

j
EBkj Bki (B

k) +∑
l
[DBli (B

l
i ) − DBki (B

k
i )] (1)

where Bki is the biomass density of species i in patch k. The non-speci�ed function G is the growth
rate of primary producers, F is the rate of biomass accumulation due to feeding on other species,
X is rate of biomass loss due to respiration and mortality, E is the rate of biomass loss due to con-
sumption by species j, and D is the dispersal rate between patches. While the functional forms are
not explicitly speci�ed, the general form of equation (1) admits the calculation of a Jacobian matrix
that quanti�es how species in the metacommunity respond to perturbations from steady state and
therefore metacommunity stability [55, 56]. Using the generalized modeling method [6, 55, 57], the
derivatives of functions G, F , X , and E that constitute the non-dispersal elements of the Jacobian
matrix can be recast in terms of scale, branching, and elasticity parameters (see Methods). The gener-
alized model parameters have clear ecological interpretations: scale parameters set the time scale of
biomass turnover, while branching and elasticity parameters set the relative contributions of di�er-
ent processes to biomass gains and losses and the form of non-linearities, respectively [6, 55, 56, 57].
The range of generalized model parameter values studied here map to most commonly encountered
functional forms (e.g., Lotka-Volterra-like and Holling type II and III functional responses) that link
interaction rates with species’ densities in conventional models, and follow ecologically-based argu-
ments from prior work [6, 55, 56] (Table 1).

Trophic metacommunities were constructed as follows. First, a spatial structure of N = 10 habitat
patches was randomly generated as a geometric graph on the interval [0, 1] with a neighborhood
radius of 0.32 (see Methods). Each patch k in the spatial network contains a copy of the same S
species niche model [18] web. Heterogeneity in factors that in�uence primary production and trophic
interactions were modeled as random variation among patches in branching and elasticity parameters
[6, 55, 56, 57]. Values of these spatially variable parameters were drawn independently from uniform
distributions de�ned by ecologically meaningful ranges (Table 1).

For simplicity, we assume that there is no dependence of per capita dispersal rates on patch identity
or on interspeci�c densities (i.e. no cross-di�usion). We further assume that dispersal is a linear

Page 4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430322doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430322
http://creativecommons.org/licenses/by/4.0/


Parameter Description Range or Value

Scale
�i Normalized turnover rate of species i M−1/4

i

Branching
�ki Fraction of biomass gains from predation, for species i in patch k 0 or 1
� ki Fraction of biomass loss from predation, for species i in patch k [0, 1]
�kij Fraction of species i’s loss from consumption by j in patch k [0, 1]
� kij Fraction of species j’s gains from consumption of i in patch k [0, 1]

Elasticity
�ki Nutrient availability for producer i in patch k [0, 1]
 k
i Sensitivity of i’s predation rate to its own density in patch k [0.5, 1]
�kji Sensitivity of j’s foraging preferences to prey densities in patch k [1]
 ki Sensitivity of i’s predation rate to total prey density in patch k [0.5, 1.5]
�ki Sensitivity of species i’s mortality to its own density in patch k [1, 1.5]

Niche model
S Species richness [10, 30]
C Food web connectance [0.12, 0.24]

Table 1 Parameter de�nitions and ranges used in metacommunity simulations.

function of local intraspeci�c density and allow for dispersal rates to vary among species,

DBki (B
k
i ) = �ki Bki , DBli (B

l
i ) = � li Bli ; �ki = � li = �i . (2)

Each species i in a particular metacommunity scenario is assigned a species-speci�c dispersal rate �i
that is dependent on its body size. We chose a power law relationship between body mass and dis-
persal rate, as this general form captures many allometric scaling relationships related to locomotive
capabilities and spatial habitat use [24, 38, 40, 58]. Speci�cally,

�i = dMz
i (3)

where d is the global link strength of the spatial network and z is the body size scaling exponent
for dispersal. Producers have a body size equal to one such that for producers, �i = d . When z is
positive, species with higher trophic positions and thus larger body sizes traverse the spatial network
at a higher rate. This scenario potentially re�ects terrestrial and pelagic food webs where larger
animals have greater mobility and hence dispersal potential [12]. In other systems, z may be negative
[13, 15, 40], giving species in lower trophic levels the fastest dispersal rates with lower rates for larger
bodied species.

We examined metacommunity stability using linear stability analysis. This procedure was applied
in classic work on community stability by May and others [1, 2] and has since been expanded to
incorporate spatial processes [14, 36]. Linear stability is assessed by examining the eigenvalues of
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the Jacobian matrix of the trophic metacommunity, J. Each local food web has a corresponding local
Jacobian Jk that is derived from equation (1); these local Jacobians are collected and numerically
arranged as blocks on the diagonal of the SN × SN matrix P. The local food web information is then
used to calculate the metacommunity Jacobian J using the equation [13, 14, 59]

J = P − L ⊗ D, (4)

where ⊗ is the Kronecker product; the N × N matrix L is the Laplacian of the corresponding spatial
network; and D is an S × S Jacobian-like diagonal matrix containing species-speci�c dispersal rates
calculated from equation (2). Eigenvalues of local food web Jacobians Jk and the metacommunity
Jacobian J were computed numerically; stability occurs when the real parts of all eigenvalues are
negative. Additional details regarding this method of analysis are found in refs. [13, 14, 59, 60] and in
the Methods.

Body size scaling could increase stability in metacommunities owing to simple increases in overall
dispersal, rather than because of particular relationships between body size, trophic position and
dispersal rate. To test this possibility, we compared our suite of model metacommunities with di�erent
dispersal rules to those with random variation in dispersal rates. For each metacommunity and each
dispersal scenario, we computed Jacobians with 100 random permutations of species’ dispersal rates
(i.e., the diagonal entries of D, see eq. 3) and compared stability properties in these randomized
metacommunities to their corresponding intact systems.

Results

Linear stability of both local food webs and metacommunities varied dramatically over the multitude
of food webs examined, depending on species richness, food web connectance, branching, elasticity
[6], and dispersal parameters. The baseline dispersal rate d and body size scaling exponent z in par-
ticular in�uenced metacommunity stability. Figure 2 presents the aggregated results of all numerical
analyses organized by local food web and metacommunity stability. The proportion of stable local
food webs gives the proportion of webs in a metacommunity that would be stable in the absence of
any dispersal. The proportion of stable metacommunities gives the probability that a corresponding
trophic metacommunity will be stable when those patches are then linked by dispersal. The pro-
portion of stable local food webs has the intuitive e�ect of positively increasing the chance that the
metacommunity they constitute will also be stable; a metacommunity composed entirely of locally
stable food webs is always stable. However, the strength of this positive relationship relies critically
on the rules that determine dispersal rates across trophic levels.

Metacommunities are most likely to be stable when larger-bodied species disperse through spatial
networks of habitat patches faster than smaller-bodied ones (that is, for z > 0, Fig. 2). Thus, having
more patches with conditions that promote stability and experiencing higher overall spatial coupling
both stabilize metacommunities. For a given proportion of stable local food webs and for all but the
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Figure 2: The relationship between local and metacommunity stability as in�uenced by dispersal. The baseline dispersal
rate d and the body size scaling coe�cient z determine the species-speci�c dispersal rate �i = dM z

i , where Mi is the mass
of species i. All species have the same dispersal rate d when z = 0. When z is positive, larger bodied species have faster
dispersal rates, whereas when z is negative, it is smaller bodied species that have faster dispersal rates. Other parameters
vary across all simulations as indicated by Table 1. Error bars denote ± 2 S.E.M., and are too small to see.

strongest global coupling (i.e. large d), metacommunities with a positive relationship between body
size and dispersal rate are most likely to stable, while those with negative scaling are least likely to
be stable.

The stabilizing e�ects of positive body size-dispersal scaling are most pronounced when the global
link strength among habitat patches d is relatively low. When d = 1, metacommunity stability with
size-dependent dispersal is nearly indistinguishable from the case of uniform dispersal. As overall
large levels of dispersal provide a substantial stabilizing e�ect, positive body size-dispersal scaling
therefore appears to be bene�cial for stability because large consumers increase spatial connectivity
above the baseline rate set by primary producers (i.e. it is guaranteed that �i ≥ d). With negative
scaling, these same consumers have lower dispersal rates than producers (i.e. �i ≤ d), lowering the
overall spatial coupling between metacommunity patches and reducing stability.

Correlations between key model parameters (see Methods) and metacommunity stability are
shown in Fig. 3, con�rming the importance of dispersal rules. Of all model parameters examined,
the baseline dispersal rate d and the body size scaling parameter z have by far the strongest stabiliz-
ing e�ects. In contrast, species richness S and food web connectanceC have the greatest de-stabilizing
e�ects, largely through their well-documented e�ects on local food webs [2, 3, 6]. No other parameter
showed a notable correlation with stability, either positive or negative.

The results in Fig. 2 show how body size scaling of dispersal can stabilize metacommunities
by increasing coupling among patches. In Fig. 4, we compare stability of metacommunities with
body size-dispersal scaling to those where the same set of dispersal rates are randomly re-assigned
to species (permuted metacommunities). With these comparisons we ask whether, for a given global
link strength d , it is coupling by large-bodied species speci�cally or simply greater coupling overall
that drives stability. The 1:1 line in Fig. 4 shows where the leading eigenvalue �1 of a metacommunity
is the same as median leading eigenvalues of the corresponding permuted metacommunities. Most
eigenvalue comparisons fall near this line across the entire range of dispersal scaling exponents z
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Figure 3: The e�ects of key parameters on metacommunity stability. Stability is as de�ned in Fig. 2 and parameters
are de�ned in Table 1. Correlations given are coe�cients from the best-�tting generalized linear model ±2 SEM. Posi-
tive correlations indicate that larger values of a parameter correspond to a higher probability that a randomly-assembled
metacommunity will be stable.

and global link strengths d (Supplementary Fig. 1). Figure 5 presents these results categorized by
their qualitative e�ects on stability. The sign of the leading eigenvalues for the metacommunities
with permuted dispersal are typically the same as the intact ones, indicating that the median e�ect
of shu�ing dispersal rates among species is rarely a qualitative change in stability. In fact, there is
no combination of body size scaling z and dispersal coupling d where a qualitative change in stabil-
ity occurs in more than 25% of metacommunities (Supplementary Fig. 2). Yet despite the frequent
preservation of qualitative dynamics, re-arranging which species exhibit the highest dispersal rates
on a patch network does show a high potential to alter the magnitude of �1 (Fig. 4; Supplementary
Figs. 1 & 2) and therefore the rates at which metacommunities return to, or depart from, steady states
following perturbation. We conjecture that dispersal hierarchies may be important for the transient
dynamics of ecosystems, and suggest that an understanding of how dispersal rules impact di�erent
dimensions of ecological stability will be an important goal for future work.

Discussion

Our model reveals an apparent stabilizing e�ect of positive body size scaling of dispersal in het-
erogeneous metacommunities (Fig. 2), consistent with some conceptual and mathematical theories
[14, 16, 61]. However, by comparing metacommunities with allometric dispersal to those whose dis-
persal rates were random permutations of the original values (Figs. 4 & 5), we found evidence that
increased overall connectivity, and not predator movement per se, was responsible for metacommu-
nity stability. Increased connectivity manifests either through larger values of global patch coupling
d or stronger positive body size-dispersal scaling z, and generates conditions in which fewer stable
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Figure 4: The e�ect of dispersal variation on metacommunity stability for spatial link strength d = 0.1. The metacom-
munity is stable when the real part of the leading eigenvalue of the metacommunity Jacobian �1 < 0. Allometric dispersal is
de�ned eq. 2. Permuted dispersal refers to cases where allometric dispersal rates were randomly reassigned to new species.
Each unique metacommunity with allometric dispersal was compared to 100 randomly permuted counterparts, and are
shown with 1:1 lines. Grey regions mark portions of the plot representing qualitative changes in stability.

patches are required to “rescue” unstable patches in a metacommunity.
There are many potential explanations for why random dispersal maintains roughly the same

degree of metacommunity stability as positive body size scaling. The stabilizing e�ects of dispersal
in randomly assembled metacommunities have been shown to operate when dispersal is both ho-
mogeneous and variable among species [36]. We conjecture that, for the non-random food webs we
examine here, the existence of stabilizing structural motifs could be enhanced by dispersal. Con-
sumers play key roles in the stabilizing e�ects of food webs compartments [62], including linking
separate energy channels [16, 63] and forming long interaction loops [64]. Higher dispersal by these
consumers, even if they are not top predators, could substantially enhance metacommunity stability
by connecting stabilizing subscommunities across habitats. Additionally, patterns of dispersal where
low level consumers have the greatest dispersal connectivity have been shown to confer stability in
some tri-trophic metacommunities [54]. Finally, di�erential dispersal among species at similar trophic
levels could generate competition-colonization and fecundity-dispersal trade-o�s (reviewed in [65]),
which may enhance stability in simple metacommunities. How the above mechanisms operate in
more complex spatial food webs remains an open question.

Negative body size-dispersal scaling relationships lead to lower stability in our model by lowering
dispersal coupling relative to situations where all species in the food web share the same dispersal rate.
These results are most likely relevant for systems where connectivity results from passive transport of
smaller-bodied organisms, for example wind-dispersed plants or freshwater zooplankton, �ooding-
dispersed pond invertebrates, and marine organisms with planktonic larvae. Passive dispersal can
generate stochastic variation in connectivity [66], which may have complicated e�ects on stability.
Yet it can also lead to increased connectivity by large numbers of individuals [49, 67, 68]. Thus, while
negative scaling could potentially equate to low stability, the overall levels of dispersal may be very
high in systems where lower trophic levels disperse at greater rates, reducing the scaling e�ect and
leading to higher stability.
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Figure 5: Eigenvalues �1 from �g. 4 categorized by qualitative e�ects on stability. Categories Stability is gained and
Stability is lost correspond to cases where the median e�ect of permuting dispersal rates is a change in the sign of �1.
Stability is una�ected indicates no sign change.

Spatial variation in model parameters were central to how dispersal connectivity in�uenced sta-
bility in our model. The positive relationship between stability and the dispersal parameters d and z
was consistent throughout the parameter region we explored; additional numerical results not shown
con�rmed this relationship more broadly. This pattern contrasts with some other metacommunity
models that exhibited a unimodal relationship between dispersal and stability [69, 70, 71, 72]. Uni-
modal dispersal-stability relationships occur when very high dispersal leads the system to behave as
a single, well-mixed habitat. Species persistence and the variation-reducing e�ects of dispersal there-
fore no longer operate. Similar outcomes do not seem to occur in our model, at least at the parameter
values examined, because rates of primary production and trophic interactions are forced to vary in
space. A key e�ect of dispersal in the presence of such spatial variation is to reduce variation among
interaction rates of the average, well-mixed food web, which actually increases stability [36, 37].

Homogenous systems could exhibit very di�erent dynamics. Dispersal-induced instabilities are
frequent in homogeneous space trophic models (e.g. [73, 13]), leading to spatially patterned steady-
states or asynchronous oscillations even when local dynamics are stable. The presence of high-
dispersing top predators in more complex food webs appears to generally stabilize spatially homoge-
neous systems [14], although faster consumer movement is also a necessary condition for spatially
pattered steady states to arise in two- and three-species food chains [74, 73]. Dispersal-induced os-
cillatory instabilities in contrast are more likely when primary producers disperse much faster than
primary and secondary consumers in simple food chains [73, 54]. Therefore, we might expect a gen-
erally stabilizing e�ect of positive body size scaling and a generally destabilizing e�ect from nega-
tive scaling with oscillatory instabilities. However, these predictions could be complicated in more
complex ecological networks, where spatial dynamics can be additionally in�uenced by consumers
sharing a common prey (e.g. [75]) or prey being consumed by a shared predator (e.g. [73]). Further-
more, pattern formation and asynchronous oscillations could impart “stability” in a di�erent sense by
lowering population variation at larger scales [54, 76].

Our de�nition of stability pertains to metacommunity behavior near equilibrium and is there-
fore limited in describing non-equilibrium dynamics. In this class of models, instabilities can in-
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deed include trajectories that tend to zero (i.e., species extinctions), but other outcomes includ-
ing non-equilibrium co-existence with synchronous or asynchronous oscillations are also possible
[77, 78, 79, 80]. The relationship between species persistence and other non-equilibrium dynamics is
not always clear, particularly when species interactions are nonlinear. In metacommunities, regional
persistence can occur even in the presence of local extinctions [69, 70, 72]. Unstable oscillations
or even local extinctions may in fact drive spatially asynchronous dynamics that enhances regional
persistence [70, 54, 76, 72]. In these cases, positive body size scaling could counteract such e�ects;
just as coupling by large, mobile consumers stabilizes heterogeneous metacommunities in our model,
predator movement could dampen the amplitude of asynchronous oscillations. Wide-ranging preda-
tors may also synchronize prey dynamics [81, 82, 83]. The rich non-equilibrium behavior possible
in highly speciose food webs with nonlinearities, like we examine here, will likely require extensive
investigation and generalizations may be challenging [15].

Consumers, especially large-bodied top predators, are being disproportionately lost from the
world’s ecosystems [61, 84, 85]. These losses have far-ranging implications for ecosystem structure
and stability [86, 87, 6, 61, 84, 14]. A potential consequence of consumer extinction is loss of spatial
coupling, which previous research and our results here suggest could lead to further regional insta-
bility [63, 12, 14], including increased variability and subsequent species losses. While positive body
size scaling had the greatest stabilizing e�ect in our model, we also found that similarly strong dis-
persal coupling by species in other trophic positions yielded equivalent stability. Thus, our results
suggest that the conservation value of connectivity may not be lost when top consumers are. Instead,
identifying alternative agents of connectivity and promoting their dispersal following top consumer
loss may serve as a productive strategy. In practice, �nding substitutes for large bodied consumers in
some ecosystems may be di�cult given the out-sized role in ecosystem coupling these species play.
Yet, continued threats to top consumer persistence and the potential conservation value of dispersal
among other species suggest the utility of planning for robust connectivity at the community rather
than population level [88, 89].

Methods

Steady states and stability of equation (1) were studied using the generalized modeling method [6,
55, 57]. The method assumes all populations in the food web possess a steady state, allowing us to
re-cast population densities and functions as normalized proportions of the steady state. Thus, for
each population Bki of i = 1, ..., S species across k = 1, ..., N patches there exists a steady state Bk∗i that
allows us to de�ne the normalized densities bki = Bki

Bk∗i
. The normalized equations for the non-dispersal
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components of the metacommunity are therefore

dbki
dt = �i[(1 − �ki )gBki (b

k
i ) + �ki fBki (cBki , b

k
i ) − (1 − �ki )xBki (b

k
i )

− �ki ∑
j
�kijeBkj Bki (b

k)]; cBkj = ∑
i
�ji f̃Bkj (B

k
i ).

(5)

The functions g, f , x , and e represent the functions G, F , X , and E from equation (1) normalized by
their values evaluated at steady state; the newly introduced variables cBkj and f̃Bkj (B

k
i ) represent the total

amount of food available to species j and the contribution of species i to the food available to species
j, respectively [56]. Additional scale and branching parameters that arise from the normalization
procedure set the rates and strength of interactions in the local food web. The normalized turnover
rate �i scales the biomass �ow rates for each species in the food web with mass, �i = M−1/4

i , while the
branching parameters quantify the structure of these �ows. Speci�c interpretations of the scale and
branching parameters are given in Table 1 and provided in detail in [55].

Determining stability of equation (4) relies on establishing the Jacobian matrix for the local food
web, Jk . The Jacobian is constructed from elements that describe the change in the dynamic equation
for each species that occurs given a change in each component state variable and the functions of
each state variable near steady state. The local food web Jacobian therefore is a square S × S matrix
where diagonal entries Ji,i describe the e�ects of a change in species i on itself and the non-diagonal
entries Jj,i describe the e�ects of species i on species j. Quantifying the changes of functions of state
variables near steady state is accomplished in the generalized modeling framework by de�ning the
following exponent parameters [6, 13, 55, 56, 57],

�ki = )
)bki

gBki (b
k
i )
||||x=x ∗

,  k
i = )

)bki
fBki (cBki , b

k
i )
||||x=x ∗

, �kji =
)
)bki

f̃Bkj (B
k
i )
||||x=x ∗

,

 ki = )
)cBki

fBki (cBki , b
k
i )
||||x=x ∗

, �ki = )
)bki

xBki (b
k
i )
||||x=x ∗

.
(6)

These exponent parameters can be interpreted formally as elasticities [56, 57]. Furthermore, they
recapitulate e�ects of relevant non-linearities on ecological dynamics commonly employed in stan-
dard ecological models such as the amount of saturation in the functional response ( ki ), the shape of
the producer growth function (�ki ), the presence of intraspeci�c consumer interference ( k

i ), and the
density-dependence of consumer mortality rates (�ki ). The exponent parameter �kj,i can be interpreted
as the adaptability of consumer preferences to di�erent prey items; following previous work [6] we
assume constant preferences for simplicity.

Niche model food web topologies that specify the structure of interactions in equation (5) were
generated following [18]. Each species i is assumed to exist on a niche axis between [0,1] and is
assigned a niche value using a uniform distribution. The species then is assumed to consume all
species over a range ri that is near or below the position of species i on the niche axis, generating a
trophic hierarchy. The location of the range is assigned using a beta function with expected value 2C .
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We chose input values for species richness S as integers between 10 and 30 inclusive, [10..30], and for
connectance C as (0.12, 0.14, ..., 0.24). The latter range was chosen to encompass empirically observed
connectance values [90]. Only webs with a single connected component were retained for analysis.

Spatial networks were generated as random geometric graphs (RGG). Networks ofN patches were
generated by �rst randomly assigning coordinates in 2 dimensional space to each patch drawn from
a standard uniform distribution. patches were then connected if the Euclidean distance between their
coordinates fell below a threshold n. Networks with unconnected patches were discarded. For results
included here, we usedN = 10 and n = 0.32, yet simulations with greater numbers of patches, di�erent
values of n, and even di�erent network con�gurations exhibited qualitatively similar results.

The spatial structure of the RGG is encoded in the Laplacian matrix L. The Laplacian L is an N ×N
matrix where the diagonal entries Lk=l represent the number of dispersal connections (i.e. degree) of
each patch k. The o�-diagonal elements of L re�ect dispersal connections between individual patches,
where Lk≠l = −1 when patches k and l are connected and 0 otherwise. Linking the Laplacian to the
dispersal matrix D yields the spatial structure of the dispersal network. The dispersal matrix is an
S × S matrix with species-speci�c dispersal rates on the diagonal Di=j = �i and all other entries zero.
Using L⊗D, with ⊗ being the Kroenecker product, yields the SN × SN block matrix that describes the
pattern of connections between all patches by all species.

Local food webs were embedded in the spatial structure of the metacommunity using equation
(3). Each local web Jacobian Jk was numerically placed on the diagonal of the metacommunity food
web matrix P . Because we assume environmental heterogeneity, the entries of each Jk in a given P
vary, although the topologies remain �xed. Environmental heterogeneity is implemented as variation
in branching and elasticity parameters; the value of each parameter for each species in a local web Jk
was determined by drawing from uniform distributions in the appropriate range de�ned in Table 1.

We generated one hundred unique food web topologies for each combination of species richness S
and connectance C , yielding 7,700 unique metacommunity topologies. We explored metacommunity
dynamics over �ve values of dispersal coupling d and seven values of dispersal allometry z, yielding
192,500 unique metacommunities. Dispersal structure of each unique metacommunity was then per-
muted 100 times; the stability of the metacommunity was compared with the median stability of the
random dispersal metacommunities.

Associations between di�erent parameters and metacommunity stability were quanti�ed using
generalized linear models (GLMs) with binomial errors and a logit link function, with an information
criterion-based model selection scheme. Following White et al. [91] we use GLMs as a framework
for partitioning variance and correlations between important model parameters and metacommunity
stability, and not for assessing statistical signi�cance. We �rst �tted a global model comprising linear
combinations of �xed e�ects for local food web species richness S, web connectance C , the strength
of spatial network links d , the body size scaling exponent for allometric dispersal z, and the spatial
variances and means of parameters describing predator satiation, interaction strengths, and nutrient
availability to primary producers (Table 1). We then computed Akaike’s information criterion (AIC)
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for all submodels comprising di�erent combinations of �xed e�ects in the global model, and selected
the model with the lowest AIC score as the best �tting. This model included four terms: species
richness S, web connectance C , global spatial network link strength d , and the exponent of allometric
dispersal z (Fig. 3).
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